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Abstract.

The asymptotic kinetic theory of magnetized plasmas is elaborated
within the context of general statistical approach and asymptotic methods
[1-5], developed by M. Krylov and M. Bohol’ubov, for linear and non-linear
dynamic systems with a rapidly rotating phase [4]. The quasi-particles
are introduced already on the microscopic level. Asymptotic expansions
enable to close the description for slow processes, and to relate consistently
particles and guiding centres to quasi-particles. The kinetic equation for
quasi-particles is derived. It makes a basis for the reduced description
of slow collective phenomena in the medium. The kinetic equation for
quasi-particles takes into account self-consistent interaction fields, quasi-
particle collisions and collective-fluctuation-induced relaxation of quasi-
particle distribution function. The relationships between the distribution
functions for particles, guiding centres and quasi-particles are derived taking
into account fluctuations, which can be especially important in turbulent
states. In this way macroscopic (statistical) particle properties can be
obtained from those of quasi-particles in the general case of non-equilibrium
media.
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1 Introduction

The slow time evolution of nonlinear dynamic systems is frequently of concern. Then

the reduction of the original description by means of asymptotic methods, which employ

explicitly the separation of interesting time scales, is facilitating for both analytical and

computational studies. This has been appreciated for a long time [1-7].

A peculiarity of the plasma as the system of many charged particles with long-

range interaction between them is in its collective behaviour [8]. In non-equilibrium or

turbulent plasmas the collective degrees of freedom are excited, and nonlinear effects

become important. Diagnostics progress enables one to determine the characteristics

of such plasmas in many more detail. Also, modern computers, especially those with

parallel architecture, and advanced numerical simulation techniques make it possible

to study complicated realistic situations.

Experimental observations and numerical simulations of space and fusion plasmas

reveal their very complex behaviour, with low-frequency (with respect to the ion

cyclotron frequency) oscillations.

Such oscillations and nonlinear interaction between them are possibly related to

anomalous transport phenomena in the magnetized plasma. This makes one especially

interested in the slow plasma motion, and the fundamental knowledge of the latter [9].

Experiments and simulations require strong theoretical support to set guidelines for the

measurement interpretation, and developing benchmark experimental and simulation

models. Comprehensive understanding of kinetic and nonlinear phenomena in plasmas

under natural or laboratory conditions, involving low-frequency fluctuations as a

ubiquitous feature, is indeed a great challenge in theory, experiments and simulations.

Even with the rapidly increasing power of computers, many important problems in

plasma physics cannot be solved with conventional simulation techniques, for example

particle-in-cell simulation. The latter model treats plasmas on the most basic level,

using Maxwell’s equations and Newton’s law directly. Problems such as modeling a

Tokamak for fusion energy research or modeling the magnetosphere for space plasma

physics, have so large a range of space and time scales that the calculation is prohibitive

on any foreseeable computer. These so called Grand Challenge problems require a

reduced description if they are to be solved, where only some of the physical processes

are included, hopefully the important ones.

Therefore, the general asymptotic and statistical methods become of fundamental

importance for developing the reduced theory based on a self-consistent quasi-

particle concept, and for providing a justification for quasi-particles introduced in the

computational plasma studies.

Our objective is to derive from the first principles the Vlasov-type kinetic equation
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for the quasi-particles in the magnetized plasma taking into account both mean self-

consistent fields and plasma fluctuations.

In Sec. 2, basic quantities and equations are introduced. In Sec. 3, the closure

of the quasi-particle description is considered. In Sec. 4 the adiabatic approximation

is introduced, and the main features of the first-order theory and physical meaning of

renormalizations are explained. Quasi-particle properties in the first-order adiabatic

approximation are presented in Sec. 5. Sec. 6 deals with quasi-particle kinetics and

fluctuations. Sec. 7 makes a summary.

2 Particles and Quasi-Particles

In this section, microscopic densities in the particle, guiding-centre and quasi-particle

phase spaces are introduced, and the equations that they satisfy are formulated.

Microscopic density F in particle phase spaces. Let us consider a system of non-

relativistic charged particles (which can contain just one particle) of charge q and

mass m in an external stationary and uniform magnetic field ~B ≡ B~b, and additional

force fields producing particle acceleration ~a. The latter can include self-consistent

microscopic fields created by particles themselves and externally imposed fields. The

particle trajectory { ~rp(t) , ~vp(t) } in phase space {~r,~v} is determined from the following

equations:

d~rp(t)

dt
= ~vp(t) ,

d~vp(t)

dt
= ~vp(t)× ~Ω + ~a(~rp(t), ~vp(t), t) , (1)

with ~Ω ≡ q ~B/mc, Ω ≡ qB/mc the cyclotron frequency.

