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Abstract. Doppler reflectometry is considered in slab plasma model in the

frameworks of analytical theory. The diagnostics locality is analyzed for both regimes:

linear and nonlinear in turbulence amplitude. The toroidal antenna focusing of probing

beam to the cut-off is proposed and discussed as a method to increase diagnostics

spatial resolution. It is shown that even in the case of nonlinear regime of multiple

scattering, the diagnostics can be used for an estimation (with certain accuracy) of

plasma poloidal rotation profile.

PACS numbers: 52.70.Gw, 52.35.Hr, 52.35.Ra

1. Introduction

One of widespread methods used nowadays for plasma rotation velocity measurements

is Doppler reflectometry [1, 2, 3]. This technique provides measuring fluctuations

propagation poloidal velocity which is often shown to be dominated by plasma poloidal

rotation velocity [3]. The method is based on plasma probing with a microwave beam

which is tilted in respect to plasma density gradient (see figure 1). A back-scattered

signal with frequency differing from the probing one is registered by a nearby standing

or the same antenna. The information on plasma poloidal rotation is obtained in

this technique from the frequency shift of the backscattering (BS) spectrum which is

supposed to originate from the Doppler effect due to the fluctuation rotation.

Analytical theory of Doppler reflectometry was developed in recent papers [4, 5, 6],

using analytical approach in slab plasma model, which is reliable for elongated plasma

of large tokamaks. The linear case of probing wave single-scattering is considered there

as well as the nonlinear process of the signal formation due to multi-scattering effect,

which is essential for long probing ray trajectory, typical for large fusion devices. The

diagnostics spatial and wavenumber resolution is determined and means to increase the

method locality are discussed.

The present paper is devoted mainly to two following topics. First of all, we modify

the linear theory of Doppler reflectometry taking into account possible antenna focusing

in toroidal direction, which allows the diagnostics spatial resolution to be enhanced
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Figure 1. Diagnostics scheme.

without deteriorating the poloidal wavenumber selectivity, which takes place in case

of poloidal focusing, discussed in [4]. Secondly, we compare the diagnostics locality

in linear and non-linear regime and dwell upon experimental evidences, allowing us to

distinguish these two cases.

2. Toroidal focusing in linear theory of Doppler reflectometry

In our consideration we follow our paper [4], taking into account possible antenna

focusing in toroidal direction, which was not considered there. The study is made in the

frameworks of geometrical optics (or WKB) approach, and the reader is referred to [4]

for more accurate procedure, applied to the cut-off vicinity, where WKB approximation

is not valid.

We consider normalized antenna electric field in the following form

~Ea(~r) = ~ez

+∞
∫

−∞

dkydkz

(2π)2
W (x, ky, kz)f(ky, kz)e

ikyy+ikzz

where y, z axes denote poloidal and toroidal directions. Factor f(ky, kz) takes into

account the antenna pattern describing antenna radiation in vacuum

f(ky, kz) =

√

c

8π

+∞
∫

−∞

dy dzE0(x = 0, y, z)e−ikyy−ikzz

where E0 is vacuum antenna field, differing from Ea by the absence of the reflected wave

contribution. We consider tilted gaussian antenna pattern

f(ky, kz) = 2
√

πρyρz exp

{

−1

2

[

ρ2
y (ky −K)2 +

(

ρ2
z −

icR
ω

)

k2
z

]}

(1)

where a possibility to provide antenna focusing in toroidal direction is taken into account.

Corresponding parameter R in case of

cR
ω

≫ ρ2
z (2)
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has a meaning of a wavefront curvature radius at the antenna. In (1) K corresponds

to the antenna tilt (K = ω/c sinϑ, where ϑ denotes tilt angle in respect of the density

gradient).

