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Theory of solitary waves in complex plasma lattices ∗

Ioannis Kourakis†, Padma Kant Shukla‡ and Bengt Eliasson§

Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie,
Ruhr–Universität Bochum, D-44780 Bochum, Germany

(Dated: October 20, 2004)

A comprehensive analytical theory for nonlinear excitations related to horizontal (longitudinal,
acoustic mode) as well as vertical (transverse, optical mode) motion of charged dust grains in a dust
crystal is presented. Different types of localized excitations, similar to those well known in solid
state physics, are reviewed and conditions for their occurrence and characteristics in dusty plasma
crystals are discussed. By employing a continuum approximation (i.e. assuming a long variation
scale, with respect to the inter-particle distance) a dust crystal is shown to support nonlinear kink-
shaped supersonic solitary excitations, associated with longitudinal dust grain displacement, as well
as modulated envelope localized modes associated with either longitudinal or transverse oscillations.
Although a one-dimensional crystal is considered for simplicity, the results in principle apply to a
two-dimensional lattice if certain conditions are satisfied. The effect of mode-coupling is also briefly
considered. The relation to previous results on atomic chains, and also to experimental results on
strongly-coupled dust layers in gas discharge plasmas, is briefly discussed.

PACS numbers: 52.27.Lw, 52.35.Fp, 52.25.Vy
Keywords: Dusty (complex) plasmas, dust crystals, solitons.

I. INTRODUCTION

Dust contaminated plasmas (dusty plasmas, DP) have been attracting significant interest recently. Particularly
important are dust quasi-lattices, which are typically formed in the sheath region above the negative electrode in
discharge experiments, horizontally suspended at a levitated equilibrium position at z = z0, where gravity and electric
(and/or magnetic) forces balance. The linear regime of low-frequency oscillations in DP crystals, in the longitudinal
(acoustic mode) and transverse (in-plane, shear acoustic mode and vertical, off-plane optical mode) direction(s), is
now quite well understood. However, the nonlinear behaviour of DP crystals is still mostly unexplored, and has lately
attracted experimental [1 - 3] and theoretical [1 - 9] interest.

Recently [5], we considered the coupling between the horizontal (∼ x̂) and vertical (off-plane, ∼ ẑ) degrees of
freedom in a dust mono-layer; a set of nonlinear equations for longitudinal and transverse dust lattice waves (LDLWs,
TDLWs) was thus rigorously derived [5]. Here, we review the nonlinear dust grain excitations which may occur in a
DP crystal (here assumed quasi-one-dimensional and infinite, composed from identical grains, of equilibrium charge q
and mass M , located at xn = n r0, n ∈ N ). Ion-wake and ion-neutral interactions (collisions) are omitted, at a first
step. This study complements recent experimental investigations [1-3] and may hopefully motivate future ones.

II. TRANSVERSE ENVELOPE STRUCTURES.

The vertical (off-plane) n−th grain displacement δzn = zn − z0 in a dust crystal obeys the equation [10, 11]

d2δzn

dt2
+ ν

d(δzn)

dt
+ ω2

T,0 ( δzn+1 + δzn−1 − 2 δzn) + ω2
g δzn + α (δzn)2 + β (δzn)3 = 0 . (1)

The characteristic frequency

ωT,0 =
[

−qU ′(r0)/(Mr0)
]1/2
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is related to the interaction potential U(r) [e.g. for a Debye-Hückel potential: UD(r) = (q/r) e−r/λD , one has

ω2
0,D = ω2

DL exp(−κ) (1 + κ)/κ3 , (2)

where ωDL = [q2/(Mλ3
D)]1/2 is the characteristic dust-lattice frequency scale; λD is the Debye length; κ = r0/λD is

the DP lattice parameter]. The gap frequency ωg and the nonlinearity coefficients α, β are defined via the potential

Φ(z) ≈ Φ(z0) + M

[

1

2
ω2

gδz2
n +

α

3
(δzn)3 +

β

4
(δzn)4

]

+ O[(δzn)5] (3)

(formally expanded near z0, taking into account the electric and/or magnetic field inhomogeneity and charge variations
[12]), i.e. leading to an overall vertical force

F (z) = Fel/m(z) − Mg ≡ −∂Φ(z)/∂z ≈ −M [ω2
gδzn + α (δzn)2 + β (δzn)3] + O[(δzn)4] .

Recall that Fe/m(z0) = Mg. Notice the difference in structure from the usual nonlinear Klein-Gordon equation used
to describe 1d one-dimensional oscillator chains: TDLWs (‘phonons’) in this chain are stable only in the presence of
thanks to the field force Fe/m (via ωg). It should be stressed that the validity of this anharmonicity hypothesis is
indeed suggested real discharge experiments, in particular for low pressure and/or density values, and also confirmed
by ab initio models [13] (see Fig. 1).

