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Chaotic particledynamicsin free-electron laser swith coaxial wiggler

B. Farokhi and S. Maobarakabadi
Islamic Azad University of Arak, Arak, Iran

The motion of a reativisic tet dectron in a freedectron laser with an ided coaxid-
wigdler fidd and uniform axid-guide fidd ae conddered We have investigated the group |,
I, Il orbits and findly have found that orbits become chaotic at sufficiently high beam
dendty. We have changed beam radii, densty of dectron beam, intensity of coaxid megnetic
fidd, and intengty of magnetic guide fild as a parameter for finding cheotic area An
andyticd estimate of the threshold value of the sdf-fidd parameter for the onsat of chaos is
obtained and found to be in good agreement with computer smulations. The threshold vaue of
the wiggler amplitude for the onsst of chaos is estimated anayticdly and confirmed by
computer smulations for spatid case where sdf-field effects are negligibly smdl. Moreover, it
is shown that the particle motion becomes chaotic on a time scde comparable with the beam

trangit time through afew wiggler periods.

Il INTRODUCTION

Hamiltonian chaos has been an active area of
research in physcs and agpplied sciences The
classc work of kadmogovov, Amadd , axd
Moser (KAM) shows that the generic phase
gace of integrable dasscd  Hamiltonian
systems . subject to amdl perturbations,
contains three types of orbits dable periodic
orbits dable ques  peiodic  orbits  and
chaatic orbits.

Ealier invedtigations of chaos in free —
dectron lasrs have focused on chaotic
behavior in patide orbits induced by
Sdeband and radiaion fidds. Riyopoulos and
Tang have andyzed sde hand- induced chaos
in the dectron motion in the fidd
configuration condsing of an ided hdica-
wiggler fidd, the eectromagnetic sgnd
wave fidd, and the Sdeband wave fidd.
Chen and Schmidt have shown that the
dectromagnetic sgnd wave can dso cause
chaotic dectron motion in the combined
hdicawiggler and axid guide fidd
configuration. Then Billardon has observed
evidence of chaotic behavior in the radiaion
fidd in a modulaed sorage rugfd. Miche-
Lours etal are shown that the motion of an
dectron in a linearly polaized wiggler with
an axid guide fidd is non integrable and
chaotic. Chen and Davidson [5 6 have found
the dectron dynamics in the sdf-magnetic
fidd produced by the non-neutrd eectron
beam in the fidd configuration condging of
a condant amplitude heica-wiggler

magnetic fidd, and uniform axid magnetic
field become chaotic.

In this paper, we andyze the motion of a
raivigic dectron in the fidd configuration
congging of a coaxia wiggler, and a uniform
axid magndtic fidds. It is shown that the
motion is nonitegrable. Nonzero  Lyapunov
exponents are generated to demondrate the
nontegrablility and choaticity of the motion.

The organization of this paper is as follows.

In see. |l, theoreticd formulation of the
problem is andyzed. In see . Ill, the results @
numericd computations and some
conclusions are presented.

IL,THEORETICAL FORMULATION
The motion of one éectron in a free eectron
laser (FEL) with coaxid wiggler B, and a
guide fidd B, is consdered. The sdf-fidd
produced by the eectron beam are neglected.
The motion of the dectron takes place in the
coaxid wiggler. The totd magnetic fidd

ingde a coaxid wiggler will be taken to be of
the form

B =B,f+B,z, D
Br = BWFI’ (r ! Z)' (2)
Bz = BO + Bw I:z (r ’ Z), (3)

where B, is a uniform geic axid guide fidd,
and F, and F, ae known functions of
cylindrica coordinates r and z.

F, = F,,Sinlk,z) +F,3Sin3k, 2), 4

F, = FyCodk,, z)+F,Cog3k,2), ®)

where
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ad n=13 ; R, and R,, ae the inner and
outer radii of the ocoaxid ~waveguide,
ky=2/1, Where |, isthe wiggler (spatid )
peiod, ad 1, I, , Ko ,and K, are modified
Bes= functions The  corresponding
Hamiltonian is

As the Hamiltonian is not an explicit function
of time, H is a congtant of motion. Because H
is independent  of j, it folows tha
p =Const

For numericd cdculdion, dimensonless
vaidbles are introduced: p, = p,/mc , Z=k,z
, F=kyr , W, =W, /ck, With w,=eB,/m |,
a, =eB, /mck, , g=H/mc? , t =ck,t .

The trgectory of an dectron have plotted in
the Ref. [7]. Chaos is infact, confirmed by
performing Poincare sections and cdculaing
nonzero Lyapunov exponents. We tried to
find a canonicd trandormaion, for finding
two other condants but having faled in
finding dl congants f motion. Poincare maps
have been plotted to demondrate the non
integrability of the motion. For this purpose,
the following normaized equations of motion
derived from Eq (11), have been solved
numericaly
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