
HAL Id: hal-00001889
https://hal.science/hal-00001889

Preprint submitted on 15 Oct 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modulated envelope localized wavepackets associated
with electrostatic plasma waves

Ioannis Kourakis, Padma Kant Shukla

To cite this version:
Ioannis Kourakis, Padma Kant Shukla. Modulated envelope localized wavepackets associated with
electrostatic plasma waves. 2004. �hal-00001889�

https://hal.science/hal-00001889
https://hal.archives-ouvertes.fr


cc
sd

-0
00

01
88

9,
 v

er
si

on
 1

 -
 1

5 
O

ct
 2

00
4

Modulated envelope localized wavepackets associated with

electrostatic plasma waves ∗

Ioannis Kourakis† and Padma Kant Shukla‡

Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie,

Ruhr–Universität Bochum, D-44780 Bochum, Germany

(Dated: October 15, 2004)

The nonlinear amplitude modulation of known electrostatic plasma modes is examined in a generic
manner, by applying a collisionless fluid model. Both cold (zero-temperature) and warm fluid de-
scriptions are discussed and the results are compared. The moderately nonlinear oscillation regime is
investigated by applying a multiple scale technique. The calculation leads to a Nonlinear Schrdinger-
type Equation (NLSE), which describes the evolution of the slowly varying wave amplitude in time
and space. The NLSE admits localized envelope (solitary wave) solutions of bright- (pulses) or dark-
(holes, voids) type, whose characteristics (maximum amplitude, width) depend on intrinsic plasma
parameters. Effects like amplitude perturbation obliqueness, finite temperature and defect (dust)
concetration are explicitly considered. The relevance with similar highly localized modulated wave
structures observed during recent satellite missions is discussed.

PACS numbers: 52.35.Mw, 52.35.Sb, 94.30.Tz
Keywords: Electrostatic waves, amplitude modulation, Nonlinear Schödinger equation, envelope solitons.

I. INTRODUCTION

The amplitude modulation (AM) of waves is a generic nonlinear mechanism, which is long known to dominate
finite amplitude wave propagation in dispersive media. In a generic context, the occurrence of AM is manifested as a
slow variation of the wave’s amplitude in space and time, which may be due to parametric wave coupling, interaction
between high- and low- frequency modes or self-interaction of the carrier wave (auto- or self-modulation). The relation
of this phenomenon to effects like secondary harmonic generation and modulational instability (MI), possibly resulting
in energy localization via localized pulse formation, is now long established in fields as diverse as Condensed Matter
Physics, Nonlinear Optics and Biophysics [1, 2, 3, 4]. With respect to plasma modes [5, 6], the occurrence of AM and
MI has been confirmed by experiments related to the nonlinear propagation of electrostatic (ES, e.g. ion-acoustic)
[7, 8, 9, 10] as well as electromagnetic (EM, e.g. whistler) waves. Early numerical simulations of electron cyclotron
waves also predict such a behaviour [11].

FIG. 1: Localized envelope structures in the magnetosphere (reprinted from [13]).
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FIG. 2: Modulated structures, related to ‘chorus’ (EM) emission in the magnetosphere (CLUSTER satellite data; reprinted
from [14]).

In the context of Space Physics, localized modulated wave packets are encountered in abundance e.g. in the Earth’s
magnetosphere, in fact associated with localized field and density variations which were observed during recent satellite
missions [12, 13, 14]; see e.g. Figs. 2 - 1. The occurrence of such wave forms is, for instance, thought to be related
to the broadband electrostatic noise (BEN) encountered in the auroral region [12]. Furthermore, recent studies have
supplied evidence for the relevance of such effects in dust-contaminated plasmas (Dusty or Complex Plasmas), where a
strong presence of mesoscopic, massive, charged dust grains strongly affects the nonlinear and dispersive characteristics
plasma as a medium [15, 16]. The modification of the plasma response due to the presence of the dust gives rise to
new ES/EM modes, whose self-modulation was recently shown to lead to MI and soliton formation; these include
e.g. the dust-acoustic (DA) [17, 18, 19, 20] and dust-ion acoustic (DIAW) ES modes [18, 21, 22, 23], in addition to
magnetized plasma modes, e.g. the Rao EM dust mode [24].

