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Abstract

Optimal two-dimensional (2D), three-dimensional (3D) wave launching configurations are pro-

posed for enhanced acceleration of charged particles in magnetized plasmas. A primary wave

is launched obliquely with respect to the magnetic field and a secondary, low amplitude, wave is

launched perpendicularly. The effect of both the launching angle of the primary wave, and the pres-

ence of the secondary wave is investigated. Theoretical predictions of the highest performances

of the three-dimensional (3D) configurations are proposed using a Resonance Moments Method

(RMM) based on estimates for the moments of the velocity distribution function calculated inside

the resonance layers (RL). They suggest the existence of an optimal angle corresponding to non

parallel launching. Direct statistical simulations show that it is possible to rise the mean electron

velocity up to the order of magnitude as compared to the primary wave launching alone. It is a quite

promising result because the amplitude of the secondary wave is ten times lower the one of the first

wave. The parameters used are related to magnetic plasma fusion experiments in electron cyclotron

resonance heating and electron acceleration in planetary ionospheres and magnetospheres.

PACS numbers: 52.35.Mw, 94.20.Rr, 94.30.Hn, 52.25.Xz
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Electron acceleration due to external radio frequency waves in a strong magnetic field has

long been recognized as an important effect in a wide variety of problems ranging from plasma

heating and current drive in fusion devices [1, 2, 3, 4] to electron acceleration in the Earth’s

radiation belts during geomagnetic storms [5, 19], active ionospheric and magnetospheric

probing [6, 18].

It is well known that wave-particle interactions are most efficient when the particles are

in resonance with the waves. The resonance conditions

k‖v‖ − ω =
NΩ

γ
(1)

define some regions ’of sensitivity’ in wave-particle parameter space which can be described

as Resonant Layers (RL). Here, N is the harmonic number, ω = 2πf is the wave frequency,

k‖ and v‖ are the components of the wave vector and the electron velocity parallel to the

constant magnetic field B0, γ = (1−v2/c2)−1/2 is the relativistic factor and Ω = eB0/me the

gyro-frequency. This view allows to develop significantly previous simulations of charged par-

ticle fluxes and plasma disturbances in ambient magnetic field in [11, 12, 13, 14, 15]. There

is a special case when electrons permanently staying in the RL (1). Such a phenomenon has

been referred to as autoresonance [20, 21, 22] and its conditions are known as the cyclotron

auto-resonance maser (CARM) conditions [23]. Several mechanisms have been explored

for maintaining the synchronization between electrons and waves not fully satisfying these

CARM conditions such as changing the profile of the guide magnetic field or varying the

wave phase velocity [24, 25]. Recently, the use of two parallel counter-propagating waves has

been considered [26, 27]. Numerical tests [28] have shown that the two-wave scheme may

lead to higher averaged parallel velocity. The stochastic acceleration mechanism for elec-

trons in a plane monochromatic electromagnetic wave propagating obliquely to the external

magnetic field has also been studied [29, 31, 32]. It was found that it is easier to accelerate

electrons to high energies with increasing propagation angle when the electron motion be-

comes stochastic and the parallel phase velocity of wave is supraluminous (n‖ = k‖c/ω < 1).

Furthermore, Karimabadi and Angelopoulos[33] studied the interaction of charged particles

with a packet of obliquely propagating plane monochromatic electromagnetic waves under

the special condition (of equal ni cos θi for all the waves, where for the i-wave ni - refraction

index, θi - the propagation angle). This condition allowed the system to be reduced to

two degrees of freedom and the particles can be accelerated through a process of Arnol’d
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diffusion [34] in two dimensions.

The majority of the existing works are based on the description of a single particle

dynamics in one (or more but under condition of equal ni cos θi) plane monochromatic radio

frequency waves.

The coherent acceleration of nonrelativistic ions interacting with two and more elec-

trostatic waves in a uniform magnetic field has been studied by [8], recently by [7], as a

generalization of analysis of [9, 10] by including wavenumbers along the external magnetic

field.

In this paper, a mechanism is discussed for the acceleration of electron populations re-

sulting from the effect of crossing electromagnetic waves propagating in a dispersive medium

according to the geometry represented in Figure 1 (the condition of equal ni cos θi for the

two waves is thus clearly broken). To analyze this mechanism, the resonance moments (RM)

of the distribution, i.e. velocity moments computed in the RL only, are evaluated. The first

order RM suggests that a peculiar θ results in a maximal averaged parallel flux. Although

the RM approach has to be considered as an approximation, this prediction is reasonably

confirmed by direct statistical simulations. Moreover, the two-wave scheme allows to rise

the mean electron velocity up to one order of magnitude when compared to the one-wave

scheme, based on the primary wave only.

FIG. 1: Schematic picture of the electro-magnetic configuration.