According to [7] radial distribution of ordinary wave electric field in WKB-

approximation has the following form:

W (x, ky, kz) = 4

√

2πω

c2kx(x, ky, kz)
exp

[

i

∫ xc(ky ,kz)

0

kx(x
′, ky, kz) dx′ − iπ

4

]

× cos

[

π

4
−

∫ xc(ky,kz)

x

kx(x
′, ky, kz) dx′

]

where k2
x(x, ky, kz) = k2(x) − k2

y − k2
z = [ω2 − ω2

pe(x)]/c2 − k2
y − k2

z , the turning point

xc(ky, kz) is determined by the equation

kx [xc(ky, kz), ky, kz] = 0

and x = 0 corresponds to the plasma border.

The scattering signal according to reciprocity theorem [8, 9] can be written as

As(ωs) =
ie2

4meω

√

Pi

∫ +∞

−∞

δnΩ(~r)E2
a(~r) d~r

where Pi is the probing wave power and δnΩ(~r) is the density fluctuation with

frequency Ω.

Using the same procedure as described in [4] we consider the turbulence to be

slightly inhomogeneous along x direction and rotating with plasma in the poloidal

direction, so that the density fluctuation correlation function takes the form

〈δn(x, y, t1)δn(x′, y′, t2)〉 = δn2

(

x + x′

2

)
∫ +∞

−∞

dκ dq dΩ

(2π)3
|ñ (κ, q, Ω)|2

× exp

[

iκ(x − x′) + iq(y − y′) − iΩ(t1 − t2) − iqv

(

x + x′

2

)

(t1 − t2)

]

(3)

where v(x) is the radial distribution of the plasma poloidal velocity. This allows us to

obtain a spectral power density of the received signal in the following form [4]

p(ωs) = 〈|As|2〉 = Pi

∫ +∞

−∞

dx δn2(x)S(x) (4)

The scattering efficiency S(x) can be shown to consist of backscattering (BS) and

forward scattering (FS) contributions

S(x) =
1

2

(

e2

mec2

)2 ∫ +∞

−∞

dq

2π
[SBS(x, q) + SFS(x, q)]

where

SBS(x, q) =
|f (−q/2, 0)|4
k2

x (x,K, 0)

∑

m=±1

|ñ [2mkx (x,K, 0) , q, Ω− qv(x)]|2

×
{

ρ4
y +

c2

ω2
[Λ0 + mΛ(x)]2

}−1/2 {

ρ4
z +

c2

ω2
[Λ0 −R + mΛ(x)]2

}−1/2

(5)
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Here m = ±1 corresponds to BS after and before the cut-off in respect of the probing

ray propagation. The FS efficiency takes the form

SFS(x, q) = 2

{

ρ4
y +

c2

ω2
Λ2

0

}−1/2 {

ρ4
z +

c2

ω2
(Λ0 −R)2

}−1/2
∣

∣

∣
f

(

−q

2
, 0

)
∣

∣

∣

4

× exp

{

−1

2

[

ρyqΛ(x)

Λ0

]2
}

k−2
x (x,K, 0)

∣

∣

∣

∣

ñ

[

q2Λ(x)

2k(x)Λ0
, q, Ω − qv(x)

]
∣

∣

∣

∣

2

(6)

where

Λ(x) =
ω

c

∫ xc(K,0)

x

dx′

kx(x′,K, 0)
, Λ0 ≡ Λ(0)

We consider expressions (5), (6) from the diagnostics locality point of view. First of

all, the locality is determined by reversed square of the radial wavenumber k−2
x (x,K, 0).

This factor, corresponding to WKB-behavior of antenna electric field, underlines the

cut-off vicinity, but for unfavorable density profiles, for example, linear or bent down

ones, it does not suppress enough plasma periphery contribution. For the BS the second

factor is fluctuations spectral density |ñ [±2kx (x,K, 0) , q, Ω]|2. Due to the dominance of

long scales in the turbulence spectrum this factor underlines the cut-off vicinity, where

kx (x,K, 0) is small. For FS contribution the signal suppression due to the acquisition

by antenna pattern periphery, described by the factor

exp

{

−1

2

[

ρyqΛ(x)

Λ0

]2
}

plays an analogical role, it underlines the cut-off vicinity, where Λ(x) is small.