FIG. 3: Electrostatic noise wave forms, related to modulated electron-acoustic waves (FAST satellite data; figure reprinted
from [12]). The co-existence of a high (carrier) and a low (modulated envelope) frequencies is clearly reflected in the Fourier
spectrum, in the right.

The purpose of this brief study is to suggest a generic methodological framework for the study of the nonlinear
(self-) modulation of the amplitude of electrostatic (ES) plasma modes. The general results provided in the following
are valid for various ES modes. The generic character of the nonlinear behaviour of these modes is emphasized, so
focusing upon a specific mode is avoided on purpose. Where appropriate, details may be sought in the references
[19, 22, 23, 25, 26], where some of this material was first presented.

II. THE MODEL: FORMULATION AND ANALYSIS

In a general manner, several known electrostatic plasma modes [5, 6] are modeled as propagating oscillations
related to one dynamical plasma constituent, say α (mass mα, charge qα ≡ sαZαe; e is the absolute electron charge;
s = sα = qα/|qα| = ±1 is the charge sign), against a background of one (or more) constituent(s), say α′ (mass
mα′ , charge qα′ ≡ sα′Zα′e, similarly). The background species is (are) often assumed to obey a known distribution,
e.g. to be in a fixed (uniform) or in a thermalized (Maxwellian) state, for simplicity, depending on the particular
aspects (e.g. frequency scales) of the physical system considered. For instance, the ion-acoustic (IA) mode refers to
ions (α = i) oscillating against a Maxwellian electron background (α′ = e) [5, 25], the electron-acoustic (EA) mode
[5, 26] refers to electron oscillations (α = e) against a fixed ion background (α′ = i), and so forth [5, 6]. As regards
dusty plasma modes, the DA mode describes oscillations of dust grains (α = d) against a Maxwellian electron and
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ion background (α′ = e, i) [16, 19], while DIA waves denote IA oscillations in the presence of inertial dust in the
background (α = i, α′ = e, d) [16, 22, 23]. Finally, this formalism readily applies in the case when a co-existence
of two different populations of the same particle species occurs in the background, e.g. when two different electron
temperatures are present (α′ = c, h, for cold and hot electrons), affecting IA oscillations (α = i) [25]; this situation is
witnessed in the upper parts of the Earth’s atmosphere.

A. A generic fluid description

A standard (single) fluid model for the dynamic species α consists of the moment evolution equations:

∂nα

∂t
+ ∇ · (nα uα) = 0

∂uα

∂t
+ uα · ∇uα = −

qα
mα

∇Φ −
1

mαnα
∇pα

∂pα

∂t
+ uα · ∇pα = −γ pα ∇ · uα , (1)

where nα, uα and pα respectively denote the density, mean (fluid) velocity and pressure of species α. The electric
potential Φ obeys Poisson’s eq.:

∇2Φ = −4π
∑

α′′=α,{α′}

qα′′ nα′′ = 4π e (ne − Zi ni + ...) (2)

Overall charge neutrality is assumed at equilibrium, i.e. qα nα,0 = −
∑

α′ qα′ nα′,0. The parameter γ = cP /cV =
1 + 2/f denotes the specific heat ratio (for f degrees of freedom).

