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Abstract 

Rf plasma production in Whistler waves range of frequency ω/ωci >1 is applied on the compact helical 

system (CHS) in a steady state operation with low toroidal magnetic field strength, where ω/2π  and ωci 

/2π are rf and ion cyclotron frequencies, respectively.  Maximum rf power and pulse width are is170kW 

and 10 msec at 9MHz, respectively.  The line averaged plasma density <ne> as high as 2x1018 m-3 (He 

plasma) is produced in the region of toroidal magnetic field strength on magnetic axis B=100G~1.5kG 

and the electron temperature measured at plasma periphery is about 20eV.  The wave magnetic field 

strength measured at the plasma periphery showed the evidence of the toroidal eigen modes of the 

Whistler waves. The additional long pulse microwave heating of 2.45GHz (>200msec) is applied and it 

sustains the plasmas while the microwave itself can not ignite plasmas when B< 600G. 

 

Introduction 

The rf plasma production was conducted on CHS by using Nagoya Type III antenna 1-2). Efficient plasma 

production was obtained in the frequency range ω/ωci < 0.8 for B>5kG, where rf frequency ω/2π=7.5-

14MHz.  Especially when ω/ωci ~0.8 on magnetic axis, efficient electron heating is observed.  Ray tracing 

analysis of the Ion Bernstein wave excited at the antenna (ω/ωci  >1 at the antenna position) showed that 

the efficient electron heating occurs via Landau damping where the parallel wave number of the wave 

increases. For more higher magnetic field, slow wave contributes to produce plasmas. For the purpose of 

discharge cleaning, Alfven wave related studies and high beta related studies in helical systems, the 

plasma production in a low toroidal magnetic field in <kG range is preferable. Whistler wave discharge 

in MHz range of frequency have the notable feature of producing plasmas in such a low magnetic field 

where ω/ωci >1 and the low phase velocity of the wave is expected to heat electrons to sustain plasmas. 

 

Whistler wave plasma production 

CHS2-3) is a torsatron-type device having l=2/m=8 helical structure, and major and minor radius are 1m 

and 0.2m, respectively. Magnetic fields of CHS can be operated in steady state by SCR power supply 

when B<1.5kG. The rf frequency, maximum rf power and pulse width are 9MHz, 170kW and 10msec, 

respectively. Nagoya Type III antenna is used for the rf plasma production (Fig.1) and it is originally 

designed to flow the rf current along the magnetic field lines at plasma periphery for the excitation of Ion 

Bernstein waves. The antenna width is 15cm and the length along the magnetic field line is 65cm.   2mm 

microwave interferometer for averaged density <ne> and magnetic probe for wave field measurements are 

located 1800 away from the rf antenna in toroidal direction. Movable Langmuir probe is installed in the 

same toroidal section where the antenna locates. 

The Whistler wave propagation is examined by Ray tracing in the configuration where ω/2π=13MHz, 

B=1.4kG (ω/ωci  =6 on magnetic axis), electron temperature Te=100eV, electron density on axis is 

1x1018m-3 and initial refractive index along the toroidal magnetic field of the ray N// is 14.  Figure 2 show 

that the ray propagates toroidally and absorbed by electrons via Landau damping. In the discharge 

process(electron heating) by the wave for the experimental condition, elastic and inelastic collisional 

damping also expected to contribute. 

     Figure 3(a) shows the dependence of rf produced helium (He) plasma density <ne> on B for the rf 

input power Prf =150kW and helium pressure PHe=5x10-5 torr.  In the low B region below 1kG, <ne> 

increases almost linearly with Prf.  <ne> of helium plasma as high as 2x1018m-3 is produced and the 

electron temperature measured at plasma periphery is about 20eV by 150kW of the rf power. The plasma 



density produced here is factor ~5 smaller than the one at ω/ωci ~0.8 (B>5kG, slow or Ion Bernstein 

waves) with the similar RF power. This may be attributable to the poor efficiency of the Whistler wave 

excitation for the Nagoya Type III antenna. Whistler wave dispersion relation is expressed as 

c2k//(k//
2+k⊥)

1/2=ωωpe
2/ωce , where k//, k⊥, ω pe /2π   and ω ce /2π are parallel, perpendicular (to the magnetic 

field) wave number, electron  plasma frequency and electron cyclotron frequency, respectively.  It is 

conjectured that when B<500G,  the wave number is mostly determined by the antenna, therefore <ne> is 

proportional to B. When B>500kG, <ne> tends to saturate, so the wave length become longer with B to 

have toroidal eigen modes. The dependence of <ne> on Prf for the helium plasma is shown in Figure 3(b). 