The electromagnetic configuration that is considered (Figure 1) is the combination of a

strong magnetic field (assumed to be along the z direction), a primary wave propagating
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obliquely with respect to the magnetic field and a secondary wave propagating perpendicu-

larly to the magnetic field. As a first step, to simplify direct particle simulations both the

primary and the secondary waves are assumed to be in the plane (x, z). This simplification

can give not so impressive effect as compared to 3D launching. Nevertheless, it will give

a first estimate of the secondary wave effect and motivation to develop more realistic 3D

launching code that will be closer to real experimental setups.

This electromagnetic configuration is not an attempt to satisfy the resonance condi-

tion during a long time being close to the cyclotron auto-resonance maser (CARM) condi-

tions [23]. Rather, a large population of electrons is considered and only the average effect

of the waves on the population is considered. The fraction of electrons that are close to

the condition (1), that corresponds to a resonance layer (RL) in the velocity space, becomes

then as important as the time these electrons remain resonant. The secondary wave does not

carry any parallel momentum and cannot induce any net parallel motion of the electrons.

The purpose of this secondary wave is to maintain a pseudo-equilibrium velocity distribution

in which the RL is continuously re-filled. Indeed, the combined effect of the two-waves and

the magnetic field yields a stochastic motion during which the synchronization between the

waves and the gyro-motion of the electron is, on average, more favorable for transferring

momentum to the electrons.

The description of the electron trajectory (r,p) requires a relativistic treatment and is

derived from the time dependent Hamiltonian:

H =
√

m2c4 + c2(p + eA)2 , (2)

and the trajectories of the electrons are determined by the initial conditions and by the

Hamilton equations. This picture corresponds to a test-electron in an external electromag-

netic field. Assuming that the electrons interact with two monochromatic waves propagating

in cold plasma at angles θ1 and θ2 with respect to the guide magnetic field, the total vector

potential can be written as follows:

A = B0 x ey +
A1

2
ei(k1.r−ω1t) (cosψ1ey − i sinψ1e1)

+
A2

2
ei(k2.r−ω2t) (cosψ2ey − i sinψ2e2) + c.c. , (3)

where e1 and e2 are two unit vectors in the plane (x− z). These vectors, as well as the an-

gles ψ1 and ψ2 and the refraction indices n1 = ‖k1‖c/ω1 and n2 = ‖k2‖c/ω2, are determined
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by the Appleton-Hartree dispersion relation in the cold homogeneous plasma approxima-

tion [35]. Collisions with other particles, electrons or ions, are neglected. The dynamics of

the electrons in the electromagnetic configuration (3) is chaotic and unpredictable analyti-

cally in general. Electrons with slightly different initial position and velocity may experience

drastically different evolutions. The exact analytical prediction of the average effect of the

waves is thus out of reach. It is however possible to anticipate the existence of a RL (1)

in the velocity space to estimate the possible net effect of the waves by computing the RM

defined by:

Ig =

∫

v∈ res. layer

dv f(v) g(v) (4)

for any function g of the velocity. It represents the density of electrons close to the RL for g =

1 and the mean parallel flux of the electrons on the layer for g = v‖. These quantities should

give some estimate on the efficiency of the electron-wave interaction. The RL corresponds to

an ellipse in the velocity space and the integral I can be evaluated analytically using elliptical

coordinates. For instance, assuming a Maxwellian distribution, f(v) = C exp (−βv2), the

evaluation of I for g = v‖, which will be denoted I∗ can be done explicitly. This quantity

corresponds to the averaged parallel flux of the particles that belongs to the RL. It is,

at least indirectly, related to the net averaged parallel current produced by the electron-

wave interactions. Indeed, these interactions tend to remove electrons from the RL while

the pseudo thermalization of the electrons due to the combined effect of the two waves is to

refill constantly the layer. The thermalization is thus expected to add a net averaged parallel

velocity proportional to I∗. Of course, I∗ gives only a rough indication of the efficiency of

electron-wave interactions and the final averaged velocity cannot be deduced directly from

it. The exact expression for I∗ is quite long. It is thus more illustrative to present the

Figure 2 in which I∗ is a function of θ1, the angle of the primary wave. The dimensionless

wave amplitudes and the quadratic plasma frequency are defined by A1,2 = A1,2Ω/cB0,

e0 = (ωpe/Ω)2. The other parameters correspond to the values used in the simulations

described below.

As expected, for perpendicular propagation θ1 = 90◦, no averaged parallel flux is observed.

For two sets of parameters, there is a clear maximum of the averaged parallel flux of the

particles in the RL for θ1 6= 0◦. The explanation for such a phenomenon is that the averaged

parallel velocity induced by the electron-wave interaction depends on both the angle of

propagation of the primary wave and the number of electrons that are close to the RL.
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FIG. 2: Averaged parallel flux of particles in the RL in arbitrary units for a Maxwellian distribution

for increasing densities, e0 = 0.3 solid line, e0 = 0.6 dashed line and e0 = 1.99 dotted line.

0 20 40 60 80

0.1 

0.2 

0.3 

0.4 

θ
1

FIG. 3: Averaged electron velocity versus θ1 (in degrees) for the one-wave scheme with A1 = 0.1,

A2 = 0 (dotted lines) and the two-wave-scheme with A1 = 0.1, A2 = 0.01 (solid lines) at time

Ω t = 7000, for low-density runs e0 = 0.3.