Additional localization for BS contribution can be provided by antenna focusing to

the cut-off, which occurs at R = Λ0. If the beam is narrow enough in toroidal direction,

so that condition (2) is satisfied for R = Λ0, the factor

{

ρ4
z +

c2

ω2
[Λ0 −R + mΛ(x)]2

}−1/2

=

{

ρ4
z +

[

cΛ(x)

ω

]2
}−1/2

is large in the cut-off vicinity. It should be noted that, the focusing in the poloidal

direction can not give us such an effect, due to the fact, that we can not provide

narrow antenna beam in poloidal direction without deteriorating the diagnostics poloidal

wavenumber selectivity, which is described by |f (−q/2, 0)|4.
Considering toroidal focusing influence on the FS efficiency, it should be noted that

the focusing increases the amplitude of FS signal (6), but does not improve its locality.

The influence of the factors discussed on the spectrum of the registered signal

is illustrated in the modelling, described in [4], and the results can be found below

in section 4 (see figure 3 and figure 4) in comparison with spectra, modelled in nonlinear

diagnostics regime. Now let us dwell upon the spectrum modelling, illustrating the

antenna toroidal focusing influence. We consider the density profile of DIII-D tokamak

plasma with internal transport barrier (figure 2(a)) [10]. The probing is performed

at different frequencies and therefore with different cut-off positions. Here we take
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Figure 2. Antenna focusing influence. (a) DIII-D density profile [10]. (b) Turbulence

amplitude assumed. (c) Poloidal velocity profile (——), and velocity estimated using

Doppler reflectometry signal frequency spectrum shift: •—using antenna focusing,

◦—without focusing.

into account the distance between antenna and the plasma, which was assumed to be

equal 1 m, and suppose that focusing is performed into narrow in the toroidal direction

spot (ρz ∼ 1 cm) to provide condition (2) to be satisfied for R = Λ0. Besides that we

take into account the turbulence suppression in the barrier region (see figure 2(b)).

Despite the fact that density profile in the barrier region is favorable for the

diagnostics [4], antenna focusing makes the spectrum shift more adequate to the behavior

of plasma velocity in the cut-off.

3. Noninear theory of Doppler reflectometry

In the section we review briefly the nonlinear analytical theory of Doppler reflectometry,

which is considered in details in [5, 6]. In case of long enough trajectory length and

sufficient turbulence amplitude, when the following criterion [11]

γ ≡ ω2
i

c2

(

δn

nc

)2

xcℓcx ln
xc

ℓcx

& 1 (7)

is satisfied, where ωi is the probing frequency, δn/nc is the turbulence amplitude,

normalized to the density in the cut-off, xc is the distance to the cut-off, and ℓcx is the

turbulence radial correlation length, we can neglect the BS during the wave propagation

and consider multiple FS of the probing wave only. The density fluctuations in this case

can be taken into account as a phase modulation during the probing wave propagation

to the cut-off and backward. It can be shown that condition (7) holds true in large

plasma devices even at small density perturbation level δn/nc . 10−2.
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The wave electric field is determined by Helmholtz equation

∆E + [k2(x) + δk2(x, y, t)]E = 0

where

δk2(x, y, t) = −ω2
i

c2

δn(x, y, t)

nc

is the fluctuation of the wavenumber (here it is given for ordinary wave, but it can be

easily written for extraordinary wave too). The electric field can be represented in the

following form

E(l, y) =

∫ +∞

−∞

G[l, y|0, y0; t]E
(i)
a (y0) dy0 (8)

where l is a coordinate along the ray trajectory and

G [l, y|0, y0; t] =

√

ωi

2πcl
exp

{

iωi

2c

[

(y − y0)
2

l
− 1

nc

∫ l

0

n
[

x(l′), y(0)(l′), t
]

dl′
]

− iπ

4

}

Equation (8) describes the transportation of initial condition from the plasma border,

where probing antenna is situated, inside the plasma along the ray trajectory. A function

G contains the turbulence phase shift in question, which is determined by the density

fluctuations and represents multiple FS effect.

