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Abstract. The neoclassical transport theory is applied to calculate electron cyclotron

current drive (ECCD) efficiency in an axisymmetric tokamak in the low-collisionality

regime. The tokamak ordering is used to obtain a system of equations that describe the

dynamics of the plasma where the nonlinear ponderomotive (PM) force due to high-

power RF waves is included. The PM force is produced around an electron cyclotron

resonant surface at a specific poloidal location. The ECCD efficiency is analyzed in the

cases of first and second harmonics (for different impinging angles of the RF waves) and

it is validated using experimental parameter values from TCV and T-10 tokamaks. The

results are in agreement with those obtained by means of Green’s function techniques.

PACS numbers: 52.55.Wq, 52.35.Mw, 52.40.Db
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1. Introduction

Electron cyclotron waves can efficiently drive a localized non-inductive current in

toroidal devices for a number of applications. The main of these are found in the

neoclassical tearing mode control [1], the fully non-inductive current drive in tokamaks

[2, 3] and the bootstrap current compensation in stellerators [4]. ECCD results from the

sensitive heating of electrons travelling in one direction in order to decrease their collision

frequency, and thus enhance their contribution to the toroidal current, compared to their

unheated counterparts moving in the opposite direction [5]. For an off-axis current drive,

this current drive mechanism is offset by the mirror trapping of electrons in toroidal

geometries that drives current in the reverse direction [6]. The ECCD efficiency is usually

calculated through a bounce-averaged quasilinear Fokker-Planck treatment [7, 8].

Electron cyclotron (EC) waves have recently attracted a great interest. Such

waves exhibit the very important property of being able to be excited at a localized

particular magnetic surface. This mechanism considers the introduction of EC waves

at a minimum of the magnetic field, where the resonance condition υzr = (ω − ωBe) /kz
holds. Many tokamak experiments have reported that the ECCD efficiency decreases as

the power deposition location is moved away from the plasma center, either by varying

the magnetic field strength [9] or by changing the poloidal steering of the ECCD launcher

[10].

In the low power limit, the ECCD can be calculated from the relativistic, linearized

Fokker-Planck equation using ray tracing codes [11]. If the effects of the radiofrequency

(RF) quasilinear diffusion and the parallel electric field are included, the bounce-

averaged, quasilinear Fokker-Planck codes can be used [12]. However, the nonlinearities

associated to high power effects are not considered. In the present paper we analyze the

ECCD efficiency in an axisymmetric tokamak, in the low collisionallity regime within

the neoclassical transport theory. The ECCD is calculated including a ponderomotive

force F . The tokamak ordering is used to obtain a system of equations that describe

the dynamics of the plasma where the nonlinear ponderomotive (PM) force due to high-

power RF waves is included. The PM force is produced around an electron cyclotron

resonant surface at a specific poloidal location. The ECCD efficiency is analyzed in

the cases of the first and second harmonics (for different impinging angles of the RF

waves) and it is validated using experimental parameter values from TCV and T-10

tokamaks. The results obtained are in agreement with those delivered by the linearized

Fokker-Planck equation.

2. Basic equations.

Let us assume a plasma which contains only charged and neutral particles in a toroidal

axysimmetric magnetic field. The hydrodynamic description of the plasma is taken in

the neoclassical fluid approximation. In this approach, the continuity equation for the
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averaging quantities respecting the RF field becomes

∂nα
∂t

+ ∇ · (ηαUα) = Snα, (1)

where Snα is the source term obeying the condition

∑

α

qαSnα =
∑

α

qα

∫ (
∂fα
∂t

)

s0

dv = 0. (2)

where Snα =
∫

(∂fα/∂t)s dv. For the moment equation, we have

mα
∂ (nαUα)

∂t
= −∇ · P̂α −mα∇ · (nαUαUα) + R

(α)
c0 + R

(α)
s0

+ qα

[
nαE0 +

1

c
nαUα × B0

]
+ Fvα −∇ · π̂α, (3)

The subindex α refers to the particle species; mα, nα, and Uα are the mass, electric

charge, the density of particles and the velocity of the fluid, respectively. Fα is the

ponderomotive force, πα is the viscosity tensor and, finally, pα is the pressure defined

by pα = nαTα, where Tα is the plasma temperature. On the other hand,

R
(α)
c0 = mα

∫ (
∂fα
∂t

)

c0

dυ; (4)

R
(α)
s0 = mα

∫ (
∂fα
∂t

)

s0

dυ, (5)

is the force of friction between the particles of species α with neutrals.

The system of equations (1) and (3) must be completed with the Maxwell equations

for the averaging quantities

∇ · E = 4πqαnα0,

∇× E = −1

c

∂B

∂t
,

∇ · B = 0,

∇× B =
1

c

∂E

∂t
+

4π

c
qαnα0Uα.

