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Abstract. A high-density magnetized plasma has been studied for understanding of plasma
dynamics in partially ionized plasmas. While research of plasma dynamics on fully ionized
plasma has been developed in the past century as well as on weakly ionized plasma, the
understanding of partially ionized plasma is a current issue especially in considering divertor
plasmas, industrial plasmas and ionosphere plasma. In thispaper, the experimental result of
ion flow field associated with a vortex formation in a partially ionized plasma is presented.
The most remarkable result is that the direction of rotationis opposite to that of the ExB drift.

The experiments have been performed in the high density plasma experiment (HYPER-
I) device at the National Institute for Fusion Science. The HYPER-I device produces a
cylindrical plasma (30 cm diameter and 200 cm axial length) by electron cyclotron resonance
(ECR) heating with a microwave (2.45 GHz, 80 kW maximum) launched at an open end of
the chamber. The plasma density and the electron temperature are about 1013cm−3 and 5 eV,
respectively, for the operation pressure 30 mTorr (Argon),which is several ten times higher
than that of usual ECR plasma experiments.

In the experimental condition described above, a tripolar vortex has spontaneously been
formed. Ion flow velocity field, obtained with a directional Langmuir probe, shows that the
rotational direction of each vortex is opposite to that of theE×Bdrift. Measurement of neutral
density profile reveals that there is a steep density gradient of the neutrals around the vortex,
thus inward momentum of the neutrals is generated due to the density gradient. The anti-E×B
rotation is caused by the effective force attributable to radial momentum transfer fromthe
directed neutrals to the ions with charge-exchange collision. The present experiment shows
that this effective force may dominate the ambipolar-electric field and drive the anti-E × B
vortical motion of ions.

† E-mail address: aokamoto@flanker.q.t.u-tokyo.ac.jp
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1. Introduction

Understanding of plasma dynamics is an important and attractive issue in plasma physics.
While research of plasma dynamics on fully ionized plasma has been developed in the past
century as well as on weakly ionized plasma, recognition of common feature of dynamics
observed in partially ionized plasmas becomes a current topic. Partially ionized plasma
is defined as a plasma of intermediate degree of ionization between fully ionized plasma
and weakly ionized plasma. The ionization degree of partially ionized plasma is typically
of the order of ten percent, where adequate neutral particles and ions (and also electrons)
coexist and interact with each other. Interesting phenomena related to plasma dynamics in
partially ionized plasmas have been observed; for example,flow reversal has been observed
in the scrape off layer of magnetically confined plasmas,[1] ion upflow in ionospheric plasma.
Spatial dependence of the ionization degree[2] and the roleof neutral particle itself are
considered to be keys of these phenomena. We have observed another phenomenon related to
plasma dynamics in a laboratory plasma with partially ionized condition. The phenomenon is
spontaneous formation of a tripolar vortex. The tripolar vortex consists of an elliptic center
vortex and two bean-shaped satellites, which have oppositesigns of polarity of rotation to that
of the center vortex, and remains stationary in time during the whole discharge period.

Recently, tripolar vortices were observed in the ocean (theBay of Biscay) and in a
rotating ordinary fluid to be self-organized from a complex initial condition,[3] and from a
forced initial conditions.[4, 5] These results suggest that the tripolar vortex is a basic coherent
structure in rotating fluids[6] or fluids subjected to the Coriolis force. A plasma in a magnetic
field is equivalent to those fluids because the Lorentz force has the same effect as the Coriolis
force, and hence it might be possible to occur a tripolar vortex in a plasma.[7]

In this paper, the experimental observation of a tripolar vortex in a magnetized partially
ionized plasma is presented. A remarkable characteristic is that the tripolar vortex always
appears with a deep density depression of neutral particlesand is confined in its valley. The
flow velocity measurements revealed that each vortex rotates in the anti-E × B direction,
suggesting that there exists an effective radial force acting on the ions, which overcomes the
radial electric field. We propose that the charge-exchange collisions between the ions and
neutrals may produce the effective force through the net momentum transfer. When there
is a strong inhomogeneity in the neutral density profile and the charge-exchange collision
is dominant, a directed momentum of the flow of neutrals is brought into the ions by the
charge-exchange collision, producing an effective force through the net momentum transfer.
It is shown that the effective force may dominate the ambipolar electric field and drive the
anti-E × B vortical motion of ions. The tripolar vortex observed in thepresent experiments is
considered to be a neutral-induced tripolar vortex. The existence of neutral particles usually
causes a dissipative effect, in which a dissipative instability[8] and a modification of the mode
pattern take place.[10, 9] It is worth pointing out that the existence of neutral particles may
change the ion dynamics qualitatively. In Sec. 2, the experimental setup is described, and the
observation of tripolar vortex is presented in Sec. 3. The mechanism of anti-E × B rotation is
given in Sec. 4.
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2. Experimental Setup

