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Introduction  In some tokamak experiments the safety factor q is very close to unity in 
a wide area in the plasma center, and increases up to qa ~ 3-5 (or larger) in the edge 
region. This is the case for instance in tokamak discharges in the so-called “hybrid” 
scenario [1], and in the experiments with the spherical tokamak NSTX reported in Ref. 
[2]. Static equilibria with this type of q-profile are susceptible to an m = n = 1 ideal, 
internal kink instability, with an eigenfunction of convective, or “quasi-interchange” 
character [3-5]. By the absence of normal sawteeth it seems, however, that the ideal 
quasi-interchange instability does not develop for instance in the hybrid scenario dis-
charges in JET reported in Ref. [6]. In NSTX, on the other hand, onset of m = n = 1 
MHD activity is observed, but some sort of stabilization of this activity by the toroidal 
rotation of the plasma seems to take place [7]. The rotation in NSTX is so strong 
(rotation frequencies up to 30 % of the Alfvén frequency) that the modification of the 
plasma equilibrium due to the centrifugal force is detectable [2]. In the JET experiments 
[6] the rotation, due to neutral beam injection (NBI), is probably much weaker, but can 
nevertheless be expected to be of the order of a few percent of the Alfvén frequency [1]. 
 
Brunt-Väisälä effect  A potential mechanism for rotational stabilization of the quasi-
interchange mode in the experiments above, as well as in other, similar experiments, is 
the Brunt-Väisälä (BV) effect, previously found to be able to stabilize both the usual 
(Bussac), ideal internal kink mode [8] as well as the Mercier modes [9] in tokamaks. In 
the present work the BV effect on the quasi-interchange mode is investigated by extend-
ing the ideal MHD theory of this mode in toroidal plasmas, developed in Refs. [4-5], to 
equilibria with toroidal mass flow. The expression for the BV frequency defined in 
Refs. [8-9] is given by 
 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

Γ
−

Γ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Γ

+
++−

Γ
+

++=

2/1

2

4222

2

22

2
22 11

24
2

11
4

2
11

q
MMM

q
MM

q
sssss

sBV ωω . (1) 

 
It was found in Refs. [8-9] that stabilization of the internal kink and Mercier instabilities 
occurs when the BV frequency above exceeds the growth rate of the instability without 
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plasma rotation. In Eq. (1), the rotation frequency is assumed to be of order Ω ~ ωs ~ 
εωA, where  is the sound frequency, ε = r/R( ) 0

2/1
00 // Rps ρω Γ= 0 << 1 the inverse 

aspect ratio,  the Alfvén frequency and B( ) 2/1
0000 / ρµω RBA = 0  the toroidal magnetic 

field. Furthermore,  ~ 1 is the sonic Mach number, R( 2/1
0

2
0

2
0 2/ pRM s Ω= ρ ) 0 the major 

radius of the plasma center and Γ (= 5/3) the adiabatic index.  
 
Stability analysis  A system of equations describing the coupling of the (m, n) = (1, 1) 
and (m, n) = (2, 1) radial components ξ1 and ξ2 of the Lagrangian plasma displacement 

 ~ exp(–iωt) in a rotating, toroidal plasma with large aspect ratio and circular cross 
section was derived from the Frieman-Rotenberg equations in Ref. [8]. We apply this 
system to a situation where the magnetic shear is assumed small and q = 1 – ∆q in the 
region 0 ≤ r ≤ r

ξ

1, where ∆q ~ ε, whereas in the edge region r1 ≤ r ≤ a, q – 1 ~ 1 and the 
shear is of order unity. Furthermore, we assume that Ω is independent of r (rigid 
rotation) and that the pressure profile is parabolic, p0(r) = p0(0)(1 – r2/a2). In this case 
one obtains a constant value of βp in the low-shear region, given by , 
where  and ε

)2/( 2
0 ap εββ =

2
0000 /)0(2 Bpµβ = a = a/R0, and it turns out that the ideal MHD stability 

problem of the quasi-interchange mode in the rotating plasma is given by the following 
equation for ξ1 in the region 0 ≤ r ≤ r1, together with an integral condition on ξ1 coming 
from the boundary conditions at r = r1: 
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Here, , )0(/ 121 +== + rrdrdxrC 1̂4/)3( rCD += ,  is the solution of the m = 2 
side-band equation for r

