
HAL Id: hal-00002012
https://hal.science/hal-00002012

Preprint submitted on 1 Nov 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamical behavior of 2D viscous-vortices and
formation of vortex crystals

Masayoshi Y. Tanaka, Mitsuo Kono, Jovo Vranjes

To cite this version:
Masayoshi Y. Tanaka, Mitsuo Kono, Jovo Vranjes. Dynamical behavior of 2D viscous-vortices and
formation of vortex crystals. 2004. �hal-00002012�

https://hal.science/hal-00002012
https://hal.archives-ouvertes.fr


 

Dynamical Behavior of 2D Viscous-vortices and Formation of Vortex Crystals 

 

 
M.Y. Tanaka, M. Konoa and J. Vranjesb 

National Institute for Fusion Science, Oroshi, Toki 509-5292, Japan 
aFuculty of Policy Studies, Chuo University, Hachioji, Tokyo 192-0393, Japan 

bCenter for Plasma Astrophysics, Leuven 3001, Belgium 
 
 

Vortex as a 2-dimensional (2D) coherent structure is of common interest in both 
self-organization and turbulent transport in plasmas. Much attention has been paid to inviscid 
vortices such as a drift vortex so far. We have observed the plasma hole in a cylindrical plasma 
with magnetic field, and identified it as a Burgers vortex, which is inherent to viscous fluids. The 
observation of viscous-vortex suggests that the viscosity of a plasma is not negligibly small and 
bears a key role in vortex formation. 

The essential difference between an inviscid vortex and a viscous-vortex is the existence of 
radial flow, by which the viscous vortices can interact with a different manner from that of 
inviscid vortices. Starting from the fluid equation, we derived the equation of motion for “point 
viscous-vortices” and numerically examined the dynamical behavior to compare with that of 
point vortices. For a system of two viscous-vortices with the same sign of vorticity, they attract 
each other and coalesce into one as time elapses, while two point-vortices rotate each other and 
never coalesce into one. For a systems of N vortices , we obtained vortex crystals (or 
vortex lattices), which have much longer lifetime compared with the decay time due to viscosity.      
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1. Experimental Observation of a Viscous-Vortex  

We have observed a density hole in a cylindrical plasma 

with magnetic field [1]. The end view image is shown in Fig.1. 

The central dark region in the figure indicates the density hole, 

the sizes of which are 6 cm in diameter and more than 100 cm 

in axial length. The density of hole region is about one tenth of 

that in the ambient plasma, and the width of transition layer 

between the hole and ambient plasma is about 1.2 cm, which 

corresponds to several ion Larmor radii. 

The flow velocity field of the plasma hole exhibits a 

monopole vortical structure with a sink in its center (see Fig.2). 

When the direction of magnetic field is inversed, the azimuthal velocity also changes its direction of 

rotation, indicating that the azimuthal rotation is due to E x B drift. The remarkable characteristic of 

this vortex is the existence of radial flow, which remains unchanged under the field inversion. It is 

found that the radial flow is a F x B drift, F being the viscous 

force due to shear in the azimuthal rotation. The plasma hole is 

identified as a Burgers vortex (viscous-vortex) [2, 3]and this 

suggests that the viscosity of a plasma is not negligibly small 

and bears a key role in vortex formation. 

Fig.1 End view image of a plasma hole.
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When we consider the interaction of viscous-vortices, the 

existence of radial flow is of essential importance since it 

causes an attractive interaction between vortices. Consequently, 

the dynamical behavior of a system of viscous-vortices is 

expected to be qualitatively different from that of point 

vortices[4-6].  

Fig.2 Velocity Field 

 
2. Dynamics of Viscous-vortices 

Fluid motion of a plasma in a constant magnetic field is described by the equation of continuity and 

the equation of motion  
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The vorticity equation is given by taking rotation of above equation, 
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where Ω  is the ion cyclotron frequency and 

 = ∇×ω V  (4) 

When the magnetic field is in the z direction, a cylindrically symmetric stationary solution can be 

obtained,  
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For two dimensional vortices, the vorticity is generally concentrated at the center and is decreased in 

magnitude with the distance from the center. It means that the vorticity may be expressed as 
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where 0ω̂  is the strength of the vorticity at the center. The form of eq.(6) is particularly plausible 

since it gives a Burgers vortex near the center of axis. Then from eq.(5) we have for the radial velocity 

and the azimuthal velocity as  
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The vorticity distribution with respect to radius r are given in the following figure for the case 

5, 0.05vβ = =  The vorticity is localized in the 

center, which is due to the balance between inward 

transport and outward diffusion of vorticity (Fig.3).  

According to eq.(7),  the vortex exhibits a rigid 

rotation in the near axis region, and in the far field 

region the azimuthal voelcity is inversely 

proportional to the radius r, which is same as point 

vortices. Note that the radial velocity in the far field 

region is different from that of Burger’s vortex, 

which diverges with the radius r. 

Fig.3 Vorticity distribution 

 Now we consider a system consisting of N viscous-vortices in the two dimensional system as 
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where Fi is a localizedfunction around r = ri(t) at a time t. Substituting the above expression into the 

vorticity equation in two dimension, and using 
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We have with eq.(5) 
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Here we may take an equilibrium solution for Fi(r) as 
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which is localized around r = ri (t). Noting that the first term of the left hand side of eq.(10) represents 

the characteristics of the vorticity equation, we may put 
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In general when N vortices are apart from each other (~R) they approach with a converging rate α/βR 

and at the same time the vorticity strength is subject to damping due to viscosity. 

 Once they come together close enough to the characteristic length (1/βj)
0.5  the converging rate 

diminishes linearly to zero while κj decays exponentially. Thus in viscous plasmas, vortices are 

eventually to converge and be dissipated. An interesting thing is that although in a system of Euler 

vortices which interact through a logarithmic potential the velocity field becomes singular when two 

vortices approach each other, in a viscous system the velocity field vanishes linearly with the 

separation distance go to zero and therefore the vortices can merge into a single vortex without 

singularity. This implies that in viscous plasmas, the number of vortices can change in the course of 

dynamical evolution while in the Euler system the number of vortices are conserved and the merging 

process never be studied. 

 There is a constant of motion for the above equation when the size and strength of all the vorticies 



are the same 
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which shows the center of mass is conserved under the replacement of ri by ri exp[-iΩ t]. Furthermore 

in this case the vortices finally collapse into the origin as 
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Equation (14) with eq.(15) is rewritten by putting z j=  xj + iyj as 
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The last term of the right hand side is eliminated by the transformation z  z exp[-i(Ω/2)t]. The 

velocity field acting on a certain vortex from the rest is different, by screening effects, from the Euler 

point vortex equation given as  

→
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Fig.4 Vortex merging (2 vortices)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The snapshots of configurations are shown in Fig.4 for the case that κ1(0)=300, κ2(0)=3, β1=100, 

β2=1 ν=0.05. The vortex with smaller vorticity rotates around the one with larger vorticity no matter 

how large they are. This shows a good agreement with the experimental observations in non-neutral 



plasmas[7]. This figure (2 vortices merging) shows a clear contrast to the inviscid case (ν=0) where  

vortices rotate around each other (see Fig. 5).  

 

 

 

 

 

 

 
 
 

 
 

Fig. 5 Vortex dynamics for ν=0 case 
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