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Abstract 

The linear and non-linear properties of global low-frequency oscillations in 
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Introduction 

 The important role of low-frequency oscillations is well known, and they continue to be the 

subject of intense investigation in fusion and astrophysical situations, ionosphere and laboratory 

applications.  Electrostatic low-frequency turbulence and related anomalous phenomena (turbulent 

transport, transport barriers, zonal flows) attract a special attention in the edge tokamak region, 

where collisions are essential. Cylindrical laboratory devices containing weakly ionized plasmas 

can have special importance for controlled fusion studies, or other complicated natural conditions. 

They allow to test our understanding of basic plasma physics including particle collisions, 

turbulence, and transport, as well as to develop new reliable methods of plasma diagnostics and 

control. 
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 In this paper the linear and non-linear properties of global low-frequency oscillations in 

cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of 

equilibrium plasma rotation. A new reduced non-linear model for the global oscillations in rotating 

plasmas is derived and analyzed. The various instabilities in rotating plasmas (current-dissipative 

and rotational centrifugal instabilities) are carefully revisited and identified in the linear theory. The 

effect of rigid plasma rotation on the flute and drift modes is investigated, and the relative 

importance of these modes in the plasma is established. Integral constraints are derived for the 

general case of arbitrary density and temperature profiles, and eigenfrequencies and instability rates 

are analyzed on their bases.  

Our investigation allows for a detailed comparison between the theoretical models and 

experimental results for eigenfrequencies and instability rates in rotating cylindrical plasmas. The 

theoretical results are compared with the experimental observations of rotating plasmas in 

laboratory devices, such as Mistral [Th. Pierre et al. 2004] and Mirabelle [Th. Pierre, G. Leclert, 

and F. Braun 1987] in France, and KIWI [A. Latten, T. Klinger, A. Piel, Th. Pierre 1995] in 

Germany. The centrifugal effects can be used as a basis for developing effective methods for 

turbulence control. Recently, they have been incorporated in new fusion confinement concepts [R. 

Ellis et al. 2001]. 

   

 

 Ideal Ion Equilibrium 

 The continuity and momentum balance equations for the ions are 

(1) , 0)( =⋅∇+∂ Vnnt

rr

(2) V
m
qbVΩVVt

rrrrrrr
  ) ( νφ −∇−×=∇⋅+∂  ,  

where  , and the ion index is omitted. In the case of stationary equilibrium, the 

equations of motion in cylindrical coordinates are  

mcqBΩ /0=

(3) ϑϑϑ ΩVE
m
qV

r
VΩV rrzrr +=−∂+∂ 21)(  ,  rrzrr ΩVE

m
qVV

r
VΩV −=+∂+∂ ϑϑϑϑ

1)( , 

where the frequency of charge-neutral collisions is neglected in comparison with the cyclotron 

frequency, and Ω  is a rotation frequency. rVz /ϑ=

 Let us assume a rigid equilibrium rotation: 

(4)  ,  Ω  , ϑ̂)(0 rVV =
r

constrVz == /

with axial symmetry 0=∂ . Then ϑ

(5)  ,  n  , 0=rV )(0 rn=
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and the quadratic equation for the rotation frequency follows from the equations of motion 

(6)  ,  02 =−+ Ezz ΩΩΩΩΩ

where Ω  is an electric drift rotation frequency.  There are two solutions,  BrcErE /−≡

(7) ( )ΩΩΩΩ Ez /411/ 2
1 +±−=  , 

which can correspond to fast and slow rotation in the clock or counter-clock direction depending on 

the magnitude and the sign of Ω . When  ΩE / 0<ΩΩE ,  the physical solutions exist if only 

(8) 1/4 <ΩΩE  . 

For the very slow rotation, with 1/4 <<ΩΩE , 

(9)  . )/1( ΩΩΩΩ EEz −=

 The dependence of   on ΩΩz / ΩΩx E /≡  is shown below together with approximations for 

slow rotation,  (straight dashed line – (1)) and E )z ΩΩ = /1( ΩΩΩΩ EEz −=  (curve (2)). 

