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1 Introduction

We present a solution of the ”plasma equation” (i.e., the quasi-neutrality condition)

valid in a time-independent plasma presheath in front of a solid material wall, which

can be at any negative electric potential with respect to the unperturbed plasma. The

plasma is composed of collisionless electrons and singly charged positive ions. The ve-

locity distribution of the electrons is assumed to be a truncated Maxwellian due to

the fact that they are partly absorbed by the wall. This assumption apparently yields

a more realistic dependence of the electron density on the electric potential than the

Boltzmann equilibrium factor, which is often used in various kinetic and fluid models of

boundary plasmas. The ion velocity distribution is calculated as a function of the poten-

tial drop in the plasma presheath. Models of the plasma-wall transition are customarily

based on the approximate two-scale analysis in which the perturbed boundary plasma

is divided into a non-neutral plasma sheath at the wall and an adjacent quasi-neutral

plasma presheath, where Poisson’s equation is replaced with the plasma equation. In

our model we follow the methodology first applied by Tonks and Langmuir [1] and fur-

ther elaborated for various cases of boundary plasmas during the previous century (see,

e.g., [2] and references therein). While the plasma sheath has already been treated with

analyses similar to ours (e.g., by Andrews and Varey [3]), our present work represents

the first treatment of this kind for the quasi-neutral plasma presheath. The results for

the moments of the ion velocity distribution obtained in our study can be applied, e.g.,

in the expressions for boundary conditions of the above-mentioned fluid models and

related computer codes.

2 Origin of truncated Maxwellian velocity distributions

The Tonks-Langmuir model is based on the approximation that the electron density ne in

the quasineutral region follows the Boltzmann profile ne(Φ) = ne,0exp(eΦ/kT e), where



ne,0 is the density at the plane of symetry of the discharge, Φ(x) is the plasma potential

(satisfying the boundary condition Φ(0) = 0 and monotonically decreasing towards the

wall), T e is the electron temperature, e is elementary charge, and k is the Boltzmann

constant. In this model, all parameters in the quasineutral region are independent of

the details of the physical boundary, with the only qualitative requirement that the

boundary potential is approximately negative infinite with respect to the plasma.

In the present work, however, we suppose that the electron density follows a mod-

ified Boltzmann profile which can be obtained from the truncated Maxwellian velocity

distribution reflecting the fact that the electrons are partly absorbed by an electrically

biased conductive surface, generally called “electrode”. Our theoretical model is based

on the assumptin of small electrodes i.e., plasma probes, such that all effects of their

presence in the plasma on the plasma parameters (plasma potential and velocity dis-

tributions) are strictly limited to a region of influence which is much smaller than the

total region occupied by the plasma. Outside this region of influence any effect to

the plasma parameters should be considered as unmeasurable for practical purposes.

Under this condition it is possible to extract from the probe current-voltage character-

istics the “exact” unperturbed plasma potential and electron velocity distribution in

the unperturbed region. If, however, the region of electrode influence is so large that

it cannot be distinguished from the overall unperturbed plasma region, one is faced

with a complex situation where the whole system should be understood, modelled and

solved self-consistently as has been done e.g., in [4] in 0D geometry approximation for

an arbitrary three-dimensional plasma-wall-electrode system.

The generic formula in probe theory defining the plasma density inside the whole

region of the probe influence is (e.g., Swifts and Schwar [5])

ne(x) =
ne,0

2
exp

(

−e|Φ(x)|
kT e

)

[

1 + erf
√

e|V0 − Φ(x)|/kT e
]

(1)

where the reference potential Φ(0) is chosen at the “infinitely distant” point, i.e., in the

unperturbed plasma and V0 is the probe voltage (defined with respect to the reference

potential).

The region of influence of an electrode consists of the quasineutral and non-neutral

regions i.e., the presheath and sheath, respectively. While, due to complex physical

processes going on, the detailed profiles for the unperturbed plasma cannot be calculated

on the basis of formula (1), it can be done for the whole collisionless region of influence.

Analytical treatment of this region is usually performed in the two-scale approximation



(see e.g., [6]), i.e., separately for the presheath and sheath regions. For calculating the

presheath it is convenient to put boundary conditions at the plasma-presheath boundary.

Thus applying formula (1) some simple algebra leads to the density profile

ne(Φ) = ne,ps exp

(

−e|Φ(x)|
kT e

)

1 + erf
√

e|Vps − Φ(x)|/kT e

1 + erf
√

e|Vps|/kT e
f

, (2)

where the potential Φ(x) and electrode potential Vps are measured with respect to the

plasma-presheath boundary (index “ps”), where the density is ne,ps.

