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Abstract

Liapunov exponent provides a quantitative measure of the degree of stochastic-
ity for a trajectory in the theory of both Hamiltonian and dissipative dynamical
systems. In the context of fusion plasmas, the Liapunov exponent is usually as-
sociated with the regime of highly developed magnetic or collisional stochasticity
(transport in the highly stochastic magnetic field, ergodic divertor problem, etc.).
To treat general case with growing stochasticity, the extension of the standard con-
cept is done introducing the effective Liapunov exponent, Le(t), as the averaged
Liapunov exponent over different trajectories/magnetic field lines. The numerical
analysis includes the observation of the Kolmogorov entropy, the number of the
trajectories/ magnetic field lines with positive Liapunov exponent and statistics of
the Liapunov exponents. Three models relevant for tokamak physics are considered:
tokamap, revtokamap and the model of test electron radial diffusion in the mag-
netic field with irregularities. It is shown that the effective Liapunov exponent is
in the correspondence with the degree of stochasticity. Additionally, its behaviour
is independent on the origin of stochasticity (deterministic or statistical stochastic-
ity). The dynamical behaviour of the effective Liapunov exponent can be associated
with the type of test particle transport in different magnetic stochasticities: strange
transport in the magnetic field regions with the mixture of the regular and irregular
structures, uniform mixing in the highly irregular regions and standard diffusion in
the case with highly frequent collisions and regular or partially destroyed magnetic
field regions.
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1 Introduction

Generically the concept of the Liapunov exponent as a qualitative measure for
growing stochasticity in both Hamiltonian and dissipative dynamical systems
is based on the premise that the Liapunov exponent defines unambiguously
a sufficient condition for stochastic instability. Therefore, the Liapunov ex-
ponent, Liapunov spectra, distribution of finite-time Liapunov exponents and
Kolmogorov entropy have been considered in connection with the evolution of
chaoticity and ergodicity [1,2], the phase and topological transitions [3], the ex-
change between localized and extended quantum states [4], the metal-isolator
transition in solid state physics [5] etc.

In plasma physics, the Liapunov exponent is studied in the context of transport
in the stochastic magnetic field [6,7], ergodic divertor problem [8,9], the radial
heat diffusion in the tokamak in the presence of the magnetic field irregularities
[10], etc. The last study is done by introducing the concept of the effective
radial Liapunov exponent.

In this paper the summary of the effective Liapunov exponent concept is pre-
sented. The conclusions are based on the comparative numerical investigation
of three tokamak models: tokamap (twist map) [11], revtokamap (nontwist
map) [12] and the Monte Carlo model of the test particle radial diffusion.
Note that the stochasticity in the first two models is of the deterministic
type (magnetic field with irregular domains- configuration space stochastic-
ity) and of both the deterministic and statistical type in the third one (due to
the magnetic field irregularities-configuration space stochasticity, and particle
collisions- phase space stochasticity, respectively).

In section 2 the tokamak models: tokamap, revtokamap and the model of test
particle diffusion are shortly presented. The effective Liapunov exponent and
basics of the statistical method are mentioned in section 3. Comparative anal-
ysis of the tokamak models is established in section 4. Finally the concluding
remarks are given in section 6.

2 Tokamak models

In present paper three tokamap models are considered: maps-tokamap and
revtokamap, and the radial diffusion of test particles. Map models are con-
structed with the aim to model the topology of the magnetic field of toka-
maks. Thus, the term ’plasma particle’ for maps assumes that the trajectory
of a plasma particle is closely tied to the corresponding magnetic field line
(structure). In other words, the particle collisions are not considered.
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2.1 Maps

In order to understand tokamak physics, the magnetic field equations are con-
structed [11] as the equations of motion of a 1 1

2
degree of freedom dynamical

Hamiltonian system. The nature of orbits is conveniently studied by consid-
ering a stroboscopic plot, obtained by recording the values of the coordinates
(ψ, θ) at successive equal times:

ψt+1=
1

2

{

P (ψt, θt) +
√

[P (ψt, θt)]2 + 4ψt

}

,

θt+1= θt +W (xt+1)−
K

(2π)2
1

(1 + ψt+1)2
cos (2πθt) mod 1, (1)

where the coordinate ψ is dimensionless toroidal flux coordinate, θ is the
poloidal angle 2 , t ≡ ζ is the toroidal angle playing a role of time coordinate,
W (ψ) is the winding number of torus, and K > 0 the stochasticity parameter.
The function P (ψ, θ) is defined as P (ψ, θ) = ψ − 1− (K/2π) sin (2πθ).