 
 

Ideal Electron Equilibrium 

 In the same way for the slow electron rotation: 

(10) , dEZe ωΩΩ += )1(
0

0 ηω κ
+−=

reB
cT ne

d  , where  

0ln/ln ndTd e≡η  is the temperature-density gradient ratio, drndn /ln 00 =κ . 
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 Reduced Wave Model 

 In the presence of equilibrium flows, the linearized ion continuity equation and the 

linearized equation of ion motion govern the fluctuations in δ  and 0 iii VVV
rrr

−=δ  : 

(11) [ ] 0000    )( iiiiiiit nVVnnVV ∇⋅−⋅∇−=⋅∇+∇⋅+∂
rrrrrrrr

δδδ  

(12)   0    0     ) ii
i

i
iiiiit VV

m
qbVΩVV(

rrrrrrrrr
∇⋅−Φ∇−×=+∇⋅+∂ δδδδν  . 

In cylindrical geometry, with the magnetic field along  and the macroscopic gradients in 

the radial direction, the potential perturbation is represented as follows 

z

(13)  , ),ω,,(ˆ)ωexp( ////
//

rkltizikil
lk

φδθδφ
ω

−+≡ ∑∑∑
∞

−∞=

where  is a cylindrical wave amplitude, l  is an azimuthal mode number, and the frequency 

summation is over all the eigen-frequencies ω . Other wave quantities are represented in a 

similar manner. The reality constraints must be imposed. For example, in the cylindrical case 

φ̂

),( //kl

(14) ),(),( //// klkl ωω −=−−  ,  . ),(ˆ),(ˆ //
*

// klkl φφ =−−

 In the case of axially symmetric equilibrium with rigid rotation, the following identity is 

valid for an azimuthal mode of mode number l : 

(15) bVΩVilVVVV iziiziiiii

rrrrrrrrr
×−Ω=∇⋅+∇⋅   0   0  2   δδδδ  . 

 Therefore one can introduce a renormalized frequency scale , taking into 

account the Coriolis effect. Thus increasing the rotation frequency is equivalent to increasing the 

magnetic field. 

ziR  ΩΩΩ 2+≡

 It is convenient to use the dimensionless variables, – with the scales  for the 

frequency, 

ziR  ΩΩΩ 2+≡

RsR c Ω≡ρ  for the space coordinates ( iis mTZ=2c ), n  for the density, T  for the 

temperature, – and the dimensionless electric field potential is TeΦ/=φ .  and  are the 

ion charge and mass,  is the absolute value of the electron charge,  is the electron mass. 

eiZqi = im

e em

 Then the linearized ion continuity equation and the linearized equation of ion motion take 

the same form as without rotation except zit ilΩ+∂  replacing t∂  in the equation of motion : 

(16) φδδδν ˆ  )(   ∇−×=++∂
rrrr

bVVilΩ iiizit  

In the low-frequency approximation, the latter equation yields the velocity perturbation as the 

sum of electric and polarization drift terms: 

(17) φδφδφδδ ˆ 
ω~

ˆω~ˆ   // ∇−∇+∇×= ⊥ biibVi

rrrrr
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which is the same as in the case without rotation but with izi ilΩ ν+−= ωω~ . Then the ion 

continuity equation takes the same form as in the case without rotation: 

(18)  ˆ 
ω~ω~~

~
 ̂ )( 2

2
//*

0
 0 φδωφδκ 








+−

−
=∇⋅+∆ ⊥⊥

k
n
δ n

ω
iνω

i

ii
n

rr  

but with izi ilΩ ν+−= ωω~ .  Here drnd en /ln 00 ≡κ ,  rl n /ω 0* κ−=  is a density-gradient-driven drift 

frequency, and 
dr
d

r
l

dr
dr

dr
d

n02

2

κ+−
r 
1

=∇⊥

r

i

n0κ ⋅+⊥

r
∆  .  