The microscopic density in particle phase space,

F (~r,~v, t) =
∑

δ(~r − ~rp(t)) δ(~v − ~vp(t)) , (2)

with the summation over all particles of the same charge and mass, satisfies a continuity

equation:

( ∂t + ~v · ~∇ ) F + ∂~v · { [ ~a(~r,~v, t) + ~v × ~Ω ] F } = 0 . (3)

Microscopic density F ′ in guiding-centre phase spaces. In order to allow for finite-

Larmor-radius effects, associated with the non-uniformity of acceleration field ~a at

scales comparable to particle Larmor radii, one usually exploits the guiding-centre

transformation from the particle ~r to the guiding-centre position ~R:

~r = ~R + ~b× ~v/Ω . (4)
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The equations of guiding-centre motion have the standard form of a dynamic system

with rapidly rotating phase as introduced by Boholiubov and Zubarev [4, 5], when the

cylindrical coordinates in the particle velocity space are used, and for any guiding-

centre transformation which coincides with (4) to the leading order of the asymptotic

theory. It is convenient to specify such a transformation later, and introduce formally

guiding-centre variables {~R, v‖, ε⊥, α} ≡ {~x, α} with respect to the triad of orthogonal

unity vectors~b, ~N , and ~β, where the label ⊥ (‖) is for a vector component across(along)
~b:

~r = ~r(~R,~v) . (5)

v‖ = ~b · ~v , ~v⊥ = ~v − v‖ ~b = v⊥ [ cosα ~N + sinα ~β ] , ε⊥ ≡ v2
⊥/2

For any function Q(~r,~v, t) of particle variables,

Q̃ ≡ Q̃(~R, v‖, ε⊥, α, t) = Q(~r,~v, t) , (6)

after ~r and ~v are expressed in guiding-centre variables.

The equations of guiding-centre motion follow from (1), (5):

d~Rc
dt

= ~V (~x, α, t) ,
dv‖c
dt

= ~b · ~̃a ≡ ã‖ ,
dε⊥c

dt
= ~v⊥ · ~̃a ≡ ãε⊥ , (7)

dαc
dt

= − Ω− ν , ν ≡ − 1

v2
⊥

(~b× ~v⊥) · ~̃a ,

with ν the shift in the gyration frequency, ã‖ (ãε⊥) the acceleration in v‖ (ε⊥). The

latter quantities are determined by the acceleration projections in the moving local

reference frame:
~b , v̂ ≡ ~v⊥/v⊥, α̂ ≡ ~b× v̂ .

Any vector ~A can be decomposed in this frame:

~A = A‖ ~b + Av⊥ v̂ + Aα α̂ , ∂~v = ∂v‖
~b + ∂ε⊥v⊥v̂ +

1

v⊥
∂αα̂ .

All the quantities on the right-hand sides of the equations (7) are evaluated along

the trajectory in the guiding-centre phase space {~x, α}, while the guiding-centre

velocity can be found after transformation (5) is specified. For the transformation

(4): ~V = v‖ ~b + ~̃a×~b/Ω.

The microscopic density in the guiding-centre phase space is introduced like in the

particle one,

F ′ ≡ F ′(~x, α, t) =
∑

δ(~x− ~xc(t))
∑
n

δ(α − αc(t) + 2πn) , (8)
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with the summation over all guiding centres. This density satisfies also a continuity

equation but in its proper phase space:

∂t F ′ + ∂~x · ( ~XF ′ )− ∂α [ ( Ω + ν ) F ′ ] = 0 . (9)

Here, ~X ≡ {~V , ã‖, ãε⊥} is a generalized velocity corresponding to the phase-space

variable ~x ≡ {~R, v‖, ε⊥}. The infinite sum over n in (8) provides the periodicity of the

quantity of interest with respect to the gyrophase α (gyroangle).

Microscopic density G in quasi-particle phase spaces. The exact microscopic density

G in the quasi-particle (reduced) phase space ~x is introduced in relation to the

gyrophase-independent part of F ′:

G ≡ 2π
∫

dα F ′ . (10)

Such a quantity also satisfies a continuity equation, which follows from (9) after

integration over the gyrophase α. The equation obtained in this way is not closed, as it

contains other harmonics of F ′ as unknown quantities. The harmonics are introduced

by means of Fourier series,

F ′ =
1

2π
G +

∑
n 6= 0

e−iαnFn , F0 ≡
1

2π
G . (11)

The infinite set of harmonics provides complete information on the gyrophase

dependence within the context of exact description. For slow time evolution, one

can achieve closure after relating the harmonics of F ′ to G by means of an asymptotic

expansion in a small parameter. In this way the quasi-particle description is constructed

formally up to arbitrary orders.

It is important to notice that the notion of guiding centre introduced above differs

from the one usually encountered in the guiding-centre plasma models and drift-kinetic

theories elaborated on their basis. In such models, e.g. [10, 11], the guiding-centre is

introduced after averaging over the gyrophase, like the quasi-particle in the present

theory.

