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Abstract. Accurate and fast electron kinetic calculations is a challenging issue for

realistic simulations of thermonuclear tokamak plasmas. Relativistic corrections and

electron trajectory effects must be fully taken into account for high temperature

burning plasmas, while codes should also consistently describe wave-particle resonant

interactions in presence of locally large gradients close to internal transport barrier. In

that case, neoclassical effects may come into play and self-consistent evaluation of both

the radio-frequency and bootstrap currents must be performed. In addition, a complex

interplay between momentum and radial electron dynamics may take place, in presence

of a possible energy dependent radial transport. Besides the physics needs, there are

considerable numerical issues to solve, in order to reduce computer time consumption

and memory requirements at an acceptable level, so that kinetic calculations may

be valuably incorporated in a chain of codes which determines plasma equilibrium

and wave propagation. So far, fully implicit 3-D calculations based a finite difference

scheme and a incomplete LU factorization have been found to be so most effective

method to reach this goal. A review of the present status in this active field of physics

is presented, with an emphasis on possible future improvements.

PACS numbers: 52.55.Fa, 52.65.Ff, 52.55.Wq
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1. Current drive modeling issues

Since it has been recognized ten years ago that current drive efficiencies of available

methods where far too low for sustaining all the toroidal current in a burning plasma

with a reduced fraction of the alpha power, the picture of a steady-state tokamak reactor

has deeply changed [1]. This lead to the emergence of the well known advanced tokamak

concept [2], where the plasma self-generates most of its current from steep pressure

gradient, whose profile should be, in principle, naturally consistent with the magnetic

equilibrium. In this regime, one takes benefit of neoclassical effects at high βp, where the

bootstrap current resulting from radial drift predominates. External current sources are

therefore viewed as a complement for full steady-state operation, and tools for a local

control of the current density profile which plays a central role in plasma performances

and stability.

Consequently, modeling issues for current drive has considerably evolved since

the pioneering studies, which were principally focused on the problem of efficiency for

reducing the recycling power [3]. Indeed, since advanced scenarios are designed primarily

for reducing the need of external sources of current, the question of the efficiency became

progressively marginal, though several attempts to improve performances by potential

synergistic effects have been performed both from the theoretical and experimental point

of view [4]. So far, no breakthrough in this domain has been achieved, and most of the

conclusions drawn in the early 90’s remain still valid.

Conversely, the need for an accurate current localization in very narrow region of

the plasma where pressure gradients may be steep has considerably increased, mainly

for a precise control of transport barrier whose presence is expected to be strongly

beneficial for fusion plasma performances (H-mode edge pedestal, internal transport

barrier). Stabilizing neoclassical tearing modes by very local current drive for avoiding

degradation of the plasma confinement is also an important issue [5]. The goal of an

accurate current drive localization represents an important challenge for both physics

and technology, regarding the fact that current density profile must be tuned easily

from a few set of external parameters of the heating system, in view to achieve real

time control in fully non inductive operation. For the RF current drive, the usual

approach is to split the problem into two parts, one concerning the electromagnetic

propagation of the wave in the plasma and the other being dedicated to the kinetic wave-

particle interaction describing momentum transfer and the related absorption process.

In both cases, credible simulations on which most of the complex fusion scenarios are

based, require to describe physics problem in a very realistic way. Moreover, these

simulations often represent a major challenge from the numerical point of view, since

both magnetic equilibrium and transport properties must be self-consistently determined

with wave propagation and absorption. Therefore, kinetic calculations for the current

drive problem, as part of a chain of codes must provide a quick and precise manner the

correct answer regarding the physics processes that are described. Here, only kinetic

calculations concerning the electron population are addressed.
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1.1. Physics requirements

In the low collision limit that prevails in the core region of a hot tokamak plasma,

which is characterized by the well know parameter ν∗ ≡ τb/τdt � 1, where τb and τdt
are respectively the bounce and collisional detrapping times for trapped particles, the

current drive problem is basically a 3 −D kinetic problem, 2 −D in momentum space

characterized by the impulsion p and pitch-angle cosine ξ0 coordinates‡, and 1 −D in

configuration space, where the coordinate ψ chosen for labeling concentric magnetic

flux surfaces is the poloidal magnetic flux. Both circulating and trapped electrons

may therefore complete their trajectories in a poloidal plane section, before being

scattered-off from their trajectory by collisions, so that the bounce-averaged Fokker-