 The Poisson equation can be used to eliminate the ion density  in favor of the electron one 

: 

n

en

(19) 
R

eii α
∆nnZ φ

−=  , 

where the dimensionless variables are introduced, 2

2

2

2

2
0

24

R

i
i

R

i

i

i
R Ω

Ωα 
Ω
Ω

BZ
cmnπα =≡  , and iα  is the static 

electric permittivity constant in the case without rotation. 

 One can imagine some relationship between the self-consistent electric field potential and 

the induced electron density perturbation )( 0e0e φφ −≡ Fnn , where  is in general some non-

linear function of the potential oscillation around its equilibrium value 

)

0

(xF

φ . This function can be 

normalized according to  . Then n  is the value of a non-perturbed electron density, 

without potential perturbations (

1)0( =F e0

0φφ = ). In this manner the ion continuity equation becomes a 

closed equation for the electric field potential. In the general case, one cannot find such a 

relationship; therefore some useful models of electron motion are usually introduced. For small 

potential perturbations, we can develop )( 0φφ −F  in Taylor series. Then the linearized electron 

models are introduced by a relationship 

(20) )(ˆ1/ 0e0e φφχ −+= enn    → φ̂ δ χ~ˆ δ 0 eee nn =  , 

where eχ̂  is an electron-density response operator, which determines the linear electron 

susceptibility introduced in plasma electrodynamics, while  χ~e relates wave amplitudes. 

 Then the ion continuity equation becomes a closed wave equation : 

(21)  ˆ δ χ~
ω~

~

ω~ω~
 ˆ δ )(

0

2
//

2

2
//*

 0 φ
α

ωφκ 














 −∆
−

−
−+−=∇⋅+∆ ⊥

⊥⊥
e

e
i

n n
kiνωkrr

 , 

and one arrives at the eigen-value problem. In the case of very weak deviations from the quasi-

neutrality, when 1>>iα  , the eigen-value equation simplifies: → eii nnZ =
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(22)  ˆ δ 
ω~

~
χ~

ω~ω~
 ̂ δ )( 2

2
//*

 0 φωφκ 






 −
−+−=∇⋅+∆ ⊥⊥

i
en

iνωkrr
. 

 

 Electron Fluid Motion 

 In the drift approximation, the electron continuity equation is 

(23) [ ] 0)( ν //// =∇+∇⋅+−∂ eeeEpt VnnV
rr

 .    

The electron velocity can be expressed in terms of the current density 

//e//e//i// )( VenVnVnZeJ eeii −≈−=  . 

The parallel velocityV  is governed by the equation of electron motion //e

(24) )(1Φ ν)( ////////// ee
eee

eedete Tn
nmm

eVVVd ∇−∇=+∇+∇⋅+
rr

 ,  

rr r
with the convective derivative ∇⋅+∂≡ Ett Vd . The term V //ede V∇⋅

r
 in this equation must be 

omitted, since a more consistent treatment reveals the well-known cancellation of this term with the 

contribution from b
rr
⋅⋅∇ π , the collisionless part of the stress tensor. For sufficiently large collision 

frequency , the electron inertia can be disregarded, and the last equation yields 

: 

eν

eV// ( ee T ln
ν //

e
// ∇= )en 0//

em
1 e Φ// −∇V ,   =∇ eT  . Thus, we can eliminateV  from the continuity 

equation: 

e//

(25) ( )Φ
ν

1 ////
e

∇−∇= eee
e

et ennT
m

nd . 

  If there is an equilibrium electron drift along the magnetic field produced by a constant 

electric field  , with the velocity 0E
r

eemeE ν0U −=

//Φ

, then the potential in the basic equations must 

be formally replaced according to 0//Φ E−∇→∇  and the parallel velocity is 

( )eee nTe
m

UV lnΦ ////// ∇−∇+=
eν
1

e

 . 

In this case, the continuity equation becomes 

(26) ( )Φ
ν

1 )ν ( ////
e

// ∇−∇=−∇+ eee
e

ept ennT
m

nUd   .  