Let us consider the continuity equation for G in the reduced phase space ~x ≡
{~R, v‖, ε⊥}:

∂tG + ∂~x · ( ~X0G ) = S , S ≡ −2π
∑

n 6= 0
∂~x · ( ~XnF∗n ) , (12)

with the effects of other harmonics represented by a source term S on the right-hand

side. Any quantity Q(~x, v‖, v⊥, α, t) of guiding-centre variables is represented by the

Fourier series,

Q =
∑
n

e−iαnQn , Qn ≡ {Q}n =
1

2π

∫ 2π

0
dα Qeinα . (13)
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The harmonics Fn(~x, t) are governed by an interconnected chain of equations

( ∂t + inΩ )Fn +
∑

n1 + n2 = n
[ ∂~x · ( ~Xn1Fn2 ) + inνn1Fn2 ] = 0 . (14)

It is necessary to specify initial conditions. Given the initial particle phase space

position {~r(t0), ~v(t0)}, the guiding-centre position {~xc(t0), αc(t0)} is found by virtue of

(5), while the initial quasi-particle position is ~xc(t0), G(~x, t0) =
∑

δ(~x − ~xc(t0)). The

summation is over all quasi-particles, with their number being equal to the number of

guiding centres and particles,∫
d~x G =

∫
d~xdα F ′ =

∫
d~rd~v F .

When the number of particles is conserved the number of quasi-particles is also

conserved. The conservation of quasi-particles has nothing to do with the specific

structure of the equation (12) or its approximations. The exact equation for G (or

any of its approximations) complies with the conservation properties of the original

continuity equation. The structure of the latter in the case considered implies no local

sources or sinks of particles and no factors producing random particle motion (at the

very basic level of description no information is lost yet). These particle properties are

not to be preserved in general.

Equation (12) is exact. If its right-hand side is treated as given, then the general

solution is the sum of the solution Gh of the homogeneous equation

∂tGh + ∂~x · ( ~X0Gh ) = 0 , (15)

and the particular solution of the inhomogeneous equation. If the homogeneous solution

is specified to take into account the initial condition, then it can be treated as a

microscopic quasi-particle density, and

Gh(~x, t) =
∑

δ(~x− ~xq(t)) ,
d~xq(t)

dt
= ~X0(~xq(t), t) . (16)

That is, the quasi-particle is point-wise. It is governed by the above equations of

motion. The quasi-particle has initially the same position, parallel velocity and the

magnitude of perpendicular velocity as the original guiding centre. Initial coordinates of

the guiding centre and the particle are related by (5). In general, two close particles can

be represented by two distant quasi-particles, and vice versa. Quasi-particle equations

of motion look like equations (7) averaged in some sense over the gyrophase. However

no approximations have been introduced yet.
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3 Asymptotic Expansions

In this section, a formal expansion is introduced for the deviation of the guiding-centre

density from the quasi-particle one, and a closed quasi-particle description is developed

on its basis to arbitrary orders in a small parameter.

Following Boholiubov and Krylov, the closure can be achieved by means of a formal

expansion in powers of a small parameter λ (ω/Ω ∼ λ, where ω is a characteristic

frequency and Ω is a cyclotron frequency):

F ′ =
1

2π
G +

∞∑
j = 1

F ′(j) , (17)

where

F ′(j) =
∑

n 6= 0
e−iαnF

(j)
n , (18)

and

Fn =
∞∑

j = 1
F

(j)
n ∼ λ G , λ << 1. (19)

Then the source term from (12) reappears as an expansion in increasing powers of λ:

S =
∞∑

j = 1
S(j) ≡ − 2π

∑
n 6= 0

∂~x · ( ~X∗
nF

(j)
n ) . (20)

After the closure incomplete information on the gyrophase dependence becomes

available only in the form of a probability distribution. The closure makes it possible

to relate guiding-centre (particle) and quasi-particle characteristics. Equation (17)

introduces a general relationship between the guiding-centres and the quasi-particles.

Combining (17) and (14), one derives an equation for the first iteration

[ D̂0 + in(Ω + ν0) ] F
(1)
n = − 1

2π
[ inνnG + ∂~x · ( ~XnG ) ] , (21)

as well as the recurrence relations for higher-order iterations:

[ D̂0 + in(Ω + ν0) ] F
(j + 1)
n = (22)

= −
∑

n1 + n2 = n, n1n2 6= 0
[ inνn1F

(j)
n2

+ ∂~x · ( ~Xn1F
(j)
n2

) ] .

Here for arbitrary g(~x, t), D̂0g ≡ ∂tg + ∂~x · ( ~X0g ) .

In the simplest approximation the influence of other harmonics on the space-time

evolution of the quasi-particle density is completely disregarded:

∂tG + ∂~x · ( ~X0G ) = 0 , F ′ =
1

2π
G . (23)
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The discussion of the quasi-particle nature and the derivation of the quasi-particle

equations of motion presented in the previous section are also appropriate in this case.