By choosing appropriate scales for all quantities, the above system may be reduced to the following form:

∂n

∂t
+ ∇ · (nu) = 0 , (3)

∂u

∂t
+ u · ∇u = −s∇φ −

σ

n
∇p , (4)

∂p

∂t
+ u · ∇p = −γ p∇ · u (5)

(the index α will be understood where omitted, viz. s = sα). The re-scaled (dimensionless) dynamic variables are
now: n = nα/nα,0, u = uα/c∗, p = pα/nα,0kBTα, and φ = |qα|Φ/(kBT∗), where nα,0 is the equilibrium density

and c∗ = (kBT∗/mα)1/2 is a characteristic (e.g. sound) velocity. Time and space are scaled over appropriately
chosen scales t0 [e.g. ω−1

p,α = (4πnα,0q
2
α/mα)−1/2] and r0 = c∗t0; Tα is the fluid temperature, and T∗ is an effective

temperature (related to the background considered), to be determined for each problem under consideration (kB is
Boltzmann’s constant). The temperature ratio Tα/T∗ is denoted by σ, in this warm model [27] (the so-called cold
model is recovered for σ = 0; see that Eq. (5) then becomes obsolete). The Lorentz force term was omitted, since
wave propagation along the external magnetic field is considered. The system is closed by Poisson’s equation, which
may now be expressed as [39]

∇2φ = −s
[

n +
∑

α′

nα′ qα′/(nα,0 qα)
]

≡ −s (n− n̂) . (6)

Note that the neutralizing background (reduced) density

n̂ = −
∑

α′

nα′ qα′

nα,0 qα
= −

1

sα Zα nα,0

∑

α′

sα′ Zα′nα′ (7)

is a priori [40] a function[41] of the potential φ; furthermore, it depends on the physical parameters (e.g. background
temperature, plasma density, defect concentration, ...) involved in a given problem. The calculation in the specific
paradigm of IA waves is explicitly provided below, for clarity.
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B. Weakly nonlinear oscillation regime

What follows is essentially an implementation of the long known reductive perturbation technique [28, 29, 30, 31],
which was first applied in the study of electron plasma [28] and electron-cyclotron [11] waves, more than three decades
ago.

Equations (3) - (5) and (8) form a system of evolution equations for the state vector[42] S = {n,u, p, φ} which
accepts a harmonic (electrostatic) wave solution in the form S = S0 exp[i(kr − ωt)] + c.c. Once the amplitude of
this wave becomes non-negligible, a nonlinear harmonic generation mechanism enters into play: this is the first
signature of nonlinearity, which manifests its presence once a slight departure from the weak-amplitude (linear)
domain occurs. In order to study the (amplitude) modulational stability profile of these electrostatic waves, we
consider small deviations from the equilibrium state S

(0) = (1,0, 1, 0)T , viz. S = S
(0) + ǫS(1) + ǫ2S(2) + ..., where

ǫ≪ 1 is a smallness parameter. We have assumed that[43] S
(n)
j =

∑∞
l=−∞ S

(n)
j,l (X, T ) eil(kr−ωt) (for j = 1, 2, ..., d+3

V ; the condition S
(n)
j,−l = S

(n)
j,l

∗
holds, for reality). The wave amplitude is thus allowed to depend on the stretched

(slow) coordinates X = ǫ(x − λ) t and T = ǫ2 t; the real variable λ = ∂ω(k)/∂kx ≡ ṽg denotes the wave’s
group velocity along the modulation direction[44] x. The amplitude modulation direction is assumed oblique with
respect to the (arbitrary) propagation direction[45], expressed by the wave vector k = (kx, ky) = (k cos θ, k sin θ).
Accordingly, we set: ∂/∂t → ∂/∂t− ǫṽg∂/∂X + ǫ2∂/∂T , ∂/∂x → ∂/∂x+ ǫ∂/∂X (while ∂/∂y remains unchanged)
and ∇2 → ∇2 + 2ǫ ∂2/∂x∂X + ǫ2 ∂2/∂X2 , in all the above evolution equations.