It can be shown (e.g. [7]) that for for collisionless regimes the ion velocity distri-

bution fi(v) is a function of the total energy Ei = miv
2/2 + eΦ only. Therefore the

quasineutrality condition ni = ne takes the form
∫

0

eΦ

fi(Ei)dEi
√

2mi(Ei − eΦ)
= ne(Φ) (3)

where ne(Φ) is given by (2). In normalized variables

E∗

i =
Ei

kT e
, Φ∗ =

eΦ(x)

kT e
, V ∗

ps =
eVps

kT e
, n∗

e(Φ
∗) =

ne(Φ)

ne,ps

, f ∗

i (E∗

i ) =

√

2kT e

mi

fi(Ei)

2ne,ps

(4)

and after apppropriate rearrangement on the left-hand side Eq (3) reads

∫

Φ∗

0

f ∗

i (E∗

i )dE∗

i
√

Φ∗ − E∗

i

= −in∗

e(Φ
∗) (5)

where i =
√
−1. This equation can be readily solved by using Abel inversion (eg, [8]),

yielding

f ∗

i (Φ∗) =
1

iπ

d

dΦ∗

∫

Φ
∗

0

n∗

e(Φ
∗ − E∗

i )dE∗

i
√

E∗

i

. (6)

After straightforward mathematics we obtain the analytical solution

f ∗

i (E∗

i ) =
1

π
√

−E∗

i

−
2
[

D(
√

−E∗

i ) + Derf(
√

−E∗

i ,
√
−V

∗

ps)
]

π(1 + erf
√

−V ∗

ps)

+
eV ∗

ps

π3/2(1 + erf
√

−V ∗

ps)
ln

∣

∣

∣

∣

∣

2
√

E∗

i V ∗

ps + V ∗

ps + E∗

i

V ∗

ps − E∗

i

∣

∣

∣

∣

∣

(7)

where we have introduced a new special function called here “Dawson-erf”

Derf(y, a) = exp(−y2)

∫ y

o

ey′2

erf
√

y′2 + a2 − y2dy′ (8)

which for a2 ≫ y′2 − y2 reduces to “standard” (e.g. [8]) Dawson function Derf(y,∞) =

D(y) = exp(−y2)
∫ y

o
ey′2

dy′. Finally, it turns out that the logarithmic term may be

neglected for any experimental bias potential.



3 Discussion and conclusion

A simple consequence of Eq (7) is that the sheath in our model dissapears for sufficiently

high electrode (or probe) biases i.e., more preciselly, for Vps > −1.09226... × kT e
f . This

means that in such cases we do not need any two-scale approach, i.e., a full solution

is available up to the electrode surface. However, our model is an idelisation of the

nature since in practice truncated Maxwellian distributions are difficult to obtain even

at very low discharge pressures. This behaviour has for a long time been well known

as the “Langmuir paradox” (e.g., [9]). We also confirmed experimentally that the elec-

tron velocity distribution near the electrodes (at least in laboratory devices) under low

pressures is rather a shifted Maxwellian than a truncated one [10]. In fusion devices it

might be different but to our knowledge complete experimental data (with a rotating or

double plane probe) are not available up to date. This seems to be an imprtant task to

be tackled for, e.g., tokamak devices.

Anyway, it should be pointed out that other velocity distributions than truncated

Maxwellian could possibly lead to similar density profiles as the truncated Maxwellian,

and that the exact shape of the corresponding real ion velocity distribution might not

be crucial for the basic features characterising the presheath. In this sense, the present

approach is intended as a first step towards shedding more light on the physics of the

Scrape-of layer (SOL) in the region between the so called X-point and a divertor plate

in tokamak devices.

Finally we note two facts i.e., (i) that the original Tonks-Langmuir model cannott

account for the absorption effects and so it is a pure plasma model - without presheath.

Our model, although more general, is a presheath model - without plasma. The plasma

itself is assumed to be generated independently being a main source of full Maxwellian

electrons for the presheath. In addition, neither Tonks-Langmuir model nor our model

takes into account that every ion creationthe in the presheath is accompanied by the

creation of a non-Maxwellian electron which is superimposed upon the main truncated

population. For this reason the physics of the presheath is very difficult to resolve with

arbitrary accuracy. (ii) Secondly and finally, solid surfaces are far from being ideal - they

have some surface potential dispersion that could be much greater than the dispersion

of the measured quantities. Therefore it is sometimes meaningless to refine too much

the theories about the exact velocity distribution shapes.
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