Planck equation must be the starting point of all kinetic calculations for realistic current

drive simulations. For electrons, in the small drift approximation, the banana width is

always very small regarding the gradient length scales, and bounce-averaging provides

the correct method §.
The detailed aspects of the magnetic equilibrium are also very important, in

particular when physics must be described close to the plasma edge, where interplay

between trapped an circulating electrons may have an important role. In region of

the plasma where pressure gradient is large, neoclassical corrections must be described,

leading to solve the electron drift kinetic equation by a perturbative technique, instead

of the usual Fokker-Planck equation [6]. In that regime, the lack of symmetry of the

distribution function in momentum space which leads to the bootstrap current, may

modify the wave-particle interaction, leading to potential synergistic effects.

Additional physical ingredients must be added for realistic simulations. Fully

relativistic description must be carried out, in order to describe hot plasma physics

(Te > 2 − 3keV )and also the dynamics of very energetic electron tail that can be

produced by RF waves. Moreover, the difficult question of fast electron radial transport

must be also addressed [7], since it may completely change the ability to control the

local current density. Not only the usual possible contribution of plasma turbulence must

be considered, but also radial transport that could result itself from wave momentum

transfer to the electron population. Indeed, in toroidal device, the conservation of the

generalized toroidal momentum in axisymmetric configuration implies that a strong

variation of the velocity corresponds to a radial jump, leading to a potential broadening

of the driven current. Cross-diffusion terms between momentum and configurations

spaces may play therefore in important role.

‡ The pitch-angle is taken with respect to the magnetic field line direction, which is considered to be

an axis of symmetry.
§ For ion physics, orbit averaging is fully needed, since orbits are large as compared to all gradient

lengths in the plasma
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1.2. Numerical requirements

Since the collision time is usually much lower than characteristic energy or

resistive current diffusion times, self-consistent current drive calculations require the

determination of the steady-state solution. Therefore, numerical algorithms should

provide fast rate of convergence towards this asymptotic value, which implies implicit

or reverse time differencing [8]. However, very large integration time step ∆t may

be used without onset on numerical instabilities only when the full 3 − D dynamics

in considered as a whole‖. Operator splitting between momentum and configuration

dynamics, that is currently used in existing 3 − D Fokker-Planck calculations leads

always to strong limitations on ∆t, which thus hinder the advantage to perform implicit

calculations in each subspace. So far, full 3 − D implicit method required advanced

computing techniques, owing to the very large size of the matrix that must be inverted.

The conservative nature of the Fokker-Planck solver for the particles and momentum is

also a crucial point for the reliability of the results, but also for ensuring a fast rate of

convergence. Finally, it is well known that matrix conditioning is an important criterion

for fast calculations [9]. This difficult problem must be clearly addressed, by considering

limitations that result both from the physics assumptions of the model, and the discrete

form of the equations.

2. Tokamak Fokker-Planck code status

Fokker-Planck calculations are widely used in tokamak plasma physics, and so far have

proven their effectiveness for describing intimate aspects of the particle dynamics at the

microscopic scale. The Electron Cyclotron current drive studies is a very good example

for this purpose [10].

Numerous solvers have been dedicated for the current drive problem since the

last 25 years. They represent an heterogenous family of 20 codes approximately,

mostly developed for solving specific physics problem by independent groups. They

are principally stand-alone applications which are often characterized by poor

documentation and reduced maintenance. This makes the situation quite puzzling, while

the need for realistic simulations in reactor like conditions has considerably increased

over the years. Surprisingly, while the objectives for current drive applications have

drastically changed since the beginning of the 90’s, most of the dedicated tools which

are still in use today have been developed far before this period, in the 80’s, and often

for completely different purposes. Except the CQL3D code [11], it is therefore not

surprisingly that most of them are not designed for high βp regime though describing

the 3 − D dynamics, using oversimplified magnetic equilibrium with circular and

concentric flux surfaces [12, 13]. So far, only one simulation package CRONOS uses

bounce-averaged relativistic 3−D Fokker-Planck solvers for Lower Hybrid current drive

calculations [9, 14], while several others, [15, 16], have still a 1 − D non-relativistic

‖ Here ∆t is normalized to the collision time
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Fokker-Planck code for Lower Hybrid power absorption for example [17].