The reduced continuity equation for electrons in the drift approximation can be expressed in 

dimensionless variables: 

(27) ( ) 







−∇=∇⋅+∇⋅+∇+∂

τ
δ δδv δ v 

0

2
//*

0
//

φφ
e

e
e

e

e
Et n

nDR
n
nRU

rrrr
,   iziiR ΩΩΩΩR /21/ +=≡  
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where ∇ ,  00// =en TTe /τ = ,  eie ZMD ντ=  is a dimensionless diffusion coefficient  ( , 

in dimensional units), 

ν/2 ′= ee SD

ei mmM = , bne

rrr
∇≡* lnv ×0  is the density-gradient-driven drift velocity, 

 is an ion rotation parameter. This is a non-linear equation. From here the 

density perturbation follows in the linear approximation: 
iΩ/ziΩR 2≡ iR ΩΩ 1/ +=

φ̂ δ χ~ˆ 0 eee nn =δ . 
  In cylindrical geometry,    

(28) 
//EU

//*
e i Γωωω

/τiΓRωχ
+−−

+
=~  

 Here iU ZMkU //=ω  is the frequency shift in the presence of axial electron flow, with 

eSUU /=  the ratio of parallel drift velocity and parallel thermal velocity for electrons,    

is the rate of electron diffusion along the magnetic field. ω

2
////  Γ kDe=

EE lΩ= ,  is the angular frequency, 

which corresponds to the electric drift rotation with the velocity V

EΩ

V≡ ϑ̂EE

r
, . In 

dimensionless variables V

constr =VΩ EE = /

ϑφ ˆ
0 EE VbR =∇×≡

rrr
, V dr/0RdE φ=  , rVΩ EE /= . 

 If the electron inertia is important, then  in   is replaced with e // )ν Γ ω(ω ν EUe Rωi −−−

 

. 

The electron electric susceptibility in the local theory is related to χ~e : 22λχ~ω),(χ eee kk =
r

 in 

dimensional units, with 0
22 π4 eee neT=λ . A misprint in [R.F. Ellis, E. Marden-Marshall, 1979] is to 

be noticed in the expression for the electron density response, given for  ,  :  is 

missing in the denominator. 

1τ = 1=Eω Uω

 When Γ  is much larger then all other frequencies in //  χ~e , then the electron density 

perturbation is governed approximately by the linearized Boltzmann's law (“ -models”), δ

(29) ,δ)1(
τ
1χ~ ie +=  )

1

τRωωωω(
Γ
1

*
//

−−−= EUδ . 

Small deviations from the Boltzmann's law, described by δ , determine possible mechanisms of 

weak instability. 

 

 Dispersion Equation 

Let us consider the approximation of constant electron temperature, . The Gaussian 

density profile  

τ =

)exp(~ 22
0 NLrn −   is a good approximation for many experimental situations. Then 

the wave equation simplifies and reduces to the eigen-value problem : 

(1) φδφδκ ˆˆ )∆( 2
0 Kn −=∇⋅+ ⊥⊥

rr
  . 

A real positive constant 2K  governs the eigen-frequencies via the dispersion equation. In 

cylindrical geometry, the eigen-functions are related to the confluent hypergeometric function 

: ),,( zbaM
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(2) 









+

−
2

222

,1,
4

2
~ˆ 

N

Nl

L
rl

LKl
Mrφδ  .         

 The eigen-values come from the boundary condition ( ) 0  0 =Rδφ , 

(3) )(42 22
0 

22
NnlN LRalLK −= ,     ,  0n ≥

where a  is the real root number 0 1)( <znl +n  of the equation 0),1,( =+ zlaM .   