By expanding near φ ≈ 0, Poisson’s eq. may formally be cast in the form

∇2φ = φ− αφ2 + α′ φ3 − s β (n− 1) , (8)

where the exact form of the real coefficients α, α′ and β (to be distinguished from the species indices above, obvi-
ously) are to be determined exactly for any specific problem, and contain all the essential dependence on the plasma
parameters. Note that the right-hand side in Eq. (8) cancels at equilibrium.

a. A case study: ion-acoustic waves In order to make our method and notation clear, let us explicitly consider
the simple case of ions (α = i and qα = qi = +Zie, i.e. sα = +1) oscillating against thermalized electrons (α′ = e and
qα′ = qe = −e, i.e. sα′ = −1; ne = ne,0e

eΦ/(kBTe)). Adopting the scaling defined above, and using the equilibrium
neutrality condition ne,0 = Zine,0, it is a trivial exercise to cast Poisson’s Eq. (2) into the (reduced) form:

∇2φ = −(ωp,i r0/c∗)
2 [n− eT∗φ/(ZiTe)] ≡ −(n− eξφ) , (9)

where we took: t0 = r0/c∗ = ω−1
p,i and ξ ≡ T∗/(ZiTe). Now, expanding near φ ≈ 0, viz. eξφ ≈ 1 + ξφ + ξ2φ2/2 +

ξ3φ3/6 + ..., we have:

∇2φ ≈ ξφ+ ξ2φ2/2 + ξ3φ3/6 − (n− 1) . (10)

Finally, setting the temperature scale T∗ equal to T∗ = ZiTe, for convenience (viz. ξ = 1)[46], one recovers exactly Eq.
(8) with α = −1/2, α′ = 1/6 and β = 1. It may be noted that this case has been studied, both for parallel modulation
(θ = 0), in Ref. [29], and for oblique modulation, in Refs. [32]; those results are recovered from the formulae below.

b. Amplitude evolution equations By substituting into Eqs. (3) - (5) and (8) and isolating distinct orders in ǫ,
one obtains a set of reduced evolution equations in the new variables. One is then left with the task of isolating

orders in ǫn (i.e. n = 1, 2, ...) and successively solving for the harmonic amplitudes S
(n)
j,l . The calculation, particularly

lengthy yet perfectly straightforward, can be found e.g. in [22] for IA (s = +1) and in [26] for EA waves (s = −1).
The first harmonic amplitudes are determined (to order ∼ ǫ1) as

n
(1)
1 = s

1 + k2

β
ψ =

k

ω cos θ
u

(1)
1,x =

k

ω sin θ
u

(1)
1,y =

1

γ
p
(1)
1 (11)

in terms e.g. of the potential correction φ
(1)
1 ≡ ψ, along with the dispersion relation ω2 = βk2/(k2 + 1) + γσk2.

Furthermore, the amplitudes of the 2nd and 0th (constant) harmonic corrections are obtained in ∼ ǫ2; the lengthy
expressions are omitted here, for brevity [47].

C. The envelope (nonlinear Schrödinger) evolution equation

The potential correction ψ is found to obey a compatibility condition in the form of a nonlinear Schrödinger–type
equation (NLSE)

i
∂ψ

∂T
+ P

∂2ψ

∂X2
+Q |ψ|2 ψ = 0 . (12)
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Both the dispersion coefficient P , in fact related to the curvature of the dispersion curve as P = ∂2ω/2∂k2
x =

[

ω′′(k) cos2 θ + ω′(k) sin2 θ/k
]

/2, and the nonlinearity coefficient Q, which is due to carrier wave self-interaction,
are functions of k, θ and β, as expected (in addition to α, α′, for Q). The exact general expressions obtained [34]
may be tailor fit to any given electrostatic plasma wave problem (via the form of the parameters α, α′, β), in view
of a numerical investigation of the wave’s amplitude dynamics (e.g. stability profile, wave localization; see in the
following).