The bootstrap current is never evaluated self-consistently with RF current sources

in high βp regime, and attempts for solving the drift kinetic equation for non-Maxwellian

distribution (electron and ion) and arbitrary magnetic equilibrium have not given so far

convincing results nor the emergence of a production code [18]. In CQL3D, the bootstrap

current is evaluated from kinetic calculations but using a quite crude technique by adding

an effective particle source at the trapped-passing boundary [19]. If such an approach is

acceptable for a Maxwellian regime, as confirmed by the reasonable agreement between

code results and theoretical expectations within 20%, this method is questionable for

non-Maxwellian regime. Recent interesting developments have been made for electrons,

but using a simplified equilibrium at low βp, leading nevertheless to promising results

concerning potential synergistic effects [6].

The Fokker-Planck codes that address the 2−D or 3−D kinetic problem may be

divided roughly in two groups: slow solvers mainly based on Monte-Carlo technique,

and faster tools based on finite difference technique. Other numerical methods may be

found in the literature for solving the 2−D Fokker-Planck equation, but they represent

marginal though interesting developments. Most codes designed for the current drive

problem are based on finite differencing. While Monte-Carlo codes usually allows a

detailed and realistic description of the particle dynamics, in particular toroidal effects

for wave-particle interactions [20], fast solvers based on finite differencing uses simplified

quasilinear diffusion operators for plane waves that prevents studies of cross-effects

between momentum and configuration spaces [21, 22].

From the numerical point of view, existing solvers based on finite differencing use

operator splitting technique [8], which strongly reduces the rate of convergence towards

the steady-state solution, with ∆t . 1. It is interesting to mention the pioneering work

to demonstrate the feasibility of fast fully implicit 3 − D steady-state Fokker-Planck

calculations, with the RFTRANS code [23]. Though designed for ion RF heating, and

simplified configuration with no particle trapping, at has been possible to determine the

solution in 6iterations on a CRAY-2, with a 128× 32× 11 mesh. However, at that time

computer capabilities where quite limited, and each iteration took 1 − 2 hour. Along

the same spirit, partial LU matrix factorization has been shown to be a very effective

method for fully implicit calculations involving very large matrices for 2 −D or 3 −D

Fokker-Planck current drive calculations. In that case again, no trapping was considered

[9].

From this brief review, it is clear that kinetic calculations for current drive in

hot thermonuclear plasmas require new tools, which both incorporate advanced physics

concepts, but also optimized numerical methods. The development of a fast drift kinetic

solver for the electron population is a logical consequence of the needs that emerge today

in advanced tokamak scenario for an accurate control of the fusion performances.
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3. Fast 3-D drift kinetic solver for electrons

3.1. Basic equations

The starting point of the calculations is the gyro- and wave-averaged guiding center

Fokker-Planck equation. Here arbitrary axisymmetric tokamak magnetic configuration

is considered, the magnetic flux surfaces being labeled by the poloidal flux coordinate

ψ. In the small drift approximation δ ≡ τb/τdrift � 1, where τdrift is the vertical drift

time, the distribution function f may be expanded as f = f0 + f1, f1 being of the order

of δ. The zero order equation referred usually to as the Fokker-Planck equation is

vs
∂f0

∂s
= C (f0) + Q (f0) + E (f0) (1)

while the first order equation

vs
∂f1

∂s
+
v‖
Ωe

I (ψ)
|∇ψ|
R

∂

∂s

(v‖
B

) ∂f0

∂ψ
= C (f1) + Q (f1) + E (f1) (2)

is referred to as the electron drift kinetic equation. Here v‖ is the parallel component of

the velocity with respect to the local magnetic field direction B̂/ |B|, where B = RI (ψ),

