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In this work we study the ergodic magnetic limiters (EML) action on field lines from the point
of view of a chaotic scattering process, considering the so-called exit basins, or sets of points in the
chaotic region which originate field lines hitting the wall in some specified region. We divide the
tokamak wall into three areas of equal poloidal angular length, corresponding to different exits for
a chaotic field line. In order to obtain the exit basins we used a grid chosen inside a small rectangle
which comprises a representative part of the chaotic region near the wall. Thus, exit basins were
obtained for a tokamak wall with reversed magnetic shear. The nontwist mapping describes the
perturbed magnetic field lines with two chains of magnetic islands and chaotic field lines in their
vicinity. For a perturbing resonant magnetic field with a fixed helicity, the observed escape pattern
changes with the perturbation intensity.
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I. INTRODUCTION

Area preserving maps have been used to describe magnetic field line behaviour in fusion plasma confinement schemes
like tokamaks [1] [2]. The magnetic field line equations, after proper parametrization (the time-like variable is an
ignorable coordinate), can be viewd as Hamilton’s equation describing an integrable systems, where phase space
trajectories are identified with magnetic field lines [3]. If the torus is intersected by a Poincaré surface of section we
can write down an area preserving canonical mapping relating the coordinates of a field line at a given intersection in
terms of the same coordinates at a previous time.

The use of two-dimensional sympletic maps enables us to harness the powerful methods of Hamiltonian dynamics in
order to explain the observed changes in the magnetic field structure due to magnetostatic perturbations [4] [5] [6] [7].
In this paper we create an outer chaotic layer of magnetic field lines superimposing the tokamak equilibrium field to
magnetic field generated by an ergodic magntic limiter (EML), which consists of slices of external helical conductors
with a suitable pitch [8] [9]. The equilibrium field presents reversed reversed magnetic shear, which has been proposed
as a way to obtain transport barriers which can help improving the confinement quality [10] [11].

In this work we study the EML action on field lines from the point of view of a chaotic scattering process [12] [13].
The point on the tokamak wall where a given chaotic field line will eventually hit depends sensitively on which point
on the wall it cames from. Hence it is useful to consider the so-called exit basins, or sets of points in the chaotic
region which originate field lines hitting the wall in some specified region. The mathematical structure underlying the
chaotic region is an extremely involved tangle comprised of homoclinic intersections between invariant manifolds of
unstable orbits embedded in the chaotic region. Due to this structure we expect that the exit basins have a nontrivial
geometric structure.

In Sec. II we present the equilibrium and perturbing magnetic field. The exit basins for the EML map are obtained
in Sec. III and in the last section we present our conclusion.

II. EQUILIBRIUM AND PERTURBING MAGNETIC FIELDS

Many coordinate systems have been used to describe magnetic field geometry in plasma confinement systems. In
this paper we will work with the non-orthogonal coordinates (rt, θt, ϕt), which resemble the commonly used toroidal
coordinates (ξ, ω, Φ) but present the Shafranov shift in the “right” (inward) direction [14]. In the large aspect ratio
limit they reduce to the pseudo-toroidal, or local coordinates (r, θ, Φ).
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FIG. 1: Safety factor profile for equilibria with γ = 1.0, β = 3.0 (solid line), and γ = 2.0, β = 0.0 (dashed line).

The tokamak equilibrium magnetic field B0 is obtained from an approximated analytical solution of the Grad-
Schlũter-Shafranov equation in these coordinates [15]:

Ψp(rt, θt) = Ψp0(rt) + δΨp(rt, θt), (1)

where
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drt

=
µ0IpR

′

0
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with a as the plasma radius, determined by a material limiter, β′ ≡ β(γ + 1)/(β + γ + 2), where β and γ are positive
parameters, and |δΨp(rt, θt)| ≪ |Ψp0(rt)|. Ip is the total plasma current and R′

0 is the major radius of the circular
centre (i.e., the magnetic axis radius).

In the large aspect ratio limit, and supposing that in lowest order the equilibrium flux function Ψp(rt) does not
depend on θt, the Grad-Schlũter-Shafranov equation reduces to an equilibrium equation similar to that obtained in a
cylindrical system, but now in terms of rt. The intersections of the flux surfaces Ψp(rt) = constant with a toroidal
plane are not concentric circles but rather present a Shafranov shift toward the exterior equatorial region. Hence,
actual equilibrium flux surfaces can be approximated by rt = const. coordinate surfaces. In the common range of
tokamak parameters, as those considered in this paper, the aspect ratio is always large enough to ensure that the
rt = const. surfaces do not overlap.

We have used a toroidal current density profile with a central hole, given by
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The safety factor profile has a non-monotonic profile, what accounts for describing the reversed shear effect. For some
values of the safety factor there are two magnetic surfaces with different radii within the plasma column.

In the numerical simulations to be described in this paper, we normalize the minor tokamak radius bt, and the
plasma radius a to the major (magnetic axis) radius R′

0, such that a/R′

0 = 0.25 and b/R′

0 = 0.33. We also choose
q(a) = 4.04 and q(0) = 3.50, corresponding to the safety factors at the plasma edge and magnetic axis, respectively,
as observed in typical discharges with negative magnetic shear, for which β = 3.0 and γ = 1.0. Figure 1 depicts
the corresponding radial profile of the safety factor (solid line). For comparison, a usual monotonic radial profile for
q(0) = 1.25 and the same value of q(a) = 4.04 is also shown in Fig. 1.