The guiding-centre density is no more the delta-function of the trajectory in guiding-

centre phase space, and its interpretation as a probability distribution is natural. After

the closure a part of information about the gyrophase, as well as about rapid variations

of other coordinates, is lost. The reduced guiding-centre distribution F ′ contains but

incomplete information on the gyrophase dependence. An expansion of phase-space

point, which represents the guiding centre (or the particle), to a probability ”circle”

occurs.

Let us illustrate this point for the case of uniformly magnetized plasma. Within

the original exact description, a microscopic particle density in the physical space

n(~r, t) ≡
∫

d~vF = δ(~r − ~rp(t)). Meanwhile, taking into account the guiding-centre

transformation in the usual form ~R = ~r + ~v ×~b/Ω, one obtains from (23):

n(~r, t) =
1

2π
δ(r‖ −R‖q(t)) δ[(~r⊥ − ~R⊥q(t))2 − r2L] , (24)

where rL ≡ v⊥q(t)/Ω is the Larmor radius. The latter equation enables one to

imagine a probability circle of radius rL moving in the physical space with its plane

being perpendicular to ~B, and its center being at the point ~Rq(t). The probability

to find the particle at any point of this circle is the same, according to (24). This

probability circle can be distorted due to the effects of harmonics. Eq.(24) predicts

a ”visually observable” motion of probability circle with the velocity ~V0, while the

particle velocity calculated from the reduced distribution in (23) is v‖q(t) ~b. In order

to describe particle drift motion across the magnetic field higher-order approximations

are needed.

4 First-Order Theory

The adiabatic approximation, the main features of the first-order theory, and the

physical meaning of renormalizations are treated here.

We introduce the adiabatic approximation assuming that

( ∂t + inν0 ) Fn + ∂~x · ( ~X0Fn ) ∼ λ nΩ Fn . (25)

According to this approximation, the slow time evolution of distribution functions

is considered only (as compared to the rapid particle gyration with the cyclotron

frequency), and the forces applied to the particle are assumed to produce the guiding

centre accelerations and drift velocities slowly evolving in time, and weak enough.
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Combining (17) and (25) with (14), one finds the first-order iteration F
(1)
n in terms

of quasi-particle density:

F
(1)
n =

i

2πnΩ
[ inνnG + ∂~x · ( ~XnG ) ] , (26)

F ′(1) = − 1

2πΩ
( ν − ν0 ) G +

1

2πΩ

∫ α
dα ∂~x · [ ( ~X − ~X0 ) G ] ,

and the recurrence relations for higher-order iterations,

F
(j + 1)
n =

i

nΩ
{ ( ∂t + inν0 ) F

(j)
n + ∂~x · ( ~X0F

(j)
n ) +

+
∑

n1 + n2 = n, n1n2 6= 0
[ ∂~x · ( ~Xn1F

(j)
n2

) + inνn1F
(j)
n2

] } , (27)

F ′(j + 1) = − 1

Ω
( νF ′(j) − {νF ′(j)}0 ) +

+
1

Ω

∫ α
dα [ ∂tF

′(j) + ∂~x · ( ~XF ′(j) − { ~XF ′(j)}0 ) ] .

In the first-order approximation, the source term is involved in the time evolution

of quasi-particle density, and the relevant contribution of harmonics into the guiding-

centre density becomes important:

Fn = F
(1)
n , S = S(1) , F ′ =

1

2π
G +

∑
n 6= 0

e−iαnF
(1)
n . (28)

In the adiabatic approximation, the expression (26) is valid, and the microscopic

relationship between particles and quasi-particles takes the form

F ′ =
1

2π
G − 1

2πΩ
( ν − ν0 ) G +

1

2πΩ

∫ α
dα ∂~x · [ ( ~X − ~X0 ) G ] . (29)

When the adiabatic approximation (25) is used to calculate the source term, one

discovers that the structure of the microscopic equation for the quasi-particle density

remains unchanged:

∂tG + ∂~x · ( ~XrG ) = 0 . (30)

Here, the contribution from F
(1)
n into the source term is taken into account by

renormalizing the quasi-particle velocity and accelerations. For any function Q(~x, α, t)

of guiding-centre phase-space variables the renormalized value Qr is

Qr ≡ Qr(~x, t) = Q0 −
∑

n 6= 0
( νn +

i

n
~Xn · ∂~x )

1

Ω
Q∗n . (31)

The structure of the continuity equation in the reduced phase space, and the

initial conditions determine the nature of quasi-particles and their equations of motion.
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However, the structure of the original continuity equation does not preclude in general

the effects of random motion, or local sources and sinks for quasi-particles. Such effects

can be involved within reduced theory approximations.