FIG. 1: The (anharmonic) sheath (a) force F (z), and (b) force potential V (z), depicted vs. the vertical distance z from the
negative electrode, in plasma discarge experiments; figure reprinted from [13].

Linear transverse dust-lattice excitations, viz. δzn ∼ cosφn (here φn = nkr0 − ωt) obey the optical-like discrete

dispersion relation [14]:

ω2 = ω2
g − 4ω2

T,0 sin2
(

kr0/2
)

≡ ω2
T . (4)

The TDLW dispersion curve is depicted in Fig 2. Transverse vibrations propagate as a backward wave [see that
vg,T = ω′

T (k) < 0] – for any form of U(r) – cf. recent experiments [2]. Notice the lower cutoff ωT,min = (ω2
g −4ω2

T,0)
1/2

(at the edge of the Brillouin zone, at k = π/r0), which is absent in the continuum limit. (for k ≪ r−1
0 ).

Allowing for a slight departure from the small amplitude (linear) assumption, one obtains:

δzn ≈ ǫ (Aeiφn + c.c.) + ǫ2
[

−
2|A|2

ω2
g

+

(

A2

3ω2
g

e2iφn + c.c.

)]

+ ... . (5)

Notice the generation of higher phase harmonics due to nonlinearity. The (slowly varying) amplitude w
(1)
1 ≡ A[ǫ(x −

vgt), ǫ
2t] obeys a nonlinear Schrödinger equation (NLSE) in the form [7]:

i
∂A

∂T
+ P

∂2A

∂X2
+ Q |A|2 A = 0 , (6)
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FIG. 2: The TDLW dispersion relation: frequency (square) ω2
T vs. wavenumber k.

where {X, T } are the slow variables {ǫ(x− vgt), ǫ
2t}. The dispersion coefficient P is related to the curvature of ω(k)

as PT = ω′′
T (k)/2 is negative/positive for low/high values of k. The nonlinearity coefficient

Q =
1

2ωT

(

10α2

3ω2
g

− 3 β

)

(7)

is positive for all known experimental values of the anharmonicity coefficients α, β [3]. For long wavelengths [i.e.
k < kcr, where P (kcr) = 0], the theory [7] predicts that TDLWs will be modulationally stable, and may propagate in
the form of dark/grey envelope excitations (hole solitons or voids ; see Fig. 4a,b). On the other hand, for k > kcr,
modulational instability may lead to the formation of bright (pulse) envelope solitons (see Fig. 4c). Analytical
expressions for these excitations can be found in [7].

FIG. 3: Amplitude modulation of transverse dust lattice oscillations; simulation data provided in the embedded caption; figure
reprinted from [13].

It may be noted that the modulation of transverse dust grain oscillations clearly appears in numerical simulations
[13]; see e.g Fig. 3.
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FIG. 4: TDL envelope solitons of the (a) dark, (b) grey, and (c) bright type.

III. LONGITUDINAL ENVELOPE EXCITATIONS.

The longitudinal dust grain displacements δxn = xn−nr0 are described by the nonlinear equation of motion [8, 10]:

d2(δxn)

dt2
+ ν

d(δxn)

dt
= ω2

0,L (δxn+1 + δxn−1 − 2δxn)

−a20

[

(δxn+1 − δxn)2 − (δxn − δxn−1)
2
]

+ a30

[

(δxn+1 − δxn)3 − (δxn − δxn−1)
3
]

. (8)

The resulting linear mode [14] obeys the acoustic dispersion relation:

ω2 = 4ω2
L,0 sin2

(

kr0/2
)

≡ ω2
L , (9)

where ωL,0 = [U ′′(r0)/M)]1/2; in the Debye case, ω2
L,0 = 2 ω2

DL exp(−κ) (1 + κ + κ2/2)/κ3. The LDLW dispersion

FIG. 5: The LDLW dispersion relation: frequency ωL vs. wavenumber k (solid curve). We have also depicted: the continuous
approximation (dashed curve) and the acoustic (tangent) curve at the origin.

curve is depicted in Fig 5.
The multiple scales (reductive perturbation) technique (cf. above) now yields (∼ ǫ) a zeroth-harmonic mode,

describing a constant displacement, viz.

δxn ≈ ǫ
[

u
(1)
0 + (u

(1)
1 eiφn + c.c.)

]

+ ǫ2 (u
(2)
2 e2iφn + c.c.) + ... .