The tokamap (Hamiltonian twist map [11]) represents a model of tokamak with
monotonously decreasing winding number profile as a function of ψ (hence
q(ψ) is a monotonously increasing function - ’classical’ experiment circum-
stances): W (ψ) = (w/4)(2 − ψ)(2 − 2ψ + ψ2); w = W (0)(> 0) =const. is
the value of the winding number on the polar axis (here w = 4). By varying
K(> 0), a variety of orbits are possible: cycles (periodic orbits), island chains
(encircling the cycles), KAM barriers, and chaotic orbits inside the stochastic
layers bounded by island chains and the KAM barriers, K ≈ Kc, or inside the
stochastic sea, K >> Kc, where Kc ≈ π is the critical value of the stochas-
ticity parameter which is determined by the island overlapping criterion [13].
The tokamap describes a structure that is very robust in the central region,
and the global stochasticity starts in the edge region.

The recent experimental and theoretical works have been devoted to tokamak
situations with locally reversed shear, i.e. the safety factor profile has a local
minimum (especially important in the context of the internal transport barrier
[14]). Hence the W (ψ) function possesses a maximum. These reversed shear
configurations are modelled by the nontwist 1 1

2
degree of freedom Hamiltonian

map - revtokamap [12]. In the present context the profile of W is given as:

W (ψ)=w
[

1− z (cψ − 1)2
]

, (2)

2 In the following the coordinates r, ψ(∼ r2) and angles θ, ζ are given in units of a
(the minor radius of torus), ψa and 2π, respectively. Thus the maximum values of
r, ψ and θ are unity.
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z=
w − w0

w
, c = 1 +

(

w − w1

w − w0

)1/2

,

where the values of constants are chosen to be: w0 = 0.3333, w = 0.6667, w1 =
0.1667 [12].

A particularity of revtokamap is the appearance of a ’transport barrier’ sepa-
rating a robust, central region from a semiglobally chaotic edge region [12] for
the stochasticity parameter larger than some threshold: K > KT . According
to [12], the value of KT is defined as the value of K for which the transport
barrier enters the physical domain. For acctual set of parameters the estimated
value of KT is around 1.4.

In conclusion the stochasticity develops in the configuration space. Strictly
speaking it is of interest for K > Kc(KT ) (the global stochasticity regime
[13]).

2.2 Model of the radial diffusion

Finally, the radial diffusion of test electrons in the magnetic field with irreg-
ular, radially bounded domains is evaluated by the Monte Carlo modelling of
the gyro-phase averaged Boltzmann equation with the Coulomb collision part
[10].

The stationary magnetic field is formed of the equilibrium magnetic field:

~B = ∇ψ ×∇θ − ί́∇ψ ×∇ζ, ί́ = 1/q = 0.9− 0.5875
(

r

a

)2

, (3)

where a is the minor radius, and small perturbation

δ ~B = ∇× (b ~B), (4)

where ψ ∼ r2, θ and ζ are the Boozer flux coordinate, poloidal angle and
toroidal angle, respectively [10]. In the small perturbation the function b, which
has unit of length, is used to represent the structure of destroyed magnetic
field, i.e. the islands and stochastic regions. Its Fourier representation is [10]

b(ψ, θ, ζ) ≈ sb
∑

m,n

exp

(

−
(ψ − ψmn)

2

∆ψ2

)

cos(mθ − nζ), (5)

where parameter sb indicates the strength of perturbation, i.e. the stochasticity
parameter and ∆ψ is the width of perturbation. The critical value is sbc ≈
7× 10−5 as shown in [10].
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The pitch angle scattering which is considered as a Gaussian stochastic process
is modelled by the Monte Carlo collision operator [10].

Thus, two types of stochasticity appear: magnetic field stochasticity (deter-
ministic stochasticity in configuration space) and collisional stochasticity (sta-
tistical stochasticity in the phase space).

3 The effective Liapunov exponent

Liapunov exponent provides a quantitative measure of the degree of stochas-
ticity for a trajectory in both Hamiltonian and dissipative dynamical systems
[13]. The Liapunov exponent of i-th trajectory, for given initial conditions (po-
sition, and initial orientation of the infinitesimal displacement) indicates the
mean exponential rate of divergence of trajectories surrounding it [6]:

li(t) ≡
1

t
ln

(

di(t)

di(t = 0)

)

. (6)

The di(t) is the distance at time t between two initially neighboring trajecto-
ries, usually evaluated in the tangential space of the trajectory [6]. For maps
presented here, the tangential 2D space (∂ψ, ∂θ) (two basis vectors), and for
the diffusion model the tangential 3D space (∂r, ∂θ, ∂ζ) are of interest.