+= 22 xaεξ

1 ≤ r ≤ a, and  is normalized as . The m = 1 
amplitude ξ

+
2x 1)( 12 =+ rx

1 satisfies, in addition, the boundary conditions ξ1(r1) = 0 and ξ1′(0) = 0. 
Furthermore, ωD ≡ ω + Ω is the Doppler-shifted mode frequency as well as the eigen-
value of the problem (2a, b). Notice that ωD in general is complex, ωD = ωDr + iωDi, with 
positive ωDi indicating instability. The normalized radius and frequencies in Eq. (2a) are 
defined as , , arr /ˆ = Aaωε/ˆ Ω=Ω AaDD ωεωω /ˆ =   and  Aass ωεωω /ˆ = . A detailed 
derivation of the Eqs. (2a, b) will be published elsewhere [10]. 
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 In the case Ω = 0, Eq. (2a) can be integrated analytically because of the property 
 of the eigenvalue [4] (we use the notation 22 ˆˆ sωγ << γω →Di , and Aaωεγγ /ˆ =  in the 

non-rotating case). Assuming that ∆q is a constant, the eigenvalue becomes 
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Expressed in terms of  this result is consistent with the stability criterion 
(26) derived by Hastie and Hender in Ref. [4].  

pa βεβ 2
0 2=

 When the plasma rotates, we solve the eigenvalue problem (2a,b) numerically with 
a q-profile given by: 
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An example of this q-profile, with ∆q = 0.05, r1 = 0.5a and qa = 4, is shown in Fig. 1. In 
Fig. 2 the growth rate ωDi of the quasi-interchange instability is shown as a function of 
∆q. With increasing rotation, the growth rate as well as the range of unstable ∆q is seen 
to decrease, and at sufficiently strong rotation the mode becomes stable for all ∆q. This 
behaviour is illustrated in more detail in Fig. 3, where both the real and imaginary parts 
of ωD are plotted as functions of the rotation frequency. It is seen that the mode 
becomes fully stabilized for Ω > Ωcrit, where Ωcrit ≈ 0.08ωA. In the unstable regime, 
there is also a small, negative real part of the mode frequency. At the rotation frequency 
where the mode is stabilized, ωDr changes sign and approaches, as Ω increases, the BV 
frequency shown by the dashed curve in Fig. 3. The BV-frequency is calculated from 
Eq. (1) with  r = 0 (and q = 1), which gives the lowest  BV-frequency in the low-shear 
region for the rotation frequency in the figure. Thus, the eigenfrequency of the quasi-
interchange mode approaches the lowest BV-frequency in the low-shear region as the 
rotation frequency becomes large compared with Ωcrit. The reason for this behaviour is 
explained in Ref. [10]. Furthermore, it is shown in Ref. [10] that Ωcrit can be expressed 
in the form 
 

Hr pcrit
4/3

1̂
ˆ β=Ω , (5) 

 
where the quantity H depends on  and on the q-profile in the edge region r1̂r 1 ≤ r ≤ a, 
and has to be calculated numerically in general. It turns out, however, that H ≈ 1 for a 
large class of q-profiles and radii r1 of the low-shear region, as shown in Fig. 4 for the 
values qa = 3, 4 and 5 in Eq. (4). Thus, Eq. (5) shows a generic scaling of the critical 
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rotation frequency with r1 and with βp of the form  ~ .  The critical rotation 
frequency is in Fig. 5 shown as a function of β

critΩ̂ 4/3
1̂ pr β

p for εa = 0.3 and qa = 4.0, and for a few 
values of r1/a. The solid curves are calculated from the exact values of H, whereas the 
dashed curves are obtained from an analytical approximation valid for small values of 
r1/a given by  [10]. It is seen that, unless β0