The solution to (30) taking account of initial conditions can be represented in the

form of zero-order approximation:

G =
∑

δ(~x− ~xq(t)) ,
d

dt
~xq(t) = ~Xr(~xq(t), t) , (32)

which means point quasi-particles.

In order to elucidate the relation of renormalized (quasi-particle) quantities to the

particle, let us take an arbitrary function Q(~r,~v, t) of particle dynamical variables and

derive a reduced expression for it. It is convenient to introduce the following notations:

〈...〉F ≡
∫

d~rd~v(...)F , 〈...〉F ′ ≡
∫

d~xdα(...)F ′ ,

〈...〉G ≡
∫

d~x(...)G , d~x ≡ d~Rdv‖dε⊥ . (33)

For arbitrary quantity Q(~r,~v, t) of particle variables, we notice easily that

Q(t) ≡ Q(~rp(t), ~vp(t), t) ≡ 〈Q〉F = 〈Q̃〉F ′ = 〈Q̃0〉G + 2π
∑

n 6= 0

∫
d~x Q̃∗nFn

from where the reduced expression follows immediately:

〈Q〉F = 〈Q̃0〉G + 2π
∞∑

j = 1

∑
n 6= 0

∫
d~x Q̃∗nF

(j)
n . (34)

In the first-order adiabatic approximation, the term arising from F
(1)
n is retained

only in the infinite sum. With F
(1)
n from (26),

〈Q〉F = 〈Qr〉G . (35)

Clearly, 〈Q〉F = Qr(~xq(t), t) if the quasi-particle is point-wise.

The following exact relations hold:

~Rc(t) ≡ 〈~R〉F ′ = 〈~R〉G , (36)

v‖c(t) ≡ 〈v‖〉F ′ = 〈v‖〉G , v⊥c(t) ≡ 〈v⊥〉F ′ = 〈v⊥〉G
(and similar relations for any other functions of guiding-centre variables except the

gyrophase). That is, the mean guiding-centre position is exactly the mean quasi-

particle position, and in the reduced theory it is so to arbitrary orders in the

small parameter. Within the adiabatic approximation, when the quasi-particle is

point-wise, 〈~R〉F ′ = ~Rq(t) : the quasi-particle and mean guiding-centre positions

coincide. Similar relationship holds for the parallel velocities and the magnitudes of

perpendicular velocities of the guiding centre and the quasi-particle.
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5 Quasi-Particle Constants of Motion

Here the quasi-particle properties are studied in the case of potential acceleration which

can correspond to the potential electric field.

Let us assume that the particle acceleration derives from a velocity-independent

potential:

~a = − ~∇θ , θ ≡ θ(~r, t) , (37)

and adopt the usual guiding-centre transformation (4), when the guiding-centre velocity

is:
~V = v‖ ~b +

1

Ω
~̃a×~b .

Then, in the case of uniform magnetic fields, particle acceleration expressed in guiding-

centre variables is governed by a potential as well, we denote this potential by θ̃:

~̃a = − ∂~Rθ̃ , ∂~R · ~V = 0 . (38)

Therefore, the flow in the guiding-centre configuration space is incompressible.

Other derivatives of the potential are also expressed in guiding-centre variables.

Such derivatives produce a shift of the gyration frequency, and an acceleration in ε⊥:

ν = Ω ∂ε⊥ θ̃ , ãε⊥ = Ω ∂αθ̃ , ∂αν − ∂ε⊥ ãε⊥ = 0 . (39)

Therefore, the flow in the subspace {ε⊥, α} is also incompressible. These properties

hold in the case of a non-uniformly magnetized plasma as well.

Thus, the flow in the guiding-centre phase space appears to be incompressible:

∂~x · ~X − ∂αν = 0 , (40)

as ∂v‖ ã‖ = 0. One proves a general Theorem: if the flow in the original phase space is

incompressible, then the renormalized flow in the reduced (quasi-particle) phase space

is also incompressible:

∂~x · ~X − ∂αν = 0 → ∂~x · ~Xr = 0 . (41)

Proof. Definition (31) takes this form in the case (40):

Qr = Q0 − ∂~x ·
∑

n 6= 0

i

nΩ
~XnQ∗n . (42)

It is evident that ∂~x · ~X0 = 0, since the operator ∂~x is gyrophase-independent by

definition. When Q = ~X, the divergence of the second term on the right-hand side of

(42) changes sign after n is replaced by −n, and therefore vanishes. This completes

the proof.



11

In the case of potential acceleration,

Qr = Q0 − (43)

−
∑

n 6= 0
[ ∂ε⊥ (θ̃nQ∗n) +

i

nΩ
( ã‖ n∂v‖ + ~Vn · ∂~R ) Q∗n ] ,

with ãε⊥n = −inΩθ̃n from (39). In particular, the renormalized potential

θ̃r = θ̃0 −
∑

n 6= 0
[ ∂ε⊥ | θ̃n |2 +

i

nΩ2
~̃an × ~̃a

∗
n ·~b ] , (44)

and the renormalized acceleration:

ãε⊥r = Ω {∂αθ̃}r = Ω
∑

n 6= 0
in [ ∂ε⊥ | θ̃n |2 +

i

nΩ2
~̃an × ~̃a

∗
n ·~b ] .