The plasma is ignited above 80kW and increases proportional to Prf under the conditions where B=800G 

and PHe=5x10-5 torr. 

     In order to study the wave propagation along the torus, wave magnetic field strength Bwave is measured 

at the plasma periphery. Time evolution of <ne> and Bwave are shown in Figure 4(a) and (b), respectively, 

here Prf =160kW and B=1kG. During the rf pulse, the plasma density changes in time and strong Bwave 

peaks are observed at corresponding density npeak.  It is found that npeak increases with B as shown in 

Figure 5(a).  Because of less damping of the wave expected from Landau damping and collisional 

damping with neutrals, the waves are expected to propagate around the torus as shown by the ray tracing 

calculation and form toroidal eigen modes. The toroidal eigen modes of the Whistler waves are calculated 

and shown in Figure 5(b), where the toroidal eigen mode number is N. The experimentally obtained npeak 

stays in the same range of the calculated toroidal eigen modes. 

 

Effects of microwave heating(ECH) on rf plasmas 

For the electron heating of Whistler wave plasma, the microwave power of 2.45GHz and 20kWx2 is 

used. The time evolution of <ne>, the edge density ne(edge) ) and electron temperature Te(edge) at 

outmost magnetic surface measured by Langmuir probe are shown in Figure 6, here B= 613G and Prf 

=105kW. The plasma with peaked density profile on axis is produced initially by the rf power.  At the 

last 4msec of the rf pulse, the microwave power of 18kW is applied on the plasma.  Additional 

microwave power which is 17% of rf power causes the increase in average density of 20%, while 

ne(edge) increases three times as much as the rf plasma. After the rf power is shut off, the microwave 

power can sustain the plasma but ne(edge) jumps up and <ne> drops. This change in density implies that 

more flatter plasma profile than that of the rf plasma is produced by ECH . This is due to the fact that 

there is no density limit for the Whistler wave propagation, so the wave can penetrate at the center of the 

plasma but it is difficult for ECH(O or X modes) to penetrate deep inside the high density region. It is 

also shown that the plasma density can not start up for B< 600G when only the microwave power is 

applied. However by this rf start-up plasma can be sustained by ECH even when B<600G. Increase in 

<ne> with the microwave power under the fixed rf power is observed also above the cut-off density for 

2.45GHz microwave. 

 

Conclusion 

Rf plasma production in Whistler waves range of frequency ω/ωci >1 is applied on CHS. The line 

averaged He plasma density of 2x1018 m-3 is produced for the toroidal magnetic field strength on magnetic 

axis B=100G~1.5kG. The evidence of the toroidal eigen modes of the Whistler waves is observed. The 

additional long pulse microwave heating of 2.45GHz (>200msec) is applied and it can sustains the 

plasmas while the microwave itself can not ignite plasmas especially when B< 600G 
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Fig.1 Nagoya Type III antenna  

Fig.3 Toroidal magnetic field strength B (a) and rf power Prf (b) dependences on line 
averaged density <ne>.  
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Fig.2 Ray trace of Whistler wave in CHS.(a)Toroidal cross 

section and (b) poloidal cross section. (c)Radial profile 

Ψ/ Ψ0 of Te,  ne  and wave power absorption by electrons 

normalized by initial wave energy Pabs/P0 . 



 

 

 

 

 

 Fig.4 <ne> (a) and  wave magnetic field 

measured 1800 away from the antenna around 

the torus. Strong wave propagation is observed 

at npeak . 

Fig.5〕 (a) npeac obtained from the wave 

measurement as a function of B. (b) The 

relation between plasma density and B 

for Nth toroidal eigen modes of Whistler 
waves. 
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Fig.6〕  Time evolution of line averaged density, 

plasma edge density and electron temperature  with 
and without ECH power for He plasma. f=9MHz. 