The experiments have been performed in the high-density plasma experiment (HYPER-
I) device at National Institute for Fusion Science.[11] TheHYPER-I device consists of a
cylindrical chamber (30 cm in diameter, 200 cm in axial length) and ten magnetic coils, which
produce magnetic fields of 1− 2 kG along the chamber axis. The schematic of HYPER-
I device is shown in Fig. 1. Plasmas are produced and sustained by the electron cyclotron
resonance (ECR) heating. A microwave of frequency 2.45 GHz is generated by a klystron
amplifier (80 kW CW maximum) and is launched from an open end ofthe chamber, where
the high-field side condition (ωce > ω, ωce: electron cyclotron frequency,ω: wave frequency)
is satisfied. The magnetic field configuration is a so-called magnetic beach with the ECR
point at 90 cm from the microwave injection window. An electron cyclotron wave is excited
in the plasma and fully absorbed before reaching the ECR point.[12] The plasma dimension
is 30 cm in diameter and 200 cm in axial length. The typical electron densities are 1012 cm−3

for the operation pressure 1×10−3 Torr (Argon), and 1013 cm−3 for 3×10−2 Torr. The electron
temperature gradually decreases with increasing the operation pressure, and changes from
10 eV (1× 10−3 Torr) to 3 eV (3× 10−2 Torr). The microwave input power in the present
experiment is≤ 6.5 kW.

2.45GHz
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CCD Camera
Optical Collimator
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Figure 1. A schematic of the HYPER-I device

The ion flow velocities have been measured with a directionalLangmuir probe (DLP),
which collects a directed ion current through a small opening (1 mm diam) made on the side
wall of the ceramic insulator (3 mm diam). The detailed structure of the DLP and its validity
for measuring the ion flow velocity is given in Ref. [13, 14]. The flow velocity component
at a certain angleθ with respect to the reference axis,v(θ), is obtained by measuring two ion
saturation currents,Is(θ) andIs(θ + π), and by using the following relation:[13]

v(θ)
Cs
=

1
α

Is(θ + π) − Is(θ)
Is(θ + π) + Is(θ)

, (1)



Anti-E× B flow field associated with a vortex formation in a partially ionized plasma 4

whereθ is the angle between the normal of electrode of the DLP and thereference axis, andCs

is the ion sound speed.α is a factor of the order of unity, and is calibrated by cross-checking
with other flow-measurement method such as passive[15] or laser-induced[16] spectroscopy.
A two-dimensional velocity vector at a certain spatial point v(r) on a plane perpendicular to
the magnetic field is determined by measuring the two components of the velocity vector. A
vector field plot of the flow velocity is constructed from a data set of velocity components
obtained by a pair of DLPs mounted on the radial ports locatedat angles±45◦ from the
vertical axis (see Fig. 2). The insertion angle is changed upto ±34◦, and the insertion chords
with every 2 degrees of increment (decrement) are shown in Fig. 2. There are about 900 cross-
points in the cross section, and the local velocity vectors are determined on each cross-point.
The distance between the nearest cross-points is about 7 mm in the central region and about
3− 11 mm near the chamber wall. From the original data set with the variable distances, we
produce a new data set on the lattice points with equal spacing (5 mm) by interpolation, and
then make the vector field plot of the flow velocity. The radialprofile of density, electron
temperature and space potential have been measured with a Langmuir probe.

x

y

34
45 45

Figure 2. Insertion chords of the two-dimensional DLP system. There are about 900 cross-
points, on which the flow velocity vectors are determined.

The spectroscopic measurements have been carried out to obtain the neutral density
profile. A two-dimensional motor drive system with a collimated optic fiber is equipped at the
end of the chamber (see Fig. 1). The focal point of the opticalsystem is set to infinity to collect
the visible light emitted to the direction parallel to the axis of the cylindrical plasma. The
diameter of the viewing chord is 6 mm, and the collected lightis analyzed by a spectrometer
(focal length 1 m) to select a specific wavelength, and then detected by a photomultiplier tube.
We have observed the emission lines from the argon ions [ 488.0 nm (4p 2D◦ − 4s 2P) ] and
from the neutral argon [ 425.9 nm (5p′ [ 1

2] − 4s′ [ 1
2]◦) ].