Thus in the case of low-frequency global modes in the rotating plasma, the dispersion 

equation is 

(4) ω~
~

χ~
ω~ω~ 2

2
//*2 i

e
iνωkK −

−+=
ω

 , 

where 
//EU

//*
e i Γωωω

/τiΓRωχ
+−−

+
=~

)∆(ω* ln1+

 for the simple electron fluid model introduced above, ω , 

, and 

2
* /2 Ll= N

K 2 = lLRa∆ Nnl /)(2 22
0 ln −≡  is a size parameter. In the large-radius 

approximation,   when 122
0 >>NL lR , and when  is not very large ⇒ na nl −≈ ,  

. Then  for the modes with . 

22
0 NK /)2(2 Lnl +≈

*ωK =2 0=n

 

 Centrifugal Flute Instability 

 The dispersion equation is especially simple for flute modes, , when  0// →k

EU

*
e ωωω

Rωχ
−−

=~  . 

In what follows the ideal limit is considered, and the frequency is counted from . Then the 

dispersion equation takes the form 

zilΩ

(30) )(ω
*2

EziU

*

Ωlωω
RωK

−Ω+−
−=

ω
 . 

One can clearly see the basic effects responsible for charge separation in wave motion : different 

equilibrium rotation frequencies for ions and electrons, Ezi Ω≠Ω , the Coriolis effect 1≠R , and 

axial electron current, . The latter factor is omitted for simplicity.  0≠Uω

 This dispersion equation demonstrates the limitations of the effective gravity model for the 

instabilities in rotating plasmas. Such a model will miss the Coriolis effect. 

 This equation is quadratic in frequency : , where 0122 =++ xfx zilωx Ω≡ / , 

1)(2/ 22
0 *

2
0 >−=≡ Nnl LRallKf ω  , 

(31) ( )f
f

x −±−= 111  . 
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Thus all the modes are instable. The eigenfrequency and the instability rate are 

(32) 
f

fl zir
1−

Ω=ω  ,   
f

fl zii
1−

Ω=ω  . 

The rate is maximal for the modes with 0=n . In the large-radius approximation,  )1( −Ω= lzirω , 

1−Ω= lziiω .  

 
 

Drift Wave Instability 

 In the non-ideal case, and for non-adiabatic electrons, when 0≠δ , the dispersion relation 

yields the growth/damping rate ω  , i δ

2

iK
Ki

i ++

−
=+≡ 2

*
r 1

νω
iωωω  . The necessary instability 

condition is  

(5) 0Reω <δr .  

 For weakly non-adiabatic electrons, with 1<<δ , one can expand in powers of δ : 

(6) 2
*

r 1
ωω

K+
=  , 2

2

1
νReω

ω
K

Kir
i +

+
−=

δ
      , 1<<δ  . 

The necessary and sufficient instability condition is  

(7) 0νReω 2 <+ Kir δ  . 

Evidently, the ion-neutral collisions is a stabilizing factor of wave dissipation.  

 If the frequency is counted from l ziΩ , and for the very slow electron rotation, the instability 

factor for the electron drift waves is the following 

(33) [ ] [ ])(11 2
zi*U

//
*EziU

//

lΩτωRωω
Γ

τRω)Ωl(Ωωω
Γ

δ +−−=−−+−=  . 

This expression reveals explicitly the mechanisms of centrifugal instability for the electron drift 

waves.  

 Thus in the case of constant electron temperature and Gaussian density profile, 

(34) 2
*

r 1
ωω

K+
=   (the frequency is counted from l ziΩ ), 

(35) ( ) 2

2

//
2

*2
2

// 1
)1(1

K
K

RlΩR
K iziU

r
ri +











Γ−+−++

Γ
= νωωωωω  . 

The instability condition is  

(36) ( ) //
2

*2
2 )1( Γ>+−++ iziU

r
r RlΩR

K
νωωωω . 
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The latter inequality shows explicitly the modification of the dissipative instability in the current 

carrying and rotating plasma. For the very slow ion rotation ...)/1( +−≅ iEEzi ΩΩΩΩ .  In the 

opposite limite, for large  iE ΩΩ / , EiEzii ΩΩΩΩΩ <≅< . 