R being the major radius, Ωe the cyclotron frequency, s and vs the curvilinear coordinate

and velocity along the magnetic field line. The operators C, Q and E refer to collisions,

RF quasilinear diffusion and Ohmic electric field acceleration respectively. The fully

relativistic Belaiev-Budker collision operator with up to first order Legendre correction

for momentum conservation is used in the calculations [24, 25]

In the small banana width approximation, and for the banana regime ν∗ � 1, both

equations may be bounce-averaged, the annihilator of the poloidal dependence taking

the general form

{A} =
1

λq̃

[
1

2

∑

σ

]

T

∫ θmax

θmin

dθ

2π

1∣∣∣ψ̂ · r̂
∣∣∣
r

Rp

B

BP

ξ0
ξ
A (3)

where θ is the poloidal angle, λ the bounce time normalized to the transit time,

Rp the major radius of the plasma center, BP the poloidal magnetic field, σ =

ξ0/ |ξ0| and
[

1
2

∑
σ

]
T

indicates that the sum only concerns trapped electrons. Here,

r =
√

(R −Rp)
2 + (Z − Zp)

2 where Z is the vertical position on the flux surface at the

poloidal angle θ, Zp the vertical position of the plasma center and the scalar product ψ̂ · r̂
takes into account of the plasma shape while q̃ (ψ) =

∫ 2π

0
dθ
2π

1

|
�

ψ·
�

r|
r
Rp

B
BP

. The pitch-angle

cosine ξ at taken poloidal angle θ, and its value where the magnetic field is minimum

is ξ0. In this regime, f0 is constant on a flux surface, since
{
vs

∂f0
∂s

}
= 0, and f0 is

determined by the well know bounce averaged equation

{C (f0)} + {Q (f0)} + {E (f0)} = 0. (4)

Using similar arguments, the left handside of Eq. 2 may be easily integrated as

function of s, and using f1 = f̃ + g, it can shown that f̃ =
v‖

Ωe
I (ψ) ∂f0

∂ψ
, and the bounce
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averaged drift kinetic equation is {C (f1)}+ {Q (f1)}+ {E (f1)} = 0. Since all operators

are linear, the function g is determined by the equation

{C (g)} + {Q (g)} + {E (g)} = −
{
C

(
f̃
)}

−
{
Q

(
f̃
)}

−
{
E

(
f̃
)}

(5)

It is important to note that f̃ is an antisymmetric function of ξ,while g is symmetric.

Therefore bounce-averaged operator for f0 and g are similar, while values are different

for f̃ .

Nevertheless, it can be shown that both Eqs. 4 and 5 may be cast in a conservative

form. For the zero order term
∂f

(0)
0

∂t
+∇(ψ,p,ξ0) · S(0) = 0, where superscript (0) indicates

that quantity is taken where B is minimum. Here S(0)
(
f

(0)
0

)
= −D

(0)∇(ψ,p,ξ0)f
(0)
0 +

F(0)f
(0)
0 is the generalized flux function in 3−D space, where D

(0) is the diffusion tensor

and F(0) the convection vector. The divergence term, which may be deduced from first

principle particle, energy and magnetic moment conservations, is given by

∇(ψ,p,ξ0) · S(0)
(
f

(0)
0

)
=

1

p2

∂

∂p

(
p2S(0)

p

)
− 1

λ

1

p

∂

∂ξ0

(√
1 − ξ2

0λS
(0)
ξ

)

+
B0

λq̃

∂

∂ψ

(
q̃

B0

λ |∇ψ|0 S
(0)
ψ

)
(6)

where the first two terms of the left handside correspond to momentum slowing-down

at pitch-angle scattering respectively, and the third one to the radial dynamics. It

is worth noting that radial and pitch-angle dynamics are strongly link because of

magnetic moment conservation. Here B0 is the total magnetic field taken at the

poloidal position where it is minimum, and S
(0)
p , S

(0)
ξ and S

(0)
ψ are the three components

of S(0) in the space here considered¶. A similar expression may be obtained for g

and f̃ but only in momentum space in that case, where S
(0)
p

(
g(0)