As the terms in the infinite sum are odd functions of n,

ãε⊥r = 0 . (45)

This property has important consequences: one can introduce a stream potential

and discover the first-order quasi-particle invariant.

Stream potential. Incompressibility of renormalized flow in the reduced phase

space together with vanishing aε⊥ imply that the renormalized flow in the quasi-

particle configuration space is incompressible. Therefore, the renormalized quasi-

particle velocity can be represented by a stream function, and that is the potential

of the renormalized acceleration over Ω:

∂~R · ~Vr = 0 → ~̃ar = − ∂~Rθ̃s . (46)

The potential θ̃s of the renormalized acceleration (henceforth called the stream

potential) is found from (43) with Q = ~̃a:

~̃ar = − ∂~Rθ̃0 +
∑

n 6= 0
[ ∂ε⊥ ( θ̃n

∂θ̃∗n
∂ ~R

) +
i

nΩ2
∂θ̃n

∂ ~R
×~b · ∂~R

∂θ̃∗n
∂ ~R

] .

By replacing here n with −n, and adding the resulting expression to the original one,

we find:

θ̃s = θ̃0 − 1

2

∑
n 6= 0

[ ∂ε⊥ | θ̃n |2 +
i

nΩ2
~̃an × ~̃a

∗
n ·~b ] . (47)

Thus the stream potential differs from the renormalized one.

The summation over n can be carried out:

θ̃s = θ̃0 − 1

2
∂ε⊥ ( {θ̃2}0 + θ̃20 ) +

1

2Ω
{ ~̃a ·

∫ α
dα ( ~V − ~V0 ) }0 , (48)
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θ̃r = 2θ̃s − θ̃0 . (49)

First-order quasi-particle invariant. It is well known that the magnitude of the

perpendicular particle velocity (or the Larmor radius, or the kinetic energy of cross-

field motion, or the magnetic moment) is a constant of motion in a uniform magnetic

field, when no other forces are applied. According to (45) and (32),

dε⊥ q
dt

= ãε⊥r = 0 ,

that is ε⊥ is an invariant of quasi-particle motion in the first order allowing for strongly

non-uniform (at scales comparable to particle Larmor radii) but slowly evolving in time

potential force fields.

Therefore, the continuity equation for quasi-particles simplifies:

( ∂t + ~Vr · ∂~R + ã‖ r ∂v‖ ) G = 0 , (50)

~Vr = v‖~b +
1

Ω
~̃ar ×~b , ~̃ar = − ∂~Rθ̃s , ã‖ r = −~b · ∂~Rθ̃s .

The latter equation takes into account explicitly the first-order quasi-particle invariant

and the existence of the stream potential.

According to general relations between mean values,

K⊥ ≡ 〈v
2
⊥
2
〉F = 〈ε⊥〉F ′ = 〈ε⊥〉G . (51)

Therefore the reduced kinetic energy K⊥ (per unit mass) of cross-field particle motion is

the first-order adiabatic invariant, with regard to strongly non-uniform potential force

fields besides stationary and uniform magnetic fields. This result must be reconsidered

in the next orders.

Microscopic relationship between guiding-centres and quasi-particles. The micro-

scopic relationship (29) between guiding-centres and quasi-particles simplifies in this

case

F ′ =
1

2π
[ 1 +

1

Ω

∫ α
dα ( ~X − ~X0) · ∂~x ] G , (52)

where the incompressibility property (41) has been taken into account. In the explicit

form,

F ′ =
1

2π
{ G + ( θ − θ0 ) ∂ε⊥G + (53)

+
1

Ω

∫ α

dα [ (a‖ − a‖0) ∂v‖ +
1

Ω
(~a− ~a0)×~b · ~∇ ] G } .
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6 Quasi-Particle Kinetic Equation

Let us consider a system of many charged particles with self-consistent interaction,

such as the plasma, and a corresponding system of quasi-particles with the microscopic

phase-space density G =
∑

p Gp . The relation between the particle (guiding-centre)

phase-space density and the quasi-particle phase-space density makes it possible to

relate self-consistent fields to the quasi-particle phase-space density (reduced Poisson

equation).

In order to describe quasi-particle kinetics and fluctuations, we apply a statistical

approach and formulate an infinite hierarchy of equations for quasi-particle correlation

functions, similar to the Boholiubov-Born-Green-Kirkwood-Yvon hierarchy for the

particle correlation functions. We introduce the quasi-particle distribution function

g as the statistical mean value of the microscopic quasi-particle density in phase space:

g ≡ 〈G〉. Fluctuations δg of the quasi-particle distribution function are introduced

according to the definition G ≡ g + δg , where 〈δg〉 ≡ 0.