The positive value of the Liapunov exponent li > 0 denotes exponential sep-
aration of two initially neighboring trajectories. On the other hand, li ≤ 0
corresponds to regular motion (initially neighboring trajectories are stuck to
each other). The concept of the Liapunov exponent has generalized to describe
the mean rate of exponential growth of a d-dimensional volume in tangential
space [13] (d ≤ Nd, where Nd is the dimensionality of tangential space). For
maps: lψ = −lθ and with respect to the tangential surface 2D Liapunov expo-
nent L = 0. Analogously, for test particle diffusion 3D Liapunov exponent is
zero. In the present paper the stress is on the non-negative Liapunov exponent
for maps, lψ, or lr for the radial diffusion, and their statistics. In the following
the mentioned Liapunov exponents are noted by l for both cases.

The effective Liapunov exponent is defined as the averaged 1d Liapunov ex-
ponent over different initial conditions (index i)

Le(t) ≡ 〈l(t)〉 =
1

N

N
∑

i=1

li(t), (7)
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where N is the total number of trajectories (particles). For 2D Hamiltonian
maps the Kolmogorov entropy, which is defined as the sum of all positive Li-
apunov exponents, is equivalent to the Le. Thus the time behaviour of the ef-
fective Liapunov exponents for maps is indentical to the time behaviour of the
Kolmogorov entropy. To understand generically the development of stochas-
ticity the number of the trajectories with the positive Liapunov exponent Np

is additionally observed.

In order to qualify the distribution of the Liapunov exponents the second, third
and fourth cumulant coefficients are defined with respect to the l adopting
ensemble average [10]. The second cumulant measures the dispersion around
〈l(t)〉 [10]. The third cumulant coefficient, γ3 indicates the degree of asymmetry
around 〈l(t)〉 and the fourth cumulant coefficient, γ4 the relative peakedness
or flatness of a distribution of Liapunov exponents with respect to Gaussian
(γn>2 = 0).

To clarify the long time correlations of the Liapunov exponent distribution,
the autocorrelation coefficient A(t, t′) (the function of two time instants t
and t′) is additionally calculated as in [10,15]. The A(t, t′) deviation from the
corresponding Wiener autocorrelation coefficient is taken as the indicator of
finite the long time correlations.

The Liapunov exponents are numerically calculated by the procedure devel-
oped in the context of the random matrix theory [16]. Initially, the N particles
(trajectories) are started at fixed position ψ(r) =const. with randomly cho-
sen θ and (θ, ζ) for maps and test diffusion model, respectively. The random
variables are numerically generated by the numerical IMSL routine RNSET.

4 Results and discussion

Being the statistical quantuty the effective Liapunov exponent is strictly mean-
ingful after the global stochasticity regime is established. In other words, after
the island overlapping for tokamap [11] has been started, K > Kc; the internal
transport barrier has been moved inside the physical domain for revtokamap
[12], K > KT ; and the island overlapping has been started, sb/sbc > 1, or/and
the collision stochasticity has been introduced, ν > 0, for test particle diffu-
sion model [10]. However, the Le is calculated over the whole parameter regime
(parameters K and sb/sbc, ν/νt for maps and test diffusion, respectively), due
to completeness.

The results shown here are obtained with test particle (trajectory) ensembles
of N = 10000 constituents for mappings and N = 1000 for the diffusion case.
Whole ensemble is loaded initially at same flux surface with randomly chosen
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angle coordinates. The corresponding values of ψ(t = 0) are noted for each
example in the following.

4.1 Magnetic field stochasticity

Increasing the magnetic field stochasticity is nicely illustrated in the phase
portraits of revtokamap for different values of K. The initial flux surface is
ψ = 0.37, which belongs to the plasma core region. As examples the phase
portraits for K = 2.5, 5.5, and 5.8 are shown in Figure 1. To quantify the
stochasticity development, the Le is calculated for K = 1.5, 2.5, 3.5, 4.5, 5.5,
5.8, and 6.28 and results are plotted in Figure 2. Briefly, for K < KT , when
the magnetic field structure is regular, or irregular structures are localized
around the island boundaries (K ≥ KT ), the Le at first decreases rapidly
and then slowly saturates to some finite positive value. To the higher value
of K corresponds bigger saturation value of Le (Figure 2). After that the
majority of test particles are permanently stuck to regular structures in the
magnetic field, i.e. test particles (tied to the magnetic field lines) cannot leave
the regular magnetic structures inside the core region of plasma where all
particles were initially loaded. The positive value of Le is a consequence of the
sheared magnetic field structure [13].