III. AMPLITUDE STABILITY PROFILE

It is known (see e.g. in Refs. [2, 4, 35]) that the evolution of a wave whose amplitude obeys Eq. (12) depends on
the coefficient product PQ, which may be investigated in terms of the physical parameters involved. To see this, first
check that Eq. (12) supports the plane (Stokes’) wave solution ψ = ψ0 exp(iQ|ψ0|

2T ); the standard linear analysis

consists in perturbing the amplitude by setting: ψ̂ = ψ̂0 + ǫ ψ̂1,0 cos (k̃X − ω̃T ). One thus obtains the (perturbation)

dispersion relation: ω̃2 = P k̃2 (P k̃2 − 2Q|ψ̂1,0|
2) . One immediately sees that if PQ > 0, the amplitude ψ is unstable

for k̃ <
√

2Q/P |ψ1,0|. If PQ < 0, the amplitude ψ is stable to external perturbations.
This formalism allows for a numerical investigation of the stability profile in terms of parameters e.g. like wavenum-

ber k, (oblique) perturbation angle α, temperature Tα, background plasma parameters etc. In figure 4, we have
depicted the region PQ < 0 (PQ > 0) in black (white) color, for IA waves; see in Ref. [23] for details.

FIG. 4: The region of positive (negative) values of the product PQ are depicted in white (black), in the wavenumber k -
modulation angle α plane. The first two plots refer to IA waves: σ = 0 (cold model); σ = 0.05 (warm model). Similar for the
latter two, but for DIA waves (see in the text); we have taken a negative dust density: µ = ne,0/(Zini,0) = 0.5 (from Ref. [23]).
The dust presence strongly modifies the stability profile (rather enhancing instability here).

IV. ENVELOPE EXCITATIONS

The modulated (electrostatic potential) wave resulting from the above analysis is of the form φ
(1)
1 = ǫψ̂0 cos(kr −

ωt+ Θ) +O(ǫ2), where the slowly varying amplitude[48] ψ0(X,T ) and phase correction Θ(X,T ) (both real functions
of {X,T }; see [36] for details) are determined by (solving) Eq. (12) for ψ = ψ0 exp(iΘ). The different types of solution
thus obtained are summarized in the following.

c. Bright-type envelope solitons For positive PQ, the carrier wave is modulationally unstable; it may either
collapse, due to external perturbations, or lead to the formation of bright envelope modulated wavepackets, i.e.
localized envelope pulses confining the carrier (see Fig. 5):

ψ0 =

(

2P

QL2

)1/2

sech

(

X − ve T

L

)

, Θ =
1

2P

[

veX +

(

Ω −
v2

e

2

)

T

]

(13)

[36, 37], where ve is the envelope velocity; L and Ω represent the pulse’s spatial width and oscillation frequency (at
rest), respectively. We note that L and ψ0 satisfy Lψ0 = (2P/Q)1/2 = constant [in contrast with Korteweg-deVries
(KdV) solitons, where L2ψ0 = const. instead]. Also, the amplitude ψ0 is independent from the velocity ve here.

d. Dark-type envelope solitons For PQ < 0, the carrier wave is modulationally stable and may propagate as a
dark/grey envelope wavepackets, i.e. a propagating localized hole (a void) amidst a uniform wave energy region. The
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FIG. 5: Bright type modulated wavepackets (for PQ > 0), for two different (arbitrary) sets of parameter values.
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FIG. 6: Bright envelope soliton propagation, at different times t1 < · · · < t4 (arbitrary parameter values): cf. the structures
encountered in satellite observations, e.g. see Fig. 1.

exact expression for dark envelopes reads [36, 37]:

ψ0 = ψ′
0

∣

∣

∣

∣

tanh

(

X − ve T

L′

)
∣

∣

∣

∣

, Θ =
1

2P

[

veX +
(

2PQψ′
0
2
−
v2

e

2

)

T
]

(14)

(see Fig. 7a); again, L′ψ′
0 = (2|P/Q|)1/2 (=cst.).

e. Grey-type envelope solitons The grey-type envelope (also obtained for PQ < 0) reads [36, 37]:

ψ0 = ψ′′
0 {1 − d2 sech2{[X − ve T ]/L′′}}1/2 ,

Θ =
1

2P

[

V0X −

(

1

2
V 2

0 − 2PQψ′′2
0

)

T + Θ0

]

− S sin−1 d tanh
(

X−ve T
L′′

)

[

1 − d2 sech2

(

X−ve T
L′′

)]1/2
. (15)

Here Θ0 is a constant phase; S denotes the product S = sign(P ) × sign(ve − V0). The pulse width L′′ =

(|P/Q|)1/2/(dψ′′
0) now also depends on the real parameter d, given by: d2 = 1 + (ve − V0)

2/(2PQψ′′2
0) ≤ 1.