)
= S

(0)
p

(
f

(0)
0

)
and

S̃
(0)
p

(
f̃ (0)

)
= −D̃

(0)
p ∇(p,ξ0)f̃

(0) + F̃
(0)
p f̃ (0) . This result has important consequences:

first, a unified formalism may be used for solving both Eqs. 4 and 5, so that the

same numerical conservative scheme may be applied. Furthermore, a simple picture

emerges for the Maxwellian bootstrap current which just results from the fact that

F̃
(0)
ξ =

{
ξ2

Ψ3/2ξ20
Fξ

}
+

√
1−ξ20
pξ30

σ
{
σξ(Ψ−1)
ξ0Ψ2 Dξξ

}
6= 0, leading to a deformation of f (0) in

momentum space, when the first order term is considered. Here Ψ = B/B0.

3.2. Numerical solver

The numerical solver is based on a standard finite implicit difference technique, using

two non-uniform interlaced grids for each coordinate p, ξ0 and ψ, one for the fluxes,

the other for the distribution itself. Linear interpolation is performed between flux

and distribution grids for ξ0 and ψ, while a specific development is performed for p

so that numerical errors are exponentially small, a primary condition for recovering the

Maxwellian solution when only collisions are at play [26]. Bounce integrals are performed

¶ It is convenient to define S
(0)
p as the flux in momentum subspace only
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numerically from a magnetic equilibrium solver [27], taking special care for banana tips

contribution. Spatial gradients for determining ∂f0/∂ψ are calculated using a 3-points

parabolic interpolation, so that self-consistent calculations involving bootstrap current

require a radial mesh size that is 3 times larger than for usual Fokker-Planck calculations.

The shape of the matrix for the Fokker-Planck equation is given in Fig. 1. It is made of

blocks of 15 diagonals describing the momentum dynamics, whose size decreases as ψ

rises, because the trapped/passing boundary depends of the radial position. Each block

is connected with its neighboring one by several diagonals concerning radial transport,

which may cause particle trapping or detrapping. The matrix for the function g is less

complex though its shape is similar, since each block describing momentum dynamics

has only 9 diagonals, without diagonal link between blocks as shown in Fig. 2.

As the number of grid points may reach np ' 200, nξ ' 200 and nψ ' 20 − 40

for accurate current drive calculations, the dimension of the matrices are very large,

leading to a challenging problem for the inversion procedure. Furthermore, since several

iterations are required because of non-linear corrections resulting from the collision term

momentum conservation, an iterative procedure is considered. In that case, the LU

matrix factorization is the most useful method, since the computational effort for the

factorization procedure is comparable to a single inversion. Once done, other inversions

are much faster [8]. However, in order to reduce the huge non-zero coefficients of matrices

L and U , a partial factorization technique instead of an exact one is employed, based on

a coefficients pruning [28]. Under a drop tolerance criterion δlu, coefficients are forced

to zero. From δlu = 0 to δlu = 10−3, a gain of 30 may be obtained on the reduction of

the memory storage requirement while convergence is achieved on a shorter duration,

without changing the solution, as shown in Fig. 3. This method has proven to be well

adapted to the Fokker-Planck problem, since it is basically well conditioned. The main

diagonal matrix is dominant, since coefficients corresponding to collision pitch-angle

scattering exceed those of slowing-down and radial transport. When this ordering is only

slightly perturbed by an Ohmic electric field or RF quasilinear diffusion, the numerical

stability remains excellent. When very large coefficients off the main diagonal appear,

the matrix conditioning becomes poor, leading usually to unphysical solutions. However,

a detailed insight shows that these cases correspond mostly to physical situations that

are not compatible with the assumptions used for deriving the model.