Fig. 1. The phase space trajectories of revtokamap are plotted in long time limit
(after 5000 iterations) for K = 2.5, 5.5 and 5.8. The 10 trajectories are started from
ψ = 0.37- below the noble surface [14]. At the value K = 5.5 >> KT the particles
start to escape through the barrier into the non-physical domain ψ > 1.

Above the threshold, for K = 5.5 >> KT , Le continuously increases which
can be ascribed to the overcoming of the internal transport barrier by some
of the test particles (Figure 1). With further increase of the stochasticity,
the irregular (stochastic) domains dominate and the behavior of the Le qual-
itatively changes. The sticking effect is more and more suppressed, i.e. test
particles wander around wider and wider stochastic region. The effective Lia-
punov exponent saturates very fast to high positive value, approximately two
orders higher than it did arround the threshold. The saturation indicates that
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Fig. 2. The Le vs n is plotted for revtokamap with K = 1.5, 2.5, 3.5, 4.5, 5.5, 5.8
and 6.28. Note that n is the number of iterations (time is t = ndt and dt is the
arbitrary time step). The N = 10000 test trajectories are started at ψ0 = 0.37.
The phase diagrams for 10 trajectories and K = 2.5, 5.5 and K = 5.8 are shown in
figure 1.

Fig. 3. The Le vs n (t = n · dt) is plotted for tokamap with K = 3.7. The test
trajectory ensembles are started from ψ0 = 2/3, 1/2 and 1/3- solid, dashed and
dotted line, respectively. The corresponding phase diagrams are given on the left in
present figure: ψ0 = 2/3, 1/2 and ψ0 = 1/3, from top to down.

the most of test particles wander over the whole allowed bounded stochastic
region.

The unexpected monotonous growth of the Le with time for extremely high
values of K (e.g. K = 6.28) can be associated with the growth of the particle
escaping rate (more and more particles escape from the physical domain of
the revtokamap as noted also in [12]).
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The similar scenario of the stochasticity development is described for tokamap
[15] and the radial diffusion of test particles in tokamak [10]. The characteris-
tics of the two last cases is the bounded stochastic sea without regular struc-
tures (uniform particle distribution). This regime does not exist in revtokamap
(nontwist map) case due to the particle escape in the non-physical domain.
Thus, the semi-global chaoticity is generically associated with the revtokamap.

It is worth to mention that in the semi-global chaoticity regime of revtokamap
or global stochasticity region, which is characterized by the mixture of the
regular and irregular domains in tokamap [15], the value of Le depends on the
initial positions of particles (an example is illustrated in Figure 3 for tokamap
[15]). Note that the number of particles with significant value of the Liapunov
exponent increases with the development of stochasticity [10],[15].

4.2 Coexistence of the magnetic and collisional stochasticities

There are two kinds of the stochasticity whose nature is completely different:
magnetic (deterministic) stochasticity and collisional (statistical) stochastic-
ity. While the first one is generated in the configuration space as the growth
of the irregular magnetic domains, the second one is generated in phase (mo-
ment) space as a pitch angle scattering [10]. Both of them govern the particle
radial diffusion which appears as the standard diffusion, strange diffusion or
uniform mixing (non-diffusive) process [10]. The standard diffusion regime is
an exception and corresponds only to the case with highly frequent collisions
and regular magnetic field structure, or magnetic field with partially destroyed
structure.

Let us briefly consider the parameters used in [10]. The Fourier harmonics of
the magnetic field perturbation have been chosen as

n

m
=
7

10
,
2

3
,
7

11
, (8)

where ∆ψ/ψa = 0.1, sb/sbc = 0.33, 1.3, 3.3, and 33, and the collision param-
eters: ν/νt = 0.45, 4.5, and 45, where νt is the characteristic frequency of
passing particle motion [10].