According to the reciprocity theorem [8, 9], the registered signal is determined as

an integral over all plasma border of the wave reflected by the cut-off

As =
c

16π

∫ +∞

−∞

dyE(2Λ0, y)E(r)
a (y) (9)

with a weight function, determined by the electric field of the acquisition

antenna E
(r)
a (y), if we consider it as probing one. Actually, due to narrow in the

wavenumber space antenna pattern, the main component in this signal is formed due to

the multiple FS, which changes essentially a poloidal wavenumber of the probing wave,

meanwhile the radial wavenumber changes the sign due to reflection off the cut-off.

To obtain the spectrum of the registered signal and at the same time to analyze the

diagnostics locality, as above we consider inhomogeneous turbulence, poloidally rotating

with a plasma (3). Averaging |As|2 (9) we obtain the spectrum in question [5, 6]

S(ω) ∝ exp



















−1

2

[

ω − ωi + 2K
(

ρ−2 + L̂q2
)−1

L̂q2v

]2

L̂ (Ω2 + q2v2) −
(

ρ−2 + L̂q2
)−1 (

L̂q2v
)2



















(10)

Here an operator L̂ has the meaning of the integration over distance from the plasma

border to the cut-off, with the averaging over the turbulence spectrum

L̂ξ ≃ ω2
i

c2n2
c

∫ xc

0

dx δn2(x)

∫ +∞

−∞

dκ dq dΩ

(2π)3
|ñ (κ, q, Ω)|2 ξ

×
{

ω2
i /c

2 δ(κ) k−2(x), xc − x > ℓcx/4

4L, xc − x ≤ ℓcx/4
(11)
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where L = [d ln ne(x)/dx|x=xc
]−1 is the density variation scale in the cut-off.

The integration in (11) is performed with a weight function, proportional to the

inhomogeneous turbulence amplitude, and the factor, underlying the cut-off vicinity.

To analyze this expression for signal spectrum we consider simple case of

homogeneous plasma poloidal rotation v(x) = v, which gives L̂q2v = vL̂q2. In case

of strong nonlinear regime, when antenna beam divergence is completely determined by

the turbulence (ρ2L̂q2 ≫ 1) it can be seen that spectrum frequency shift is determined

by traditional (linear) Doppler effect

ωmax = ωi − 2Kv (12)

On the contrary, the spectrum broadening

∆ω =
√

L̂Ω2

is strongly influenced in nonlinear case by the turbulence amplitude and differs from

linear one

∆ωlin =

[
∫ +∞

−∞

dκ dq dΩ

(2π)2
|n (κ, q, Ω)|2 Ω2

]1/2

by the factor, which can be estimated as ∆ω/∆ωlin ∼ γ, where γ is determined by (7).

Thus in nonlinear case the frequency spectrum width can be substantially larger than

in linear situation, when the factor γ is similar or less than 1.

In case of inhomogeneous plasma poloidal rotation the spectrum frequency shift is

actually determined by the specifically averaged rotation velocity

ωmax = ωi −
2KL̂q2v

ρ−2 + L̂q2
(13)

In this case the frequency spectrum shift can be produced by the region with high

amplitude of the turbulence as well as by the region with high poloidal velocity.

The frequency spectrum broadening, which in case of homogeneous plasma poloidal

rotation is caused by intrinsic frequency spectrum of fluctuations, is influenced here by

additional factor associated with poloidal rotation inhomogeneity.

∆ω =






L̂

(

Ω2 + q2v2
)

−

(

L̂q2v
)2

ρ−2 + L̂q2







1/2

4. Discussion

At first, we consider the spectrum modelling, which was carried on according to the

results of linear and nonlinear consideration of the Doppler reflectometry.

In calculation the following assumptions are made:

(i) Geometrical parameters taken correspond to Tore Supra experiments [1]: ωi/c ∼
12 cm−1, ρ ∼ 14 cm, ϑ ∼ 11.5◦ distance to the cut-off L ∼ 20 cm.



Analytical theory of Doppler reflectometry in slab plasma model 8

3,00 3,05 3,10 3,15 3,20
0

1

2

3

4
density

n,
 1

019
 m

-3

R, m

(a)

3,05 3,10 3,15 3,20

-0,5

0,0

0,5

1,0

 real
 nonlin.
 lin.

