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I. INTRODUCTION 

The presence of chaos in physical systems has been widely demonstrated and is very common 

in nature. In practice it is often desired to have a mechanism, which allows controlling or avoiding 

chaos state. In particular during the past decade, the problem of chaos controlling in plasmas 

attracted significant attention due to the importance of this topic for many processes [1-3]. 

Thus in addition to the general interest of this subject the possibility of reduction of the 

anomalous transport, associated with turbulent phenomena, also motivated the studies of chaos in 

plasma. Practically all systems reach turbulent state via chaos development, therefore, chaos control 

investigation may contribute to control and understanding of the turbulence phenomena in plasma 

processes. Up to now, despite the occurrence of numerous chaotic situations often deeply studied in 

plasma physics during the past years, a few results have been reported on the control of chaos in the 

plasma physics. The main idea in chaos controlling is to use the high sensitivity of the physical 

system to small perturbations, which ordinary leads to chaos development and to change the 

dynamical state. This approach has been successively used in several effective methods of chaos 

control proposed by Ott, Grebogi, and Yorke (OGY) [4] and Paragas (TDAS) [5]. 

In this paper we demonstrate experimentally the possibility of three-wave system transition 

from chaotic to regular behavior under influence of the pump frequency modulation without 

directly using the well-known OGY and TDAS methods. Studies has been performed using the 

wave system in magnetized inhomogeneous plasma in which absolute decay parametric instabilities 

of stimulated back scattering and forward scattering l → l’ + s has been excited [6,7]. 

II. EXPERIMENTAL SITUATION 

Experiments were carried out at the linear plasma device with magnetic field of 0.35 T, in which 

inhomogeneous plasma (ne=ne(z,r)) was produced by ECR discharge in argon at pressure 1-2 Pa [6]. 

The electron plasma pump wave at frequency f0 = 2.5-2.7 GHz – (EPW) – was excited in this 

plasma using a waveguide system. In vicinity of resonant (focal) point, where ne(z,0)=nc (i.e., 

2πf0=ωp=(2πnee2/me)1/2), the electric field of the electron plasma wave increases.  

The growth of electric field in the vicinity of focal point is so significant, that parametric decay 

instabilities of stimulated back scattering and forward scattering l → l’ + s are excited at the 



relatively small pump wave power P0 exceeding 20 mW. Theses instabilities and there competition 

were studied previously in experiments with monochromatic pump wave [6,7].  

The back scattering instability excitation mechanism, according to [6], is related to the 

complicated spatial structure of pump wave, namely to the small fraction of the first radial mode 

present in the pump along with the dominant fundamental radial mode (P1 ≤ 0.1P0) The first radial 

mode leads to appearance of the second resonance region of the three-wave interaction and to the 

formation of the feedback loop. An instability growth rate and an unstable spectrum structure are 

determined by velocity of the ion-sound wave and the feedback loop dimension. At the linear stage 

the absolute decay instability is a coherent process with the limited number of oscillatory modes 

excited, which should possess a narrow frequency spectrum. 

However in reality both the spectrum consisting of several narrow lines and broad spectrum are 

observed depending on the plasma parameters connected with each other (density and temperature 

of plasma components, pump power and its frequency width, external magnetic and etc). High 

sensitivity of the absolute instability to the incident pump power is observed at small excess of its 

threshold (P0 ≥ 20 mW), when the induced scattering emission is increased by 2-3 orders of 

magnitude at the rise of the pump power by a few percents. 

The induced forward scattering parametric decay instability, studied in [7] is excited in 

accordance with M.Rosenbluth mechanism [8]. This intensive wave process appears possible 

because the decay condition for forward scattering is fulfilled not in a single, but in a couple of 

close points. It manifests itself in intensive anomalous absorption of forward scattering wave and in 

generation of back scattering frequency up-shifted wave. 

As it was shown in [9], it is possible to influence the absolute parametric decay instability of 

stimulated back scattering using a harmonic pump frequency modulation. It was demonstrated in 

this paper that the stimulated back scattering can be suppressed by several orders of magnitude by 

modulation at frequency fm=1 MHz with deviation not exceeding ±1-2% of pump wave frequency 

(f0=2350 MHz). It should be mentioned that the stimulation of absolute parametric instability was 

also observed in this experiment at modulation frequency fm ~0.2 MHz [7]. In both cited papers 

only the back scattering power spectra were under investigation, whereas in the present paper we 

consider the temporal variation of back scattering signal and acoustic wave, paying special attention 

to proper characterization of l → l’+s three-wave dynamic system.  