The design for the ergodic magnetic limiter to be considered in this paper is essentially the same as in Ref.
[8], and consists of Nr current rings of length ℓ located symmetrically along the toroidal direction of the tokamak
(Figure 2). These current rings may be regarded as slices of a pair of external helical windings located at rt = bt,
conducting a current Ih in opposite senses for adjacent conductors. The role of these windings is to induce a resonant
perturbation in the tokamak, and to achieve this effect we must choose a helical winding with the same pitch as the
field lines in the rational surface we want to perturb. This has been carried out by choosing the following winding
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FIG. 2: Scheme of an ergodic magnetic limiter.

FIG. 3: Poincaré maps for the ergodic limiter mapping, an equilibrium with β = 3.0 and γ = 1.0, and normalized limiter
currents Ih/Ip = (a) 7.0% with m0 = 3 and (b) 7.0% with m0 = 5.

law ut = m0θt − n0ϕt = constant. In this paper we will consider an ergodic limiter consisting of Nr = 4 rings with
mode numbers (m0, n0) = (3, 1) each, carrying a current Ih.

We can derive, due to the perturbation of the EML, a stroboscopic map for field line dynamics in terms of Jn

and ϑn as the action and angle variables. In Figures 3(a) and 3(b) we show phase portraits for a limiter current for
Ih/Ip = 7.0%. We have chosen a limiter with m0 = 3 and m0 = 5 pairs of current wires, respectively, its perturbing
field resonates with the equilibrium tokamak field and generates chains of three magnetic islands. Since the safety
factor radial profile is non-monotonic, for q = 3.0 there are two distinct radial locations at which there are such chains
[see Fig. 1].

III. EXIT BASINS FOR THE EML MAP

Suppose we choose at random a magnetic field line with initial condition located outside the last closed magnetic
surface, i.e. in the chaotic region near the tokamak wall. We can think of it as a trajectory that eventually goes to
the tokamak wall by iterating the mapping forward to n → ∞. This occurs because the wall at rt = bt is actually an
arbitrary partition in the phase portraits, and the chaotic region intersects the line rt = bt at a finite line segment. In
terms of the analogy with chaotic scattering process, we may consider these field lines as outgoing trajectories. Since
the EML map is invertible, the same initial conditions generate field lines that eventually hit the wall as n → −∞
when we iterate the map backwards. Accordingly, we consider them as ingoing trajectories.

While for dissipative systems we speak of basins of attraction to refer to the set of initial conditions which converge
to a given attractor, it is possible to extend this concept for including the set of initial conditions which generates
trajectories that escape through a given exit, in an open Hamiltonian system [13]. This set is called an exit basin.
When there are two (or more) exits in the system one is interested in the exit basin boundary, which can be either
smooth or fractal, as for basins of attraction of dissipative systems. Fractal boundaries are important dynamical
objects because orbits that start in their vicinity exhibit very complicated and unpredictable motion. In our case,
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FIG. 4: Exit basin for the EML maps showed in Figures 3a and 3b. The regions in dark gray, light gray, and black correspond
to field lines colliding with the tokamak wall at the regions marked 1, 2, and 3, respectively in Figure 3. The field lines that do
not escape are marked in white color.

FIG. 5:

Exit basin for the EML map, for monotonic radial safety factor profile, shown in Fig. 1.

we divide the tokamak wall into three poloidal sections of equal length, 0 ≤ ϑ < 2π/3, 2π/3 ≤ ϑ < 4π/3, and
4π/3 ≤ θ < 2π, indicated respectively as regions 1, 2, and 3 corresponding to different exits for a chaotic field line.

In order to obtain the exit basins we used a fine grid of 600 × 700 points chosen inside the small rectangle shown
in Figure 3(a) and 3(b), and which comprises a representative part of the chaotic region near the wall. We mark the
initial condition pixel in dark gray, light gray or black, depending on whether the field line goes to the wall section
called region 1, 2 or 3, respectively, under the forward dynamic. Figures 4a and 4b show the exit basins for the
maps showed in Figures 3a and 3b for non-monotonic safety factor profile. According to the Figure 3a the escape
concentrates on the external equatorial region if the internal modes (3,1) are perturbated. If we consider external
modes as (5,1), the field lines spread over all studied regions. Figure 5 shows the exit basins for the monotonic safety
factor profile. It can be seem that the exit basins are intertwined in a very complex way for all cases. We conjecture
that the exit basin boundary in Figures 4b and 5 are fractals.

IV. CONCLUSIONS

The creation of a chaotic field line region near the tokamak wall has been proposed as a way to uniformize heat and
particle loadings on the wall, so diminishing plasma contamination. However, the available experimental results point
out that this may be not necessarily the case, since particle deposition is not uniform, as originally thought. Our work
aimed to shed some light on this matter by considering the dynamical structure of the escape channels inside the
chaotic region. The existence of escape channels for magnetic field lines make the particle deposition non-uniform, as
long as we neglect particle drifts. On the other hand, the escape channels are closely related to a dynamical property
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of the open chaotic system named exit basins, which have been described qualitatively in this work. Since the exit
basin boundary structure is very complex, presenting a fractal nature, we conclude that the field line impacts on the
tokamak wall are correspondingly complex, presenting also a fractal characteristic.

Acknowledgments

This work was made possible with partial financial support of the following agencies: CNPq (Conselho Nacional de
Desenvolvimento Cient́ıfico e Tecnológico), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior),
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