 Let us analyze the dependence of the eigen-frequency on the rotation parameter  

iEiziiR ΩΩΩΩΩΩR /41/21/ +±=+=≡ , 

with different signes for two equilibrium states :  

(37) 2
0

20 KR
Rω/Ωω *ir +

=  , 

where  and  are the dimensionless drift frequency and the eigen-value 

without rotation, and the eigen-frequency is always counted from  

0*ω )∆(ωK * ln0
2
0 1 +=

)1(2
1 −Ω=Ω Rll izi  . 

Larger values of  R  correspond to stronger rotation if , and to weaker rotation if 

. When  (this is possible if 

0>iEΩΩ

00<iEΩΩ )∆(ω* ln0 1+<<R2 <iΩEΩ ), then the eigen-frequency grows 

with R  : 
ln∆

R
=

1+
/Ωω ir .  In the opposite limit, when , the eigen-frequency 

decreases when 

)∆ln+(ωR *0
2 1>>

R  grows :  .  Rω* /0/Ωω ir =

 The instability rate is represented as a sum inrotUdisi γγγγ +++≡ω ,  

(38) 2

22

// 1
1

K
Kr

dis +Γ
=

ω
γ  ,   2

// 1 K
rU

U +Γ
=

ωωγ ,   2

2
*

// 1
)1(

K
RlΩR zir

rot +
+−

Γ
=

ωωγ ,   2

2

1 K
Ki

in +
−=
ν

γ  . 

 The part disγ  coincides with the instability rate in the ideal case without axial current and 

rotation. This part has the following dependence on R  : 

(39) 
R
ω

ΩΓ
∆

Ω
γ r

i//i

dis
3

2
ln1+

=  . 

It is maximal when )∆(ωR * ln02
12 1+= . Thus it grows with R , when )∆(ωR * ln02

12 1+<  : 

2
ln

2

)1( ∆
R

Γ
Ω

Ω
γ

//

i

i

dis

+
= . In the opposite limit, 4

1
R

3
0*ln )1(
Γ
Ωω∆

Ω
γ

//

i

i

dis +=  , and it decreases rapidly as 

R  grows. 

 Let us analyze the part Uγ  : 

(40) 2

2

//0* i

rU

i

U

Ω
R

Ω
ω

ω
ωγ
Γ

= . 

It is maximal when . In the limit , this part grows more rapidly 

with 

)∆(ωR * ln0
2 13 += )∆(ωR * ln0

2 13 +<

R  then disγ : 2)ln

3

//0* 1( ∆
R

Ω
U

i

U

+Γ
=
ω
ωγ . In the opposite limit, it decreases much slower then disγ : 
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R
ω

Ω
U

i

U
2
0*

//0* Γ
=
ω
ωγ . Thus  the current modification of the instability rate becomes more important in 

the rotating plasma. 

 In a similar manner, one finds 

(41) )11)(1(
0*//

2

ω
ωγ −

+−
Γ

=
RlR

ΩΩ i

r

i

rot  . 

The maximum of this part as a function of mode number corresponds to the eigen-frequency 

maximum. The Coriolis effect is not important when 10* −<< Rω

R2

, then the effective gravity model 

can be also applied to describe plasma rotation. In the limit , this part has the 

same dependence on 

)∆(ω* ln0 1+<<

R  as disγ  : 
i

r

Ω//

2

Γ
ω

i

rot l
Ω 0*

=
ω

γ . In the opposite limit,  

))1()(1( 0*2
//

0* +−
Γ

= lR
R
Ω

Ω
i

i

rot ω −Rωγ . Therefore the part rotγ  can become dominant. 

 Finally, for ion-neutral collisions, 

(42)  2
ln1

i

ri

i Ω
ω

R
∆

Ω
in νγ +

−= . 

This part is smaller for larger R . In the limit , there is no dependence on )∆(ωR * ln0
2 1+<< R  , 

while in the opposite limit 
i

*i

Ω
ω 0

i

in

Ω R
∆
2

ln1 νγ +
−=  . Thus the effect of ion-neutral collisions can 

become less important in the rotating plasma, which means that the instability threshold  can 

become lower. 