In the pump frequency modulation experiment the decay ion acoustic wave was studied by 

enhanced scattering technique [9,10]. For this purpose the probing wave at frequency 

fp=2.35 GHz < f0 and small power (Pp <5 mW) was launched into plasma by the same waveguide 

system. In vicinity of the own resonance point the probing wave is effectively scattered off the 

parametrically driven ion-sound wave. The scattered wave amplitude, proportional to the ion–sound 



one, was used after homodyne detection for studying the dynamics of the three-wave system. The 

homodyne detector signal was digitized by means of an 8 bit A/D converter with time quantization 

∆t=0.025 µs. The obtained scalar time series were used for creation of the system phase space and 

investigation of its attractor. 

III. THEORETICAL BACKGROUND 

Before the 1980s it was assumed that to study dynamics of systems with many degrees of 

freedom, time-series measurements of all the variables and derivatives were necessary to represent 

dynamics of studied system. However in paper [11] it has been demonstrated that a phase-space of 

the dynamics system could be reconstructed from a single variable time series using the time-delay 

coordinates. Considering time interval τ and integer number m  one can construct m -dimensional 

vector, with components provided by experimentally measured values ( )x t  taken at different time 

( ): , , 2 ,..., ( 1) ...t t t t mτ τ τ+ + + −

( ) ( ) ( ), ,..., ( 1)X x t x t x t mτ τ= + + −⎡⎣ ⎤⎦  ( 1 )

This vector X  defines a point in m-dimensional space, which moves in time along a trajectory. 

In experimental case a discrete raw of data can be obtained and as a result one can obtain a number 

of points along the m -dimensional point trajectories: 

( ) ( ) ( ), ,..., ( 1)i i i iX x t x t x t mτ τ= + + −⎡ ⎤⎣ ⎦   

This delay-coordinate reconstruction would be then topologically equivalent to the dynamics of 

the true system. This allows to make a qualitative conclusion relaying on the graphics view for m 

equal 2 and 3. It can be interpreted as a projection of the trajectory and its attractor if any from real 

phase space to reconstructed m-dimensional space. If the trajectory projection looks like an area 

chaotically filled with points it means that real dimension of the system is incomparable with m or 

that signal ( )x t  has a noise nature, whereas if the signal is generated by the dynamical system with 

small dimension a picture with a fine internal structure can be observed. 

Numerical criterion for the chaotic dynamical system characterization has been suggested in 

[11]. As it was shown all the system attractors can be characterized by the correlation dimension. 

This dimension is defined on the basis of a long time-series of points on the attractor by considering 

the correlation integral: 



( ) ( )
, 1

1lim
( 1)

N
i j

N i j
C X

N N
ε ε

→∞ =

= Θ −
− ∑ X−  ( 2 )

where Θ is the Heaviside function. This correlation integral count the number of point pairs 

separated by distance i jX X−  smaller then ε. In the case ( )C ε  for small ε scales as: 

( ) ~ DC ε ε  ( 3 )

the exponent D can serve as a satisfactory measure of the strange attractor structure. Thus a plot of 

( )2log C ε  as a function of 2log ε  will have a slope of D down to small length scale, which can be 

used for the attractor dimension determination. This procedure is however limited in small ε  region 

by noise [12] and a lack of experimental points, which play a crucial role and significantly vary 

dependence ( 3 ). This procedure should be continuously repeated for growing dimension 

=1,2,3…Presence or absence of saturation on the dependence  on m  is treated as a criteria 

for distinguishing the phase space generated by dynamic or noise like system. The level of D  

saturation is taken as the correlation dimension estimation for the dynamic system attractor. In order 

to have a longer line dependence suitable interval for  determination a longer 

time realization should be taken into account. The minimal number of phase space points necessary 

for reliable correlation dimension estimation was obtained in [14] as: 

m ( )D m

( )2log / log2C dε εD d=

max
2max 10 min2 log 10

D
D N N≅ → ≅   

but it has to be taken into account that the longer realizations can play negative role fading the result 

due to existence of the inevitable errors of measurements [13].  



IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Chaos control in induced back scattering 

The following pump wave modulation parameters were used in the induced back scattering decay 

instability control experiments: the central frequency f0= 2600 MHz, modulation frequencies 

fm = 0.2 MHz and 1 MHz, maximal frequency deviation δf = ±35 MHz. The Poincaré section of the 

phase space reconstructed from the homodyne detector signals for four consequently growing pump 

powers are presented in fig. 1. The first section, shown in Fig1a corresponds to power P=25mW, 

close to the induced back scattering absolute instability threshold Pth=20mW. The Poincaré section 

possesses evident structure, corresponding to the quasiperiodic behavior. The back scattering 

spectrum of the probing wave, corresponding to this power is shown in fig2a. As it is seen the 

single line shifted by 3MHz dominates in the spectrum. The correlation dimension is reliably 

determined at the level  for this close to threshold state of the induced back scattering 

three-wave system, as it is seen in Fig2e. At higher power P=30mW the structure is less evident in 

the Poincaré section (Fig.1b). The probing wave back scattering spectrum become more 

complicated and consists of three pronounced lines (Fig2b), whereas the correlation dimension 
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Fig. 1  System trajectory in the 3D phase space  corresponding to the time-series for induced back scattering a)-d) 
correspondingly for growing pump power Pa<Pb<Pc<Pd 



grows to the value D  

(Fig2f). It should be mentioned that 

it is determined less reliably here. 