The intensities of emitted spectral lines from the neutralsand ions are respectively given
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by IArI (r) ∝
∫

nnne〈σn
exv〉dl and IArII (r) ∝

∫

nine〈σi
exv〉dl, where dl is the distance along the

line of sight,〈σ j
exv〉( j = n, i) are the rate coefficients of excitation process for the neutrals and

ions, respectively. When the radial density profiles of plasma and neutral particles are axially
uniform, the observed intensitiesIArI (r) andIArII (r) are proportional to the quantitiesnnne and
nine ≈ n2

e, respectively. Then the ratio ofIArI (r) to the square root ofIArII (r) is proportional to
the neutral density:

IArI (r)√
IArII (r)

∝ nn(r). (2)

We assume here the uniform profiles along the plasma axis, which will be justified by the
experimental results.

3. Observation of Tripolar Vortex

End-view images of the plasma taken by a CCD camera for the different operation pressures
are shown in Fig. 3, where Fig. 3(a) is for 6.7× 10−3 Torr and Fig. 3(b) for 2.5× 10−2 Torr. At
the pressure 6.7×10−3 Torr (and lower than this pressure), the plasmas are uniformly produced
over the whole cross section of the vacuum chamber. At the operation pressure 2.5×10−2 Torr,
the two bright and bean-shaped regions appear in the centralpart of the plasma, between which
there is a dark elliptic region. The diameter of the whole structure is about 15 cm, which is
about one half of the diameter of the plasma filling in the vacuum chamber. This structure
is spontaneously formed when the microwave is turned on, andremains stationary in time
during the whole discharge period (∼ 30 s).

(a) (b)

10cm10cm
Figure 3. End-view images of the plasma for different operation pressures. (a): 6.7×10−3 Torr,
(b): 2.5× 10−2 Torr.

The radial profiles of the ion and neutral densities have beenmeasured along the
horizontal center chord (y = 0) for the same operation pressures as in Fig. 3, and the results
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are shown in Fig. 4. The ion density profiles measured with a Langmuir probe are indicated
in the top [Figs. 4(a) and 4(c)] and the corresponding neutral density profiles determined
by Eq. (2) in the bottom [Figs. 4(b) and 4(d)]. The ion densityprofile determined by the
optical measurement, which is given byni(r) ∝

√
IArII (r), is also shown in Fig. 4(c) to cross-

check the validity of the optical method. The calibration factor for the optical measurement
is determined so as to give the equal value ofni(r) at the pointr = 10 cm. There is a
good agreement between the two. Since the optical measurement provides a line-integrated
quantity, this agreement suggests that the observed structure is axially homogeneous. In fact,
we have confirmed by the Langmuir probe measurement that the observed structure is axially
homogeneous at least more than 90 cm. It has also been confirmed that the bean-shaped bright
regions shown in Fig. 3(b) are the ion density clumps.
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Figure 4. Ion density profiles (top) and neutral density profiles (bottom). The operation
pressures are the same as in Fig. 3. In Fig. 4(c), the ion density obtained from the
optical measurement is indicated by closed square (�), and the ion density measured with
a Langmuir probe by open square (�). In Figs. 4(b) and 4(d), the quantityQ is defined as
Q = IArI (r)/

√
IArII (r) ∝ nn.
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In accordance with the appearance of bright spots, a neutraldensity depression occurs in
the central region of the plasma [Fig. 4(d)]. It should be emphasized that when the double-
peaked structure is generated in the ion density profile, theneutral density profile becomes
a double-minimum distribution as shown in Fig. 4(d). Moreover, there is a close relation
between the positions of the steepest density gradient of the ions and the neutrals. The width
of ion clump and that of neutral depression exhibit a quite well agreement, suggesting that the
observed ion density structure is confined in the neutral density depression, and there might
be a dynamical coupling between the two.