In the absence of collisions under the overlapping threshold, sb/sbc < 1, for
all time Le(t) < 0 (fig. 4). In all other cases, i.e. sb/sbc ≥ 1 and arbitrary
ν/νt, and sb/sbc < 1, ν/νt > 0 the effective radial Liapunov exponent Le(t)
almost monotonically increases with time from negative to positive values,
asymptotically leading to saturation as shown in figure 4 and modeled by
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Fig. 4. The numerically calculated Le and Np vs time: (a), (b) for sb/sbc = 0.33, and
(c), (d) for sb/sbc = 33. The solid, dashed, dot-dashed and dotted curves correspond
to the ν/νt = 0, 0.45, 4.5 and 45, respectively. Note, that the end time in calculation
is ts ≈ 10× td (except for sb/sbc = 0.33 where tend ≈ 0.4 ms) and N = 1000.

equation:

Le(t) = 〈le〉
(

1−
td
t

)

, (9)

where 〈le〉 is the saturated value obtained by numerical fitting [10]. Addi-
tionally, the Kolmogorov entropy is always positive in the global stochasticity
regime [10], [15].

Time t = td at which Le(t) = 0 (table 1 in [10]) for sb/sbc < 0, ν/νt = 0 tends to
infinity. Correspondingly, the number of particles with the positive Liapunov
exponent changes from a few particles below threshold without collisions, to
a value which tends to N as the collisions get more frequent and irregular
structures grow (Figures 4b and 4d). Note, that the above mentioned value td
is characterized by Np = N/2. In the regular and partially destroyed magnetic
field configurations, when the characteristic times are τc(= 1/ν) << td, the
nature of radial diffusion is changed from strange to standard diffusion [10].
On the other hand in the highly developed magnetic stochasticity region the
collisions additionally rearrange the uniform particle distribution which ap-
pears as a ’correlation effect’ and the radial diffusion is never of the standard
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type.

From the point of view of the effective Liapunov exponent, both stochasticities
manifest themselves equally which can be seen in Figure 4. In conclusion, the
Le is a universal measure of the degree of stochasticity in the observed physical
system.

4.3 Statistics of the Liapunov exponent

The statistical properties of the Liapunov exponent in tokamak models are
briefly considered here. In preceding publications, which considered the tokamap
case [15] and the radial diffusion [10], it was shown that the distributions of
the Liapunov exponents are not the elementary ones. The exception is the case
of the radial diffusion for sb/sbc = 0.33, ν/νt = 45, where the Le distribution
is Gaussian. The conclusions are made by calculating the statistical measures:
the first four cumulant coefficients and autocorrelation coefficient for all cases.

0
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0.2 0.6

2000

0

4000

0 0.5 1.0

K=2.5 K=5.8

f

l

f

l

Fig. 5. The distributions of particles with the positive Liapunov exponent for
revtokamap with K = 2.5 > KT and K = 5.8 >> KT are not the elementary
ones.

Here, as an example, the time development of the above mentioned statistical
measures is briefly commented for the revtokamap and parameters in Figure 2.
Observation of the first and third cumulant coefficients over whole parametric
space indicates highly asymmetric distribution of the Liapunov exponents.
Additionally the distribution is more peaked with increasing K, as can be
seen in Figure 5.

The values of the second cumulant increase withK as illustrated in Figure 6. It
is according to the conclusion that the test particles experience larger stochas-
tic domain with developing stochasticity, as well as the discussion considering
Figure 2.

Not considering the details, it is worth mentioning that the autocorrelation
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Fig. 6. The numerically calculated C2 vs time for K = 4.5, 5.5, 5.8 and 6.28.
As mentioned in main text the qualitative changes in the second cumulant time
behaviour can be associated with growth of stochasticity (medium K) and the
effect of escaping particles (high K).

coefficients show the increase of the time correlation with the decrease of K
(similarly to earlier cases [10], [15]). In other words the distribution of the
Liapunov exponents is not the elementary one.

It seems that a detailed statistical analysis of the Liapunov exponent distri-
bution could be a new breakthrough in the theory of transport in tokamak
with partially developed stochasticity.

5 Conclusion

• The concept of the effective Liapunov exponent is applicable for both the
magnetic field stochasticity and the collisional stochasticity;

• The sticking effect (sticking of particles to the regular structures) is clearly
observable in the evolution of the effective Liapunov exponent for regimes
with partially developed stochasticity;

• The presence of the internal transport barrier affects the evolution of the
Le(t);

• The growth of the particle escaping rate for revtokamap is followed by the
growth of Le(t);

• The diverse types of diffusivity can be considered through the different
dynamical behaviours of the Le(t);

• The distribution of the Le(t) is not the elementary one.

This work has been supported by the Ministry of Science and the Environment
Protection of the Republic of Serbia, Project No. 1964.
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