In Figs. 4, 6, 5, 7, 8 and Figs. 9, 10, two examples of code performances are

shown. All calculations are performed with ∆t = 10000 and δlu = 10−4. For Lower

Hybrid current drive in JET tokamak equilibrium in presence of a radial transport that

scales with v‖ above v/vth = 3.5, where vth is the thermal velocity taken in the center

of the plasma, a grid npnξnψ ' 200 × 200 × 14 is considered. The solution at all

radii is found in 20 minutes CPU on a standard UNIX workstation. A minimum of 6

iterations is enforced for an accurate current determination. The Maxwellian bootstrap

current for Tore Supra requires 42 spatial points because of gradients calculations. Here

npnξnψ ' 200× 100× 42, and the solution at the 14 effective grid points is obtained in

5 minutes on the same computer. A very good agreement is found with Hirshman and
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Sauter relations at all radii [29, 30]. When the well known L32 neoclassical coefficient

differs, it is found that code prediction are in better agreement with Sauter relation

[30]. The lack of agreement with Hinton relation arises from the fact that the effective

charge of the plasma exceeds unity in the simulation [31]. For all simulations, the ion

bootstrap current contribution in the code is deduced from Hirshman law, determined

in the fluid limits [29]. Excellent agreement with the Lorentz gas model is found not

only for the moments of the distribution, but also for the distributions f̃ (0) and g(0).

Concerning potential synergies between bootstrap current and RF current, results

obtained at low βp are confirmed [6], in particular the fact that the scaling is proportional

to the target Maxwellian bootstrap current. Indeed, the bootstrap current results in

an accumulation of circulating electrons close to the trapped/passing boundary in the

positive momentum direction with respect to the sign conventions hre used, and this

excess of particle may be very beneficial to pull out a tail from the bulk. Results for

large βp have not yet being fully investigated so far, but promising results are expected

with this new code for reactor relevant conditions.

Finally, the kinetic code allows calculation of numerous interesting macroscopic

moments of the distribution function, in addition to the current itself: the power

absorbed by collisions, the RF and Ohmic powers, the runaway and magnetic ripple

loss rate, the non-thermal bremsstrahlung, the effective and exact trapped fractions, all

of them given an insight of the physical processes at play.

Further important developments are foreseen in a very near future. The most

important step is to perform orbit averaging instead of bounce-averaging. This approach

will give access to the ion physics including anomalous potato orbits [32]. Therefore, a

fast multispecies Fokker-Planck code may be designed, taking benefit from the existing

non-uniform momentum grid at low energy for the ion dynamics. From the general

Hamiltonian formalism in toroidal device that is needed, it is also possible to derive a

RF quasilinear diffusion coefficient for the electrons that naturally incorporates cross-

effects between momentum and radial spaces [20]. Study of the influence of the wave

induced radial transport on RF power deposition will be then possible.
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Figure 1. Qualitative shape of matrix used for solving the zero order Fokker-Planck

equation.
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Figure 3. Memory storage requirement reduction by increasing the δlu parameter, for

the Lower Hybrid current drive problem. The rate of convergence towards the steady

state solution is given, using the biconjugate gradient stabilized method to solve the

system of linear equations. Here only a local analysis is considered at a given radial

position
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Figure 4. 2 − D contour plot of the poloidal magnetic flux surfaces as calculated for

JET tokamak by the code HELENA.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ρ

<
P

ab
s>

 (
M

W
/m

3 )

Density of Absorbed Power

Collisions
Ohmic
RF Waves

Figure 5. Flux surface averaged power density profiles for collision, RF and Ohmic

electric field absorption for the 3 − D JET Lower Hybrid current drive simulation.
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Figure 6. Flux surface averaged current density profiles for the 3 − D JET Lower

Hybrid current drive simulation.
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before and after onset of Lower Hybrid current drive. Here the non-thermal electrons

resultprincipaly from quasilinear acceleration though fast electron radial transport is

at play
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Figure 8. 2−D contour plot of the electron distribution function at ρ ' 0.78 for JET

before and after onset of Lower Hybrid current drive. Here the non-thermal electrons

result only from anomalous radial transport

Figure 9. 2 − D contour plot of the poloidal magnetic flux surfaces as calculated for

Tore Supra tokamak by the code HELENA.
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Figure 10. Bootstrap current profile given by the drift kinetic code for the Tore Supra

magnetic configuration and different corresponding analytical formulas (see the text

for more details).