R, mv,
 1

03  m
/s

 

 

velocity

3,00 3,05 3,10 3,15 3,20
0

10
20
30
40
50 width

|shift|

 

D
f, 

kH
z

R, m

lcy=2 cm

dn/n=0.03

(b)

(c)

Figure 3. The signal spectrum evolution. (a) Assumed density profile. R denotes the

major radius. (b) Assumed poloidal velocity profile (——), cut-off positions (•) and

measured poloidal velocity profile in nonlinear (•) and linear (×) diagnostics regimes.

(c) Absolute value of frequency shift (•) and width (•) of signal spectrum related to

different probing frequencies (plotted via corresponding cut-off position).

(ii) We consider the same antenna for the probing and reception. The probing is

performed at different frequencies and therefore with different cut-off positions.

(iii) For the sake of simplicity we suppose the turbulence level to be uniform (ñ = 0.03)

and its wavenumber spectra to be gaussian. The fluctuations are believed to be low-

frequency to neglect the spectrum width in case of homogeneous poloidal velocity

profile.

First of all we consider plasma density profile (figure 3(a)) similar to observed in

Tore Supra [12] and step-like plasma poloidal velocity distribution (figure 3(b)). The

registered signal frequency shift (figure 3(c)) is calculated using (13), but, as it

is usually done in experiment results interpretation, the measured poloidal velocity

profile (figure 3(b)) is deduced from frequency spectrum shift using equation (12) for

traditional (linear) Doppler effect in assumption that the registered signal spectrum

shift corresponds to velocity in the cut-off.

It can be seen that the value of poloidal velocity measured in such a way coincides

with assumed one in case of homogeneous poloidal velocity distribution and differs

from it when the cut-off is situated in the region of variable velocity. In this case large

contribution to the L̂q2v value is made by far from the cut-off regions due to unfavorable

bent-down density profile, leading to the obscuration of the velocity in the cut-off. Thus

such an interpretation of the diagnostics results gives the value of the poloidal velocity

averaged in a specific way over plasma volume.

The frequency spectrum shift is compared in figure 3(c) with spectrum width,

calculated for ℓcy ∼ 2 cm. It can be seen that spectrum width can be larger then
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Figure 4. The signal spectrum evolution. (a) Assumed density profile. R denotes the

major radius. (b) Assumed poloidal velocity profile (——), cut-off positions (•) and

measured poloidal velocity profile in nonlinear (•) and linear (×) diagnostics regimes.

(c) Absolute value of frequency shift (•) and width (•) of signal spectrum related to

different probing frequencies (plotted via corresponding cut-off position).

frequency spectrum shift, which is typical for Doppler reflectometry experimental

results. Besides, figure 3(c) demonstrates the spectrum width behavior which was

described above: the spectrum is not broadened when probing wave propagates only in

the region with homogeneous poloidal velocity (here we neglected the broadening, which

arises due to intrinsic frequency spectrum of the turbulence) and broadens, when the

cut-off, which is the bound of propagation region, crosses the point, where the velocity

changes.

In addition, in figure 3(b) we compare the diagnostics results in linear and nonlinear

regimes. In the both cases the plasma density profile is unfavorable for the diagnostics

spatial resolution, but one can see that nonlinear regime is more problematic from the

results interpretation point of view.

The second example is to emphasize the importance of plasma density profile for

frequency spectrum formation. We consider plasma density profile (figure 4(a)) bent

down in plasma periphery and bent up in the core. The poloidal velocity profile has high

gradient in the ‘barrier’ region (figure 4(b)). It is easy to see that bent-up density profile

underlines the cut-off contribution and improves the locality of the method. Also this

effect is essential for linear Doppler reflectometry [4]. It leads to the fact that in case of

favorable density profile the poloidal velocity profile measured by Doppler reflectometry

corresponds to the certain extent to the real one.

Let us discuss the situation when the nonlinear theory developed should be applied.