The vector field plot of the ion flow velocity and the vorticitydistribution[17] for a
double-peaked structure are shown in Fig. 5. Figure 5(a) indicates the flow velocity field
with the contour map of ion density in the background, and Fig. 5(b) the distribution ofz-
component of vorticity, which is constructed from the velocity data by using the following
equation:ω = (rotv)z ≃

∮

v⊥ · dl/∆S. In this calculation, the path of integration is so
chosen to pass through the four velocity vectors on the minimum lattice points of the velocity
field, and∆S is the area surrounded by the integration path. As seen in Fig. 5(a), there are
two clockwise vortical motions in both sides, which correspond to the ion density clumps.
Between these clumps, there presents a counterclockwise motion whose center is a little bit
shifted upward. Since the velocity field pattern is a superposition of vortical motion and
other flows such as the diffusive flux, the vorticity distribution contour is much more useful
to recognize the existence of vortices.[18] Figure 5(b) clearly shows the existence of three
vortices; one vortex locates in the center with a positive polarity (counterclockwise rotation)
and two satellites in the both sides with negative polarities (clockwise rotation). Therefore, the
observed flow structure is a tripolar vortex.[19] Tripolar vortices have been already found in
ordinary fluids. Unlike these vortices in ordinary fluids,[4, 5] which slowly rotate as a whole,
the global vortex pattern in the plasma is stationary in the laboratory frame, which suggests
that there exists a vortex solution with zero eigenfrequency. The existence of stationary
tripolar solution in a plasma has been shown in Ref. [20].

4. Mechanism of Anti-E × B rotation

The electrostatic potential measurements revealed that the potential profile along the
horizontal chord (y = 0) is a double-peaked one, and the half of the profile is shown in Fig. 6,
in which the corresponding neutral density profile is also depicted. In evaluating the neutral
densitynn(r), the effect of temperature variation along the horizontal chord (δTe/Te ≃ 0.1)
on the atomic cross section is taken into account. As seen in the figure, the peak position of
the potential (x ≃ 5cm) coincides with that of ion density, and its profile is convex around the
density peak, and concave near the center axis. This means that the expectedE × B rotations
due to this potential profile are counterclockwise for the satellite vortices, and clockwise for
the core vortex, which are apparently opposite to the experimental observations. There should
be a radially inward force (or momentum transfer) to explainthe observed rotation of ions.
The probable mechanism of generation of inward force is a netmomentum transfer between
the ions and neutrals. As shown in Fig. 4, a steep density gradient in the neutrals coexists with
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Figure 5. (a): Vector field plot of the ion flow velocity and the density contour (background).
The direction of the magnetic field is indicated in the upper right of the figure. The magnitude
of flow velocities are normalized by the ion sound speed, which is also indicated in the upper
right of the figure. (b): Contour plot of thez-component of vorticity.

the tripolar vortex. In this circumstance, there is a directed flow of neutrals induced by the
neutral density gradient, which may be given by

vn = −Deff∇ lognn, (3)

wherenn is the density of neutrals. Since the mean free path of neutrals is comparable to the
scale of vortex, we introduce an effective coefficient Deff to include the enhancement factor.
When the charge-exchange interaction is dominant, the directed flow of neutrals may become
a source of inward momentum, i.e., during unit time interval, a momentumPn→i = νniMnnvn

(νni: charge-exchange collision frequency of neutrals with ions) is brought into the ion fluids,
while in the same interaction the ions lose a momentumPi→n = νinMnivi (νin: charge-exchange
collision frequency of ions with neutrals), resulting in a net momentum transfer. Under the
present experimental conditions, the magnitude ofPi→n andPn→i might be in the same order
of magnitude. The ion momentum equation is then written as[20]

Mni

[

∂vi

∂t
+ (vi · ∇)vi

]

= eni(E+vi ×B)−∇pi −νinMni
(

vi + Deff∇ lognn
)

, (4)

whereνninn = νinni is used. The perpendicular velocity component is given by

v⊥ =
1

ω2
ci + ν

2
in

[ e
M

(ωciez× ∇⊥φ − νin∇⊥φ) + v2Ti
(ωciez × ∇⊥ logni − νin∇⊥ logni)

+ (ωciνinDeffez × ∇⊥ lognn − ν2inDeff∇⊥ lognn)
]

, (5)

whereωci is the ion cyclotron frequency. In deriving the above equation, the convective term
v · ∇v is omitted for simplicity, which is justified when the ion flowvelocity is less than the
ion sound speed. On the horizontal chord (y = 0), ∂/∂r ≫ (1/r)∂/∂θ holds, and hence the
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azimuthal velocity aty = 0 has the simplest form to be compared with the observed velocity,
which is written as

vy

Cs
=
ωciCs

ω2
ci + ν

2
in

[

∂

∂r

(

eφ
Te

)

+
Ti

Te

∂

∂r

(

logni
)

+
Deff

C2
s/νin

∂

∂r

(

lognn
)

]

. (6)

The first term represents theE × B drift, the second term the diamagnetic drift, and the third
term theF × B drift due to the ”effective pressure of neutrals”. The diamagnetic drift velocity
is small compared with theE × B drift velocity becauseTi/Te≪ 1.
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Figure 6. Electrostatic potential (�) and neutral density profile (•) of the tripolar vortex. The
direction of the magnetic field is indicated in the upper right of the figure.