At further growth of the pump 

power the tendency mentioned 

above become even more 

pronounced. The Poincaré section 

structure become less evident in 

Fig.1c and disappear in Fig.1d. 

Correspondingly the dominance of 

the single line disappears in Fig2c 

and especially in Fig2d. The 

probing wave back scattering 

spectrum become broad. At these 

high pump powers no tendency to 

flattering of dependence D  on 

 is observed in Fig.2g and in 

Fig.2h. The correlation dimension 

is increased continuously with 

growing phase space dimension m . 
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The homodyne detector signals 

at harmonic pump frequency 

modulation are presented in fig. 3,4 

together with the corresponding control signals of the sweep oscillator. As can be seen in fig. 3 at 

modulation frequency ~1 MHz a suppression of absolute parametric instability takes place. On 

contrary, at modulation frequency fm ~0.2 MHz the instability stimulation, shown in Fig. 4 is 

observed. As it is seen, the homodyne detector signal changes drastically when the modulation is 

switched on. The bursts of oscillations, which were random before the modulation onset are 

evidently synchronized by the control signal. The amplitude of these bursts is substantially higher. 

This effect is explained by the suppression of convective losses of ion acoustic wave from the decay 

region, which takes place periodically for specific relation between the modulation rate and 

frequency [12]. Such a suppression occurs when velocity of the decay point oscillating in plasma at 

the modulation frequency fm = 0.2 MHz coincides with the ion acoustic wave velocity. The burst of 

oscillations takes place once per modulation period and is followed by its deep suppression. The 

Fig. 2 The homodyne signal correlation dimensions of attractors 
(a,b,c,d), power spectra (e,f,g,h), in case of monochromatic pump 
wave.  m=1; m=2;  m=3;  m=4;  m=5 



Poincaré section of the attractor and the procedure of its correlation dimension estimation after 

switching on of the modulation in the last case fig.4 are shown in fig. 5. It is clearly seen that the 

system changes from chaotic to quasi-periodic state when the pump wave frequency modulation is 

applied. 
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Fig. 3 Oscillogram of the homodyne and control signals 
at modulation frequency 1 MHz 

Fig. 4 Oscillogram of the homodyne (a) and control (b) 
signals at modulation frequency 0.2 MHz 
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ion in this case (see Fig.6b). 

Determination of correlation dimension in this case is shown in Fig.6c.  

 5 The system trajectory in the 3D phase space (a) and correla
 of frequency modulated pump wave. 
B. Chaos control in induced forward scattering 

In the case of induced forward scattering parametric decay instability all secondary lines 

observed in the back scattering spectra are very narrow (see Fig.6a). The clear structure, 

corresponding to the quasiperiodic motion is observed in the Poincaré sect
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Fig. 6 The homodyne signal power spectra a), system trajectory in the 3D phase space b) and c) correlation dimensions: 

 m=1; m=2;  m=3;  m=4;  m=5 

The flattering of dimension D  dependence on log ε  is clear in this figure, allowing reliable 

e quasiperiodic behavior of the signal associated with 

ompletely regular. As it is seen

determination of  In  of th

c  in Fig.7a, where different 

realizations of this signal are shown, its phase

synchronize the phase of the signal we sw

ave.  

andom phase. After the onset of the pump phase modulation 

the phase locking and synchronization takes place manifesting itself in the growth of averaged 

oscillation amplitude. In the case the phase modulation frequency is slightly different from the back 

scattering frequency shift fm-fs=0,01MHz or fm-fs=0,1MHz averaged amplitude oscillations is 

decreased significantly (see Fig.8b,c) 
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induced forward scattering process is not 
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itched on harmonic pump frequency modulation at the 

frequency fm
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The output of the homodyne detector, shown in 

Fig.7a is synchronized to the control signal pulse, shown 

in Fig.7b. As it is seen in Fig.7a after onset of the control 

signal, with delay of 10 15t sµ∆ ÷  synchronization 

of back scattering takes place. This synchronization is 

demonstrated especially clear in Fig.8a, where a sum of 

32 consequent outputs of homodyne detector are shown, 

where pronounced growth of oscillations at frequency fs 

is observed after onset of the control signal, in the case when the modulation frequency fm and 

frequency dominant in the back scattering signal fs coincide (fm=fs=1MHz). These oscillations are 

suppressed by averaging due to their r
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Summarizing the presented results the conclusion that the harmonic pump frequency 

n provide an effective way for control of chaos in a nonlinear dynamic three-wave 
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ONCLUSION 

modulation ca

system l → l’ + s can be made. 
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