V0 = const. ∈ ℜ satisfies [36, 37]: V0−
√

2|PQ|ψ′′2
0 ≤ ve ≤ V0 +

√

2|PQ|ψ′′2
0. For d = 1 (thus V0 = ve), one recovers

the dark envelope soliton.
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FIG. 7: Dark (left) and grey (right) type modulated wavepacket (for PQ < 0). See that the amplitude never reaches zero in
the latter case.

V. CONCLUSION

This work has been devoted to the study of the conditions for occurrence of modulational instability, related to the
formation of envelope localized structures, with respect to electrostatic waves propagating in an unmagnetized plasma.
We have shown that the envelope modulated electrostatic wave packets which are widely observed during satellite
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missions and laboratory experiments, may be efficiently modeled by making use of a reductive perturbation (multiple
scales) technique [28]. Explicit criteria are thus obtained, which determine the wave’s modulational stability profile
and predict the occurrence of localized envelope excitations of either bright or dark/grey type. This methodology
allows for an investigation of the nonlinear modulational profile of a (any) given electrostatic mode. Generalization
in the presence of a magnetic field is on the way and will be reported soon.
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[38] All the expressions from (9) and on in in Ref. [19] are exactly valid here; this is due to the generic form of the reduced
Eqs. (3) - (5) and (8) of the model.

[39] A factor ω2
p,αt

2
0 is omitted in the right-hand side of Eq. (6), since equal to 1 for t0 = ω−1

p,α.
[40] This is only not true when the background is assumed fixed, e.g. for EA waves (i.e. sα = −sα′ = −1, nα′ = ni = const.),

where n̂ = Zini/ne,0 = const.
[41] Note that n̂ = 1 for φ = 0, due to the equilibrium neutrality condition.
[42] Note that S ∈ ℜd+3 in a d− dimensional problem (d = 1, 2, 3).
[43] In practice, only terms with l ≤ n do contribute in this summation. This simply means that up to 1st harmonics are

expected for n = 1, up to 2nd phase harmonics for n = 2, and so forth.
[44] This is a - physically expected - constraint which is imposed by the equations for n = 2 and l = 1 (1st harmonics at 2nd

order). Alternatively, one may assume a dependence on Xn = ǫnx (plus a similar expansion for y, z and t) for n = 0, 1, 2, ...;

the condition for annihilation of secular terms then reads: ∂A
(1)
1 /∂T1 + (∂ω/∂kx)∂A

(1)
1 /∂X1, i.e. A

(1)
1 = A

(1)
1 (X1 − ṽgT1)

(for any of the 1st harmonic amplitudes A
(1)
1 ∈ {S

(1)
1,j }), which essentially amounts to the same constraint.

[45] Cf. Refs. [32, 33], where a similar treatment is adopted.
[46] Note that a different choice for T∗ would lead to a modified right-hand-side in Eq. (8), i.e. a factor ξ 6= 1 would precede

the first term (in φ). This might, of course, also be a legitimate choice of scaling; however, the following formula are not
valid - and should be appropriately modified - in this case. Obviously though, the qualitative results of this study are not
affected by the choice of scaling.

[47] The exact expressions for the 2nd order solution can be found e.g. in Ref. [19]; refer to Eqs. (21) - (26) therein, which are
exactly valid here, as they stand.

[48] In fact, the potential correction amplitude here is ψ̂0 = 2ψ0, from Euler’s formula: eix + e−ix = 2 cosx (x ∈ ℜ). Note that

once the potential correction φ
(1)
1 is determined, density, velocity and pressure corrections follow from (11).