The 1st-order amplitudes obey the coupled equations [6]:

i
∂u

(1)
1

∂T
+ PL

∂2u
(1)
1

∂X2
+ Q0 |u

(1)
1 |2u

(1)
1 +

p0k
2

2ωL
u

(1)
1

∂u
(1)
0

∂X
= 0 , (10)

∂2u
(1)
0

∂X2
= −

p0k
2

v2
g,L − ω2

L,0r
2
0

∂

∂X
|u

(1)
1 |2 , (11)

where vg,L = ω′
L(k); {X, T } are slow variables (as above). The description involves the definitions: p0 =

−r3
0U

′′′(r0)/M ≡ 2a20r
3
0 and q0 = U ′′′′(r0)r

4
0/(2M) ≡ 3a30r

4
0 (both positive quantities of similar order of magni-

tude for Debye interactions; see in [4, 7]). Eqs. (10), (11) may be combined into a closed equation, which is identical

to Eq. (6) (for A = u
(1)
1 , here). Now, here P = PL = ω′′

L(k)/2 < 0, while the form of Q > 0 (< 0) [8] prescribes
stability (instability) at low (high) k. Envelope excitations are now asymmetric, i.e. rarefactive bright or compressive
dark envelope structures (see Figs.).
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FIG. 6: Bright LDL (asymmetric) envelope solitons: (a) the zeroth (pulse) and first harmonic (kink) amplitudes; (b) the
resulting asymmetric wavepacket.
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FIG. 7: (a) Grey and (b) dark LDL (asymmetric) modulated wavepackets.

IV. LONGITUDINAL SOLITONS.

Equation (8) is identical to the equation of motion in an atomic chain with anharmonic springs, i.e. in the
celebrated FPU (Fermi-Pasta-Ulam) problem. Inspired by methods of solid state physics, one may opt for a continuum
description at a first step, viz. δxn(t) → u(x, t). This may lead to different nonlinear evolution equations (depending
on simplifying assumptions), some of which are critically discussed in [9]. What follows is a summary of the lengthy
analysis carried out therein.

Keeping lowest order nonlinear and dispersive terms, the continuum variable u obeys [10]:

ü + ν u̇ − c2
L uxx −

c2
L

12
r2
0 uxxxx = − p0 ux uxx + q0 (ux)2 uxx , (12)

where (·)x ≡ ∂(·)/∂x; cL = ωL,0 r0; p0 and q0 were defined above. Assuming near-sonic propagation (i.e. v ≈ cL),
and defining the relative displacement w = ux, one has

wτ − a w wζ + â w2 wζ + b wζζζ = 0 (13)

(for ν = 0), where a = p0/(2cL) > 0, â = q0/(2cL) > 0, and b = cLr2
0/24 > 0. Since the original work of Melandsø

[4], various studies have relied on the Korteweg - deVries (KdV) equation, i.e. Eq. (13) for â = 0, in order to gain
analytical insight in the compressive structures observed in experiments [1]. Indeed, the KdV Eq. possesses negative

(only, here, since a > 0) supersonic pulse soliton solutions for w, implying a compressive (anti-kink) excitation for
u; the KdV soliton is thus interpreted as a density variation in the crystal, viz. n(x, t)/n0 ∼ −∂u/∂x ≡ −w. Also,
the pulse width L0 and height u0 satisfy u0L

2
0 = cst., a feature which is confirmed by experiments [1]. Now, here’s a

crucial point to be made (among others [9]): in a Debye crystal, â ≈ 2a roughly (for κ ≈ 1), so the KdV approximation
(i.e. assuming â ≈ 0) is not valid. Instead, one may employ the extended KdV Eq. (eKdV) (13), which accounts for
both compressive and rarefactive lattice excitations (see expressions in [9]; also cf. Fig. 4).

Alternatively, Eq. (12) can be reduced to a Generalized Boussinesq (GBq) Equation

ẅ − v2
0 wxx = h wxxxx + p (w2)xx + q (w3)xx (14)

(w = ux; p = −p0/2 < 0, q = q0/3 > 0); again, for q ∼ q0 = 0, one recovers a Boussinesq (Bq) equation, e.g. widely
studied in solid chains. As physically expected, the GBq (Bq) equation yields, like its eKdV (KdV) counterpart, both
compressive and rarefactive (only compressive) solutions; however, the (supersonic) propagation speed v now does
not have to be close to cL. A detailed comparative study of (and exact expressions for) all of these soliton excitations
can be found in [9].
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FIG. 8: Solutions of the extended KdV Eq. (for q0 > 0; dashed curves) vs. those of the KdV Eq. (for q0 = 0; solid curves): (a)
relative displacement ux; (b) grain displacement u.

V. CONCLUSIONS.

Concluding, we have reviewed recent results on nonlinear excitations (solitary waves) occurring in a (1d) dust
mono-layer. Modulated envelope TDL and LDL structures occur, due to sheath and coupling nonlinearity. Both
compressive and rarefactive longitudinal excitations are predicted and may be observed by appropriate experiments.
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