Figure 7 shows the azimuthal velocity profile along the horizontal chord (y = 0), where
the bold solid line indicates the velocity obtained with theDLP. TheF×B drift velocity due to
the density gradient of neutrals, which is determined by thethird term of Eq. (6) is also plotted
in Fig. 7(a), whereDeff = 5Dc (Dc: collisional diffusion coefficient) is used; in evaluating the
absolute value of neutral density at the tripolar vortex region from the operation pressure
measured at the chamber wall, there is uncertainty of density depression. This corresponds to
an enhancement factor of several forDc determined by the operation pressure. In Fig. 7, we
takeDeff = 5Dc as one example. For comparison, theE×B drift velocity given by the first term
of Eq. (6) with the observed potential profile is shown in Fig.7(b). In evaluating theF×Bdrift,
we used the charge-exchange cross section given by Chanin,[21] and three different curves
correspondingTe/Tn = 10, 20, 50 are depicted. Although there remains a certain ambiguity,
Fig. 7(a) shows a fairly good agreement between the experimental observation and theF × B
drift due to the density gradient of neutrals. It is emphasized that theE × B drift velocity
determined by the potential profile is opposite in direction[Fig. 7(b)].

In the low pressure operations, however, the neutral particle depression and thus the steep
density gradient were not generated. The observed azimuthal velocity in this case well agrees
with that determined by theE × B drift,[13] which is shown in Fig. 8. It is interesting to note
that the central region very weakly rotates compared with the peripheral region, and there is
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Figure 7. Comparison between the azimuthal ion velocity measured with a DLP (bold solid
line) and (a) theF × B drift velocity due to the neutral density gradient (�,©, ♦), and (b) the
E× B drift velocity determined from the potential profile (�). Note that the direction ofE× B
drift is opposite to the observed direction of rotation. In Fig. 7(a), the drift velocities for three
different neutral temperatures are plotted (� : Te/Tn = 10,© : Te/Tn = 20, ♦ : Te/Tn = 50).

a shear between the two regions (r = 4− 5 cm), the position of which roughly coincides with
that of the center of satellite vortex (see Fig. 4 and 5).

We can conclude that the anti-E × B rotation is attributable to the effective force
originated from the density gradient in neutrals. The critical condition that the effective force
overcomes the electrostatic force may be given byeniE ≃ νinMniDeff∇ lognn. Introducing
E ∼ φ/a (a: plasma radius) and∇ lognn ∼ lcx

−1 (lcx: mean free path of charge-
exchange collision), and using the appropriate values for other quantities, we havelcx/a ∼
(eφ/Te)−1(σin/σnn)

√
Tn/Te ≃ 0.6 − 1.4, whereDeff = 5Dc is assumed. Experimentally, the

pressure range of the transition to the tripolar vortex is 0.7−1.3×10−2 Torr, which corresponds
to lcx/a ∼ 2− 3, showing a rough agreement with the above estimation.
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Figure 8. Comparison between the azimuthal ion velocity measured with a DLP (bold solid
line) and theE × B drift velocity (�) for the low pressure case (6.7× 10−3 Torr).

5. Conclusion

A tripolar vortex has been observed in a magnetized plasma for the first time. The tripolar
vortex coexists with a deep density hole of neutrals, and therotation direction is opposite to
that of theE × B drift. When a steep density gradient of neutrals is present,a net momentum
transfer may take place through the charge-exchange interaction, producing an effective force
acting on the ion fluids. Our experiment shows that this effective force may overcome the
radial electric field, and generates an anti-E × B rotation. Since the existence of neutrals
usually brings a dissipation term into the equation of motion, it is of importance to note that
the existence of neutrals may qualitatively change the dynamical behavior of ions. The present
result will be important in considering plasma behavior in partially ionized plasmas such as
ionospheric plasmas and surface plasmas in confined systems.
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