(6)

By using an standard expansion with respect to the ratio of the gyroradius and the

characteristic length, it follows that

ε =
ρLα
L
,

where ρLα is the Larmor radius and L is the characteristic length [13].

3. Equations of zeroth and firsth orders.

The system of equations (1)-(3) is reduced, to zero-th order terms, to

∇ · nα0Uα0 = 0, (7)

∇ · P̂α = qα

[
nα0E0 +

1

c
nα0Uα0 ×B0

]
, (8)
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and the Maxwell equations become

∇ · E0 = 0,

∇× E0 = 0,

∇ · B0 = 0,

∇× B0 =
4π

c
Jα0.

(9)

Here, we obtain that E0 = −∇Φ0

In this case, the solution of the system (7)-(8) has the form

Uψ
α = 0, (10)

Uθ
α =

c

B2
0

[
∂Φ0

∂ψ
+

1

qαnα0

∂pα
∂ψ

]
B0θB

θ
0

JBζ
0

+ λ (ψ)Bθ
0 , (11)

U ζ
α = − c

B2
0

[
∂Φ0

∂ψ
+

1

qαnα0

∂pα
∂ψ

]
B0ζB

ζ
0

JBθ
0

+ λ (ψ)Bζ
0 . (12)

where we have introduced the toroidal flux coordinates (ψ, θ, ζ). Within this coordinate

system, the contravariant forms of the magnetic field and of the fluid velocity for an

axisymmetric tokamak are written as

B0 = I (ψ)∇ζ + ∇ζ ×∇ψ,
Uα = Uθ

αeθ + U ζ
αeζ ,

(13)

where nα0 = cte and the function λ (ψ) is unknown.

Considering the inequality B0ζB
ζ
0 ≫ B0θB

θ
0 and B2

0 ≃ B0ζB
ζ
0 we reduce the

equations (11) and (12) to the form

Uθ
α = λ (ψ)Bθ

0 ; (14)

U ζ
α = − c

JBθ
0

[
∂Φ0

∂ψ
+

1

qαnα0

∂pα
∂ψ

]

+ λ (ψ)Bζ
0 . (15)

which are the zero-th order velocity equations. The corresponding toroidal current

density is calculated from the relationship

jζ ≡ qαnαU
ζ
α

= −cqαnα
JBθ

0

[
∂Φ0

∂ψ
+

1

qαnα0

∂pα
∂ψ

]

+ qαnαλ (ψ)Bζ
0 . (16)

Equations (1)-(3) containing terms to first order. Ignoring the source term they

become
∂nα0

∂t
+ ∇ · (nα0Uα) = 0, (17)

mα
∂ (nα0Uα)

∂t
= −∇pα −∇ · π̂α −mα∇ · (nα0UαUα) + R(α.n)

α

+ qα

[
nα0E0 +

1

c
nα0Uα ×B0

]
+ Fα, (18)

where P̂α = pα + π̂α, pα is the scalar pressure, π̂α is the viscosity tensor, R(α.n)
α =

R
(α)
c0 + R

(α)
s0 is the friction force from the particles of species α with neutrals and

Fα = Fvα − ∇ · π̂α is the average ponderomotive force associated with the RF field

acting on the particles.
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4. Steady state equations.

In a steady state, the above system of equations can be written in the form

∇ · (ηα0Uα) = 0, (19)

mα∇ · (ηα0UαUα) = −∇pα −∇ · π̂α + R(α..n)
α

+ qα

[
nα0E0 +

1

c
nα0Uα × B0

]
+ Fα, (20)

where the ζ component of the velocity becomes

U ζ
α = − c

B2
0

(
∂Φ0

∂ψ
+

1

qαnα0

∂pα
∂ψ

)
B0ζB

ζ
0

JBθ
0

+
Bζ

0

µ0 · B0

{〈B0 · Fα〉 − k

− c

B2
0

(
∂Φ0

∂ψ
+

1

qαnα0

∂pα
∂ψ

)[
µθB0θB

θ
0

JBζ
0

− µζB0ζB
ζ
0

JBθ
0

]}

, (21)

where µθ and µζ are the poloidal and toroidal coefficients of viscosity, respectively. In

the limit B0θB
θ
0 << B0ζB

ζ
0 and B2

0 ≈ B0ζB
ζ
0 , the toroidal current density is reduced to

j(ζ) = −cnαqα
JBθ

0

[
∂Φ0

∂ψ
+

1

qαnα0

∂pα
∂ψ

]

+
nαqαB

ζ
0

(µ0 · B0) +mαnα0vαn 〈B2
0〉

{〈B0 · Fα〉 − k

+
cµζ
JBθ

0

[
∂Φ0

∂ψ
+

1

qαnα0

∂pα
∂ψ

]