The statistical averaging of the continuity equation (12) for the microscopic quasi-

particle density space yields the first equation of the hierarchy (called kinetic equation

for quasi-particles) which is still exact. Asymptotic approximations can be obtained

from such an equation, or after statistical averaging of approximate microscopic

continuity equations.

In the first-order adiabatic approximation, statistical averaging of (30) yields:

∂t g + ∂~x · (〈 ~Xr〉g) = − ∂~x · 〈δ ~Xrδg〉 . (54)

Here, for any quantity Q, the statistical mean value of the renormalized quantity is

〈Qr〉 = 〈Q0〉 −
∑

n 6= 0
[ ( 〈νn〉 +

i

n
〈 ~Xn〉 · ∂~x )

1

Ω
〈Q∗n〉 +

+ 〈 ( δνn +
i

n
δ ~Xn · ∂~x )

1

Ω
δQ∗n 〉 ] , (55)

where a fluctuation contribution determined by pair correlation functions is to be

noticed. For the incompressible flow in the particle phase space,

〈Qr〉 = 〈Q0〉 − ∂~x ·
∑

n 6= 0

i

nΩ
[〈 ~Xn〉〈Q∗n〉 + 〈δ ~XnδQ∗n〉] . (56)

The term on the right-hand side of (54) is also determined by a pair correlation

function. This term can be interpreted as a collision integral for quasi-particles. It

takes into account the quasi-particle collisions and the collective-fluctuation-induced

relaxation of quasi-particle distribution function, similarly to the particle kinetic
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integrals. The collision integral can be expressed in terms of pair correlation functions

for the incoherent and collective fluctuations [8].

The relationship between the particle distribution function f ≡ 〈F 〉 and the quasi-

particle distribution function g is obtained after statistical averaging of the general

microscopic relationship (17) between the guiding-centres and the quasi-particles. In

this way we relate macroscopic (statistical) particle and quasi-particle properties.

In the adiabatic approximation, statistical averaging of (29) yields the following

relationship between the distribution functions for guiding-centres, f ′ ≡ 〈F ′〉, and

quasi-particles, g:

f ′ =
1

2π
g − 1

2πΩ
〈 ν − ν0 〉 g +

1

2πΩ

∫ α
dα ∂~x · ( 〈 ~X − ~X0 〉 g ) −

− 1

2πΩ
[ 〈 (δν − δν0) δG〉 −

∫ α
dα ∂~x · 〈( δ ~X − δ ~X0 )δG 〉 ] . (57)

This relation includes the correlation functions for fluctuations. The fluctuations can

be essential for the plasma, turbulent one especially. Therefore, the relation between

the statistical distributions of particles and quasi-particles can be rather complicated

because of fluctuations in the medium, which are especially important in turbulent

states.

For the uniformly magnetized plasma, the relationship between the particle and

guiding-centre distribution functions is especially simple in the case of guiding-centre

transformation (4):

f(~r,~v, t) = f ′(~R, v‖, ε⊥, α, t) . (58)

In the case of potential interaction between particles via the self-consistent electric

field ~E = −~∇Φ, and for the uniform magnetic field:

ãε⊥r = 0 , ã‖ r = − q

m
~b · ∂~RΦ̃s , ~Vr = v‖~b +

c

B
~b× ∂~RΦ̃s .

The kinetic equation (54) takes the form

[ ∂t + v‖ ∇‖ +
c

B
〈 ~Er〉 ×~b · ~∇ +

q

m
〈E‖r〉 ∂v‖ ] g =

= − c

B
〈δ ~Er ×~b · ~∇δG〉 − q

m
〈δE‖r∂v‖δG〉 . (59)

The relation between the statistical distributions of particles and quasi-particles

simplifies as well:

f ′ =
1

2π
[ 1 +

1

Ω

∫ α
dα 〈 ~X− ~X0〉·∂~x ] g +

1

2πΩ

∫ α
dα 〈(δ ~X−δ ~X0) ·∂~xδG〉 . (60)

Equations for the space-time quasi-particle correlation functions can be derived

from the nonlinear equation for fluctuations,

∂t δg + ∂~x · (〈 ~Xr〉δg + δ ~Xrδg − 〈δ ~Xrδg〉) = − ∂~x · (δ ~Xrg) , (61)
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by means of the general renormalization approach [9, 12]. In the linear with respect to

fluctuations approximation,

∂t δg + ∂~x · (〈 ~Xr〉δg) = − ∂~x · (δ ~Xrg) . (62)

Such an approximation results in a quasi-linear kinetic equation for quasi-particles. We

can introduce also renormalized linear approximations for fluctuations resulting in a

renormalized quasi-linear kinetic equation for quasi-particles.