4/3
1 /257.1/ Rr pAcrit βω =Ω p and r1/a both 

are rather large, rotation frequencies of the order of a few percent of the Alfvén 
frequency are sufficient to stabilize the quasi-interchange mode. 
 By omitting the second term in Eq. (2a), the eigenvalue problem can be formulated 
as the integral condition (∆q = 0 is assumed here) [10] 
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Here,  is given by Eq. (1) and  is the (high-frequency) root obtained if a plus 
sign is used in front of the square root in Eq. (1). Furthermore, 

2
BVω 2

HFω

BVω̂  and HFω̂  are norma-
lized in the same way as the other frequencies in Eq. (2a), and  is a positive 
quantity that becomes small as the rotation frequency becomes large compared with 
Ω

22 ˆˆ DBV ωω −

crit, as seen in Fig. 3. Furthermore, the BV-frequency is always smaller than, and for 
moderate Mach numbers (< 1) much smaller than, the sound frequency. This is shown 
in Fig. 6, which illustrates the radial dependence of  and the ratio (r)/ (0) for 
several Mach numbers . Obviously,  <<  holds up to 
relatively high Mach numbers, and we therefore also have  in Eq. (6). As 
concerns the frequency , this quantity is given by  when the Mach number is 
small [8].  Then, for Mach numbers that are not too large, Eq. (6) is approximated by 
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Thus, with increasing rotation frequency, and thereby increasing BV-frequency, the 
other parameters remaining fixed,  has to increase also in order to fulfill the integral 
condition (7), and at sufficiently strong rotation the mode therefore becomes stable. If 
we assume, in addition, that r

2
Dω

1/a is small, we can approximate  in the integral by its 
value for r = 0. This leads, by using Eq. (3), to the eigenvalue . Thus, 
we obtain the same stability condition for the quasi-interchange mode, 

2
BVω

222 )0( γωω −= BVD

γω >BV , as was 
found previously for the stabilization of the Bussac and Mercier modes in Refs. [8-9]. 
 
Conclusions  The effect of toroidal rotation on the ideal MHD stability of the “quasi-
interchange” mode in tokamaks with q ≈ 1 in a wide area in the plasma core has been 
analyzed. This stability problem can be formulated as Eq. (2a) for the m = 1 amplitude 
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ξ1 in the region where q ≈ 1 (0 ≤ r ≤ r1), together with the integral condition in Eq. (2b) 
and the boundary conditions ξ1(r1) = 0 and ξ1′(0) = 0 for ξ1. For a static plasma, the 
eigenvalue problem (2a,b) reproduces the pressure-driven, quasi-interchange, m = n = 1 
instability previously analyzed in Refs. [4-5]. The numerical solution of Eqs. (2a,b) 
presented here shows that this mode is stabilized by rigid, toroidal rotation. The sta-
bilization is caused by the modified plasma equilibrium, and associated Brunt-Väisälä 
(BV) frequency, created by the centrifugal force. In the regime of plasma rotation where 
the stabilization occurs, the eigenvalue is given approximately by , 
where γ is the growth rate of the mode in the absence of rotation and ω

222 γωω −= BVD

BV is the lowest 
BV frequency in the low-shear region of the plasma. Thus, the stabilizing BV mecha-
nism competes with the drive from the quasi-interchange instability, and stability is 
achieved when ωBV exceeds γ, which is the same stability condition as was found earlier 
for rotational stabilization of the usual ideal, internal kink mode and for the stabilization 
of Mercier modes that are unstable in the absence of rotation in Refs. [8-9]. 
 Comparison with experiments with low-shear q-profiles in JET  [6] and in NSTX 
[2, 7] indicates that the critical rotation for stabilization of the ideal m = n = 1 mode 
found here appears to be of the same order of magnitude as the actual plasma rotation, 
driven by neutral beam injection, in these experiments (with some uncertainty, though, 
for the actual rotation frequency in the JET experiments). The Brunt-Väisälä 
mechanism could therefore be of interest for the interpretation of the m = n = 1 activity 
in these, and in similar tokamak discharges. 
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 in Eq. (4), used in the numerical calculations. interchange instability as a function of ∆q for 
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