The nonlinear regime of Doppler reflectometry diagnostics is considered in the present

paper, when multiple FS influence is essential for registered signal spectrum formation.
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Figure 5. Diagnostics scheme. 1—emitting and receiving antenna, 2—additional

receiving antenna.

For this situation to take place, two important criteria should be satisfied. At first, the

turbulence amplitude is to be large enough to provide essential turbulent phase shift

during the wave propagation, which is described by criterion (7).

The second condition leading to the necessity of nonlinear theory application to

the diagnostics results is that small-angle scattering contribution is substantial in the

received signal. This means that small-angle scattering signal amplitude should be

comparable or larger than BS signal, formed by linear mechanism. Multiple small-angle

scattering contribution (9) can be evaluated as

〈

|As|2
〉

∼ Pi

4

ωiℓ
2
cy

cxcγ
exp

{

−
2K2ℓ2

cy

γ2

}

The BS signal amplitude (4) can be estimated as
〈

∣

∣Alin
s

∣

∣

2
〉

∼ Pi

2
√

2π
γ
ωiρ

cxc

|n(−2K)|2

Here |n(q)|2 is the fluctuation poloidal wavenumber spectrum. The ratio of the signal

amplitudes

α ≡
〈

|As|2
〉

〈

|Alin
s |2

〉 ∼
ℓ2
cy

ργ2

exp
{

−2K2ℓ2
cy/γ

2
}

|n(−2K)|2

For example, we consider turbulence spectral density |n(q)|2 = 4πℓcy

[

1 + q2ℓ2
cy

]−3/2
,

where ℓcy ∼ 2 cm, probing frequency f = ωi/2π = 60 GHz, tilt angle θ = 30◦, ρ = 2 cm.

Then if γ ∼ 20 the small-angle scattering contribution larger than BS one: α ∼ 1.5.

To conclude, we consider the experimental evidences of linear or nonlinear regime.

A reliable criteria, which is actually very difficult to realize in experiment, is the

spectrum of the passed, reflected off the cut-off signal. If the probing line can be

distinguished in the spectrum of the signal, registered by antenna 2 in figure 5, we deal

with linear regime of the scattering. In other case, when the probing line can not be

observed in the broadened spectrum, the diagnostics works in nonlinear regime.
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Figure 6. Multi-scattering in small toroidal device.

Another way to recognize the scattering regime is to compare BS signal spectrum

width with one, provided by the antenna pattern due to the Doppler effect. In case of

more broadened spectrum we deal with nonlinear regime of scattering.

The criteria of nonlinear theory applicability discussed can be usually satisfied in

large toroidal devices. But we should note that the nonlinear regime can be realized in

small tokamak due to possible reflection of the probing signal off the chamber wall (this

effect for FT-2 tokamak was investigated experimentally in [13]). It leads to the effective

increase of the ray trajectory, which can provide the satisfaction of the criterion (7).

The signal spectrum of the signal can be estimated in this case using the results of our

consideration (10), but the operator L̂ (11) should be multiplied by the quantity of the

reflections off the plasma and wall.

5. Conclusion

In the present paper the Doppler reflectometry is considered in slab plasma model in

the frameworks of analytical theory. The diagnostics locality is analyzed for linear and

nonlinear regime. The toroidal beam focusing to the cut-off is proposed and discussed

as a method to increase diagnostics spatial resolution.

In nonlinear diagnostics regime frequency spectrum shift and width of registered

backscattered signal is analyzed in dependence on plasma density profile, turbulence

spatial distribution and spectrum and plasma poloidal velocity profile. It is

demonstrated that the frequency shift is not influenced by turbulence absolute amplitude

and gives an information on poloidal velocity averaged over the vicinity of the cut-off,

the size of which depends on the density profile and turbulence distribution.

Thus, even in the complicated situation of multi-scattering dominance Doppler

reflectometry technique is proved to be able to give realistic information on plasma

rotation. The spatial resolution of the diagnostics, however, suffers from transition

to this nonlinear regime of scattering. The consideration presented allows the spatial

resolution of the method to be analyzed for real experimental conditions, and thus the

diagnostics results to be adequately interpreted.
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