 
 

Integral Constraints 

 For arbitrary density and temperature profiles, one can use integral constraints in order to 

evaluate the eigen-frequency and the instability rate. The eigen-value equation yields the following 

integral constraint 

(43) ∫∫ 







+

+
+
−

=∇ rd
i

k
i

nrdn
ii

e rrr
2

2
//*

2

0

2

0 )(ωω

~ωωˆˆ
νν

χφφ  . 

It is derived after multiplying the eigen-value equation by  and integrating by parts for zero 

boundary conditions. Again, the frequency is counted from l

*
0φ̂n

ziΩ . When the parallel ion motion is 

disregarded,  

(44) 
∫
∫

+∇

∇−
=

rdn

rdin

e

i

rr

rr

)ˆ~ˆ(

)ˆˆω(
ω 22

0

22

*0

φχφ

φνφ
 . 
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In the interesting case of weak ion-neutral collisions, when ω<<iν , and weak deviations 

from the adiabatic electron-density response, when ( δie += 1
τ
1χ~ )  , with 1<<δ , the imaginary part 

 of the frequency ω  is small (transparency domain), iω ir iωω +≡

(45) 1ω/ω <<ri  ,   ∫= rdn
Wr

r2

*0
ˆω1 φω  , 

where the following notation is introduced: ∫∫ +∇=+≡ rdnrdnWW PK
rrW

r 2

0

2

0
ˆ)τ/(ˆ φφ . The 

quantity  corresponds to the total oscillation energy, while W ∫ ∇≡ rdnK
rW

r 2

0 φ̂ , and 

∫≡ rdnWP
r2ˆ)τ( φ0 /  can be associated with the particle kinetic energy of electric-drift motion (the 

polarization-drift contribution is negligible), and the potential energy respectively. For monotonic 

density profiles,   has the sign of  the density-gradient drift frequency ω . One can find by 

iterations: 

ω *

(46) ∫−−= rdn
WW

W rK
ii

r2
0 ˆ
τ

Reωω φδν  . 

Then the necessary instability condition is 

(47) 0ˆ
τ

Reω
2

0 <∫ rdn
r

rφδ  . 

 As 1<<rω/ωi , one can compute W , W  and K P iω  from the eigen-function and its gradient 

(
2

φ̂  and 
2

φ̂∇
r

) obtained in the limit 0=δ , 0=iν . Experimentally observed temperature and 

density profiles can be taken into account in such computations. 

 Taking into account the explicit expression for δ ,  

(48) [ ]∫ +−−
Γ

−−= )(ˆ
τ

ωω 22
0

//
zi*Ur

rK
ii lΩτωRωωnrd

WW
W φν r  . 

In the case of constant electron temperature, 

(49) ( ) 2

2

//
2

2
2

// 1
ω)1(1

k
kRlΩR

k izi*U
r

ri +



 Γ−+−++

Γ
= νωωωω  ,   

where k  , and PK WW /2 ≡ ∫∫≡ rdnrdQn rr 2
0

2
0Q φφ . 

 If W <<  ( k ), then PK W 12 << ( )2ω)1(ωω zi*Uri RlΩR +−+≈ ω

ir νΓ //
2 ≈

.  If W  ( k ), 

then ω , and the instability threshold is ω . 

PK W>> 12 >>

ir Γ/ω //
2 −≈i ν
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Discussion: Theory and Experiment Compared 

 A rigid (shear-free) rotation, determined by the externally applied grid bias voltage 

, was reported in [Klinger et al. 1997a,b]. Such a rotation produces a Doppler shift  

  for each azimuthal mode. Here  determines the parabolic 

potential profile , used to approximate the potential profiles from Klinger et al. 1997b]. 