If collisions are disregarded, as well as the fluctuation-induced relaxation of quasi-

particle distribution function, the kinetic equation (54) takes the form

∂t g + ∂~x · (〈 ~Xr〉g) = 0 , (63)

where

〈Qr〉 ≈ 〈Q0〉 −
∑

n 6= 0
[ ( 〈νn〉 +

i

n
〈 ~Xn〉 · ∂~x )

1

Ω
〈Q∗n〉 ] . (64)

For the incompressible flow in the particle phase space,

〈Qr〉 = 〈Q0〉 − ∂~x ·
∑

n 6= 0

i

nΩ
〈 ~Xn〉〈Q∗n〉 . (65)

The equation (63) is the kinetic equation for quasi-particles in the Vlasov (self-

consistent field) approximation. The latter must be supplemented with the relationship

between the distribution functions for particles (guiding-centres) and quasi-particles.

When the fluctuations are disregarded, such a relationship has the following form:

f ′ =
1

2π
g − 1

2πΩ
〈 ν − ν0 〉 g +

1

2πΩ

∫ α
dα ∂~x · ( 〈 ~X − ~X0 〉 g ) . (66)

For the incompressible flow in the particle phase space,

f ′ =
1

2π
[ 1 +

1

Ω

∫ α
dα 〈 ~X − ~X0〉 · ∂~x ] g . (67)

In the case of potential interaction between particles, and for the uniform magnetic

field, the kinetic equation in the self-consistent field approximation takes the form

[ ∂t + v‖ ∇‖ +
c

B
〈 ~Er〉 ×~b · ~∇ +

q

m
〈E‖r〉 ∂v‖ ] g = 0 . (68)

When the fluctuations are disregarded, the relationship between the statistical

distributions of particles and quasi-particles is the following:

f ′ =
1

2π
[ 1 +

q

m
(Φ− Φ0) ∂ε⊥ + (69)

+
1

Ω

∫ α
dα (

c

B
〈 ~E − ~E0〉 ×~b · ~∇ +

q

m
〈E‖ − E‖0〉 ∂v‖ ) ] g .
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7 Discussion

The Vlasov-type kinetic equation for quasi-particles is formulated from the first

principles, taking into account both mean self-consistent fields and plasma fluctuations.

Such an equation can be used for the reduced description of the magnetized plasma

when the slow time evolution (as compared to rapid particle gyrations in the magnetic

field) is of interest. The quasi-particles are introduced within the context of microscopic

description, and particles are related consistently to guiding-centres and quasi-particles.

The basic quantities of the theory are the microscopic densities in the particle,

guiding-centre and quasi-particle phase spaces. Statistical averaging yields the relation

between the distribution functions for particles, guiding-centres and quasi-particles.

Such relations take into account plasma fluctuations, which can be especially important

in turbulent plasma states.

The fundamental idea of the reduced theory is to avoid detailed information on

rapid particle gyrations in the magnetic field. Such an information is contained in the

dependence of the particle density on the gyrophase, or in the gyrophase harmonics of

the guiding-centre density. The infinite set of harmonics provides complete information

on the gyrophase dependence within the exact microscopic description. The reduced

description of slow plasma motions results from the closure relating these harmonics to

the quasi-particle density. As a result of closure, only incomplete information on the

gyrophase dependence becomes available in the form of a probability distribution.

One can suggest the following basic idea for better understanding of reduced

microscopic and kinetic descriptions. Let us consider the simplest situation of a particle

in a stationary and uniform magnetic field. In a suitable frame the particle trajectory is

a circle. If one measures the particle position with a tool which can not distinguish the

time steps of gyration period order, one finds the particle here and there in a random

manner. Gradually, in the course of measurements it will become clear that particle

positions are distributed randomly on a circle. One can introduce a particle probability

distribution which is non-zero and constant on that circle. The dipole moment of such

a ”probability circle” in the frame with the origin at the centre will appear to be zero.

The probabilistic approach appears to be natural. When the magnetic field is

weakly non-uniform, and there are other forces, the original ”probability circle” is

distorted, and the problem is to describe this. For instance, one could suggest the

”probability circle” becoming more like a ring with some dipole moment, since the

particle deviates from the strictly circular orbit and spends more time within some

parts of the ring. The magnetic moment is also perturbed. It is possible to contemplate

some thermal energy of particle ”random” motion.

The kinetic equation for quasi-particles can be applied to develop nonlinear low-
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frequency electrodynamics of the magnetized plasma by means of approach [8, 9]. The

successive approximation method enables one to find the formal solution to the quasi-

particle kinetic equation as a series in ascending powers of the electric field strength.

The particle density in phase space follows from the particle-guiding-centre and guiding-

centre-quasi-particle relations. Then one can calculate consistently the low-frequency

approximations for plasma electrodynamic coefficients (linear and nonlinear electric

susceptibilities) and their fluctuations.
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