+mαnα0vαn
c 〈B0ζ〉
JBθ

0

[
∂Φ0

∂ψ
+

1

qαnα0

∂pα
∂ψ

]}

, (22)

and

λ (ψ) =
1

(µ0 · B0) +mαηα0vαn 〈B2
0〉

{

〈B0 · Fα〉 − k +
cµζ
JBθ

0

[
∂Φ0

∂ψ
+

1

qαηα0

∂pα
∂ψ

]

+ mαηα0vαn
c 〈B0ζ〉
JBθ

0

[
∂Φ0

∂ψ
+

1

qαηα0

∂pα
∂ψ

]}

. (23)

5. The ponderomotive force.

The RF ponderomotive force has several representations according to its functionality

with respect to time. In this work, we chose the following expression of the time averaged

ponderomotive force [14]

Fα =
1

2
Re

{
i

ω
∇E∗ · jα −∇ ·

[

jα

(
i

ω
E∗ +

4πj∗α
ω2
pα

)]}

, (24)

where ω is the frequency of the RF wave, jα is the current density of particles of species

α induced by the RF field E and ω2
pα = 4πnαq

2
α/mα is the plasma frequency of particles

of species α.

Given the Ohm’s law, we assume the conductivity tensor σjk, which depends on

the assumed characteristic frequency. The ponderomotive force is introduced thanks to

a system of orthogonal coordinates (e1, e2, e3) with the components of the conductivity

tensor in the form

σ11 = σ22 =
iω

4π

υ

1 − u
; σ12 = −σ21 = − ω

4π

√
uυ

1 − u
, (25)
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Table 1. TCV tokamak data for the first and second harmonics.

B0 ne a R0 P Te q

(gauss) (cm−3) (cm) (cm) (MW) (KeV)

1th harmonic 1.43 × 104 1.75 × 1013 25.0 88.0 1.0 3.5 10

2nd harmonic 1.43 × 104 1.75 × 1013 25.0 88.0 1.0 3.5 10

Table 2. T-10 tokamak data for the first and second harmonics.

B0 ne a R0 P Te q

(gauss) (cm−3) (cm) (cm) (MW) (KeV)

1th harmonic 2.78 × 104 0.54 × 1013 38.7 1.5 × 102 0.75 6.3 9

2nd harmonic 2.47 × 104 0.54 × 1013 38.7 1.5 × 102 0.45 3.8 9

where υ = ω2
pe/ω

2, u = Ω2/ω2 and Ω = eB/mec. Here, we have considered the case of

an extraordinary wave (E1, E2, 0).

Thus, the corresponding components of the ponderomotive force take the form

Fα1 =
1

8π

υImk1

(1 − u)
(1 + u) |E|2 , (26)

Fα2 =
1

8π

υImk2

(1 − u)2 (1 + u) |E|2 . (27)

Now, by calculating the average value 〈B0 · Fα〉 assuming that

B0 = Bθ
0 êθ +Bζ

0 êζ ,

Fα = Fαψ êψ+F αθêθ,
(28)

and the equation,

B0 · Fα = FαθB
θ
0 , (29)

and finally substituting (26)-(28) in (29) and averaging, we obtain

〈B0 · Fα〉 =
B0Imk2

16π2qR0

[
υ

(1 − u)2

(
(1 + u) |E|2 + 4

√
uIm (E1E

∗

2)
)]

,

where it has been considered that

∂2
uυ

(1 − u)2 = ∂2

√
uυ (1 + u)

(1 − u)2
= 0,

and the Hamada coordinates [19] have been used.

Finally, neglecting the attenuation of the RF wave, we obtain

〈B0 · Fα〉 =
B0Imk2

16π2qR0

υ (1 + u)

(1 − u)2
|E|2 , (30)

while the current density related to the ponderomotive force, from (22), assuming the

steady state, becomes

jζ(p)α ≡ 〈J〉 ≈ nαqαk
′′

2 |E|2
32π3qR2

0mαnα0ναn

v(1 + u)

(1 − u)2

(
1 +

3

2
ε
)
. (31)
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6. Analysis of results.

In order to examine the expression for the current density (31) associated with the

ponderomotive force, we adopt the criteria that the deposited energy by the RF wave

has to be bigger that the internal enegy (E2 > NT ) so to include the nonlinear effects.

This condition is satisfied on Tokamaks TCV ad T-10, where an analysis reported in

[15, 16] shows that E2 ∼ 5.75689 × 1013 > NT = 98122.5 and E2 ∼ 3.37737 × 1013 >

NT = 54500.5 in these tokamaks, respectively. Such results indicate that the effect of

the nonlinear ponderomotive force is highly important in determining the energy density

introduced by the RF wave. We will consider a flux cylinder with a radius equal to the

Larmor radius so to calculate this energy.

The corresponding data for the TCV and T-10 Tokamaks are summarized in Table 1

and Table 2 [15, 16], respectively. In both reports, the first and second harmonics of

the EC waves were used provided that the introduction of the RF wave took place at

the high magnetic field (HF) side.