For the latter experimental conditions 

VU g 80 ÷=

2= lA/B~(ωE
3106020 ×÷ )l

0
2 φφ += Ar

s/1 A

4.15.0/4 ÷=iE ΩΩ , beyond the condition 1/ <<iE ΩΩ4 , of 

very slow ion rotation, which is usually adopted [E. Marden-Marshall, R.F. Ellis, and J.E. Walsh 

1986], [E. Marden-Marshall, and K.L. Hall 1986], [Klinger et al. 1997b]. 

 The following Table presents the comparison between the predictions of the exact and 

approximate expressions for the rotation frequency. The approximate expression 

 predicts a qualitatively correct growth with  and gives satisfactory 

qualitative estimates, when only 4

)/1( iEEzi ΩΩΩΩ −= EΩ

2/ ≤iE ΩΩ

4.0/ ≥iΩ

1(Ezi ΩΩΩ

. The simplest evaluation , which is 

frequently applied [E. Marden-Marshall, R.F. Ellis, and J.E. Walsh 1986], [Klinger et al. 1997b], 

becomes less satisfactory for . This evaluation overestimates the rotation frequency, 

while the approximate expression 

Ezi ΩΩ =

4 EΩ

)/ iE Ω−=  underestimates it. 

 
 

iE ΩΩ /  0.1 0.2 0.4 0.5 0.6 0.8 0.9 

i
approx
zi ΩΩ /  0.090 0.16 

 
0.24 
 

0.25 
 

0.24 
 

0.16 
 

0.090 
 

zi ΩΩ /  0.092 
 

0.17 
 

0.31 
 

0.37 
 

0.42 
 

0.52 
 

0.57 
 

i

 
TABLE. Predictions of the exact expression ( )iEzi ΩΩΩΩ /411/ 2

1 +±−=   

and the approximate one, . )/1( iEEzi ΩΩΩΩ −=
 
 Rotating plasma parameters are evaluated in the next Table, for various values of   

with . One can notice that the validity condition for the low-frequency 

approximation is not satisfied if  the ratio 

i/ ,E ΩΩ

)4/( Ei
eval ΩΩl +=ω

iΩ/ω  is taken into consideration. However the true 

parameter to be considered in the validity condition is not iΩ/ω , but  . Rzi /ΩlΩ )( −−ω
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iE ΩΩ /  0 
 

0.12 
 

0.24 
 

0.36 
 

0.48 
 

0.60 
 

zi ΩΩ /−  0 
 

0.11 
 

0.20 
 

0.28 
 

0.35 
 

0.42 
 

R ΩΩR /=  1 
 

1.2 
 

1.4 
 

1.6 
 

1.7 
 

1.8 
 

SRR ρρ //1 =  1 
 

0.82 
 

0.71 
 

0.64 
 

0.59 
 

0.54 
 

2 /NL ρ  8 
 

12 
 

16 
 

20 
 

23 
 

27 
 

* /Ωω  0.5 
 

0.34 
 

0.26 
 

0.20 
 

0.17 
 

0.15 
 

Rzi /ΩlΩ )( −−ω  0.33 
 

0.25 
 

0.20 
 

0.17 
 

0.15 
 

0.13 
 

izi /ΩlΩ )( −−ω  0.33 
 

0.31 
 

0.28 
 

0.27 
 

0.25 
 

0.24 
 

i
eval Ω/ω  0.5 

 
0.74 
 

0.98 
 

1.2 
 

1.5 
 

1.7 
 

iΩ/ω  0.33 0.52 0.68 0.83 0.96 1.1 

i

i

2
R

R

 

TABLE. Rotating plasma parameters for different values of Ω  , l . The range 
 corresponds to the experimental conditions [Klinger et al. 1997b], [O. Grulke, T. 

Klinger, and A. Piel 1999], with .   is the approximation  frequently 
used to evaluate the frequency of low-frequency oscillations in rotating plasmas [Klinger et al. 1997b], [O. 
Grülke, T. Klinger, and A. Piel 1999]. 

iE Ω/

E

2=
48.012.0/ ÷=iE ΩΩ

6.0/exp =i
er Ωω d

eval lΩ+= ωω
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