Smaller angles of propagation correspond to higher parallel momentum carried on by the

wave. However, the RL condition is compatible with larger numbers of electrons for higher

angles of propagation (at least assuming a Maxwellian distribution). It should be noted that

here I∗ has been computed using only the fundamental N = 1 RL. Contributions from the
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higher harmonic layers decrease rapidly because these layers are more and more symmetric

and because the absolute value of the resonant velocity increases towards high values for

which the electron density is very small.

FIG. 4: Final probability distribution of the parallel velocity for θ = 15◦ and A1 = 0.1 for the

one-wave scheme with A2 = 0 (top) and the two-wave-scheme with A2 = 0.01 (bottom). The solid

lines (e0 = 0.3), dashed lines (e0 = 0.6) and dotted lines (e0 = 1.99) correspond to increasing

densities.

The Hamiltonian equations for the r and p are solved using a 4th order Runge-Kutta

method. The time step is adapted to ensure that the solution of a redundant evolution

equation for H remains close to the expression (2). The initial velocity distribution has a

temperature of the order of 1 keV. A population of 5 104 electrons is used in each simulation.

Although running the code with larger populations is not an issue, no further information

is derived from these larger runs, except of course more converged statistics.
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Numerical results confirm that the angle dependency is not trivial and that parallel prop-

agation (θ1 = 0◦) for the primary wave is not always optimal [29]. Three sets of simulations

are presented hereafter. The parameters for these simulations are relevant in today toka-

mak plasma. In particular, the primary wave corresponds to the second harmonic of the

cyclotron frequency and the secondary wave to the third harmonic Right Hand Polarized

modes which are frequently used for instance in the TCV tokamak experiments [36]. The

value of the constant magnetic field is 1.42 T for all simulations. Three electron densities

have been considered: ne ≈ 0.6 1019 m−3 (e0 = 0.3), ne ≈ 1.2 1019 m−3 (e0 = 0.6) and

ne ≈ 3.9 1019 m−3 (e0 = 1.99). The wave amplitudes are A1 = 0.1 and A2 = 0.01 in the

two-wave scheme and A2 = 0 in the one-wave scheme. They correspond to power fluxes

which are by orders of magnitude higher than that achievable on gyrotron used in today

tokamak. However, preliminary computations using the Resonant Moment Method suggest

three-dimensional electromagnetic wave configurations are very promising for larger accel-

eration of charged particles in an external magnetic field with even lower wave amplitudes.

In such a case the wave vectors and the magnetic field are not supposed to be co-planar and

create a fully three dimensional system. On the other side, the required powers might be

achievable by free electron maser [37] even for experiments with 2D launch configuration as

predicted by our direct particle simulations.

Also, the parameters e0 = (ωpe/Ω)2 = 0.1 − 0.3, correspond to the nighttime ionosphere

at approximately 130km, A=0.1 - to a power flux 5W/cm2, and a frequency 2.6MHz of the

primary wave. These parameters are close to ones considered in [29, 30] for single wave

acceleration.

Figures 3 show a significant increase of the average parallel velocity for e0 = 0.3 due to

the secondary wave. Moreover, the angle dependency of the average parallel velocity appears

to be maximal in the range θ1 = 10◦ − 60◦. This range thus appears to significantly differ

from the privileged value of the RM I∗ (Fig.2). This is not too surprising since the RM

have been computed assuming a Maxwellian distribution with zero mean. Thus, although

the global picture from the RM description is reasonable, a more precise iterative approach,

taking into account the averaged velocity suggested by the RM would be required for more

accurate predictions. The probability distributions of parallel velocity (Figures 4) observed

at the end of the simulations Ω t = 2 104 indicate that, in the two-wave scheme a much

larger number of electrons have had the occasion to interact with the primary wave and
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the distributions of velocity exhibit two well marked maxima. For e0 = 1.99, the density is

very close to the cut-off value of the wave propagation and almost no effect is observed in

both the one-wave and the two-wave scheme. Also, if A1 is too small, no averaged parallel

velocity is observed at all. Preliminary tests seem to reproduce the threshold previously

observed [23, 32].

This paper presents a mechanism for enhancing acceleration of a population of electrons

using crossing electromagnetic waves propagating at different angles with respect to an

external magnetic field in a dispersive medium. The existence of optimal angles of prop-

agation for the primary wave is suggested using the evaluation of resonant moments and

is confirmed by direct numerical simulations of the electron trajectories. A secondary low

amplitude perpendicular wave is used to induce a stochastization of the electron trajectories

and, consequently, to maintain a pseudo-equilibrium. Although measures of the distribu-

tions (Figures 4) clearly show a departure from a thermal equilibrium, the stochastization

effect of the secondary wave yields a clear increase of the average parallel electron velocity.

It is a quite promising result since the amplitude of the secondary wave is ten times lower

the one of the first wave.
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