The power associated to the amplitude of the electric field follows from

|E|2 =
2P

ωε0
, (32)

where P is the power of the wave per time unit and ε0 is the permittivity in vacuum,

assumed to be a constant.

For the imaginary part of the permittivity, ℑk2 = k
′′

2 , we use the expression reported

in [17]. In the case of the first harmonic, one has that

k
′′

2

k2
=

2
√
π

75
β2
T (2 − q) z3/2e−z

[
qz2

14
+

(5/2 − q)2

q |F |2
]

, (33)

where

F (z) =
3

4

[
1

2
+ z +

√
πz

√
−ze−z

(
Φ
(√

−z
)
− 1

)]
, (34)

Here, Φ (x) is the error function, βT = υTe
/c is the ratio of the thermal velocity to the

light velocity in vacuum, and z = 2 (Ω − ω) /Ωβ2
T .

Analogously, for the second harmonic, we have

k
′′

2

k2
=

22

2(5!)

√
πq (1 + Γ1)

2 z3/2e−z, (35)

where

(1 + Γ1) =
22 − 1 − q (1 − 1/2)

22 − 1 − q
.

The viscosity is neglected while the collision frequency between electrons and

neutrals was taken in the form

νen = τ−1
e =

(
3.5 × 104T 3/2/ne

)
−1
. (36)

It is important to notice that the current density is highly unstable and it depends

strongly on the Ω2/ω2 relationship. However, it is possible to find an interval where
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the current density stabilizes and, furthermore, its values reproduce those experimental

ones reported in [15, 16], as can be observed in figure 1 and figure 3.

From figure 2 and figure 4, we observe a process in which the Fish and Ohkawa

mechanisms weaken each other, as reported in [7]. The general behavior is in good

agreement with that described in [8, 18], considering that their calculation was obtained

from the linearized Fokker-Planck equation.

Here, the density profile has been modelled as a parabolic one in order to analyze

the current, ne = n0e

(
1 − 2

3

(
r
a

))2
, where a is the Tokamak minor radius.

It can be noticed in figure 5 that, to first order terms in the parameter ǫ, the driven

current density increases with the radius.

7. Conclusions.

The development of a driven current density expression that takes into account the

ponderomotive force created by EC waves, has required the use of the neoclassical

transport equations up to first order terms with respect to the parameter ε = ρ/L at a

steady state.

The driven current density has been initially obtained in a system of toroidal flux

coordinates. That description of the current density is transformed in terms of the

Hamada coordinates [19] which is necessary for its validation with experimental results.

Thus, the expression for the ponderomotive force reported in [14], is written in a local

system of orthogonal coordinates (e1, e2, e3), where e3 is parallel to the toroidal magnetic

field.

The driven current density generated by an extraordinary wave at the cyclotron

resonance of electrons, is analyzed as a function of the Ω2/ω2 ratio. This is accomplished

by using the parameters of the TCV and T-10 Tokamaks at the first and second

harmonics, assuming that the introduction of the wave takes place at the HF side.

From this results, we have obtained an interval of frequencies, in agreement with the

experiments, where the current shows a stable behavior.

In the particular case of a parabolic profile, it has been shown that the ECCD

increases with the radius, at first approximation. Finally, it is important to notice that,

according to [17], the efficiency is higher for the second harmonic as it is shown in

figure 5.
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Figure captions

Figure 1. Current efficiency plotted against Ω2/ω2 for the first harmonic with

parametric values from the tokamaks a) T-10 with f = 140/1.06 Ghz (solid) and

f = 140/1.12 Ghz (dashed), and b) TCV with f = 82.7/1.484 Ghz (solid) and

f = 82.7/1.5 Ghz (dashed)

Figure 2. Current efficiency plotted against ε for the first harmonic with values taken

by parameters of the tokamaks a) T-10 with r = 0.0 cm (solid) and r = 88 cm (dashed),

and b) TCV with r = 0.0 cm (solid) and r = 88 cm (dashed).

Figure 3. Current efficiency plotted against Ω2/ω2 for the second harmonic with

parameters from the tokamaks a) T-10 with f = 140 × 0.7 Ghz (solid) and f =

140 × 0.715 Ghz (dashed) and b) TCV with f = 82.7 × 1.331 Ghz (solid) and

f = 82.7 × 1.339 Ghz (dashed).

Figure 4. Current efficiency plotted against ε for the second harmonic with parameter

values from the tokamaks a) T-10 with r = 0.0 cm (solid) and r = 88 cm (dashed),

and b) TCV with r = 0.0 cm (solid) and r = 88 cm (dashed).

Figure 5. Current efficiency plotted against the minor radius r for the second

harmonic with parameters from the tokamaks a) T-10 and b) TCV.


