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Abstract. The parametric instability of upper hybrid wave decay into back scattered
upper hybrid wave and lower hybrid wave is considered for conditions of inhomogeneous
plasma of spherical tokamaks. The possibility of absolute instability is demonstrated
and the corresponding threshold is determined. It is shown that the threshold
power increases with pump frequency and electron temperature. Threshold power
is estimated for typical parameters of experiment in MAST tokamak. It is shown that
in this case parametrical reflection arises, if probing power exceeds 90 W /cm?, which
gives 30 kW for a beam of 10 cm radius.

1. Introduction

In recent years, considerable attention of the controlled fusion community has been
paid to spherical tokamaks (ST). These are small aspect ratio devices with typically
high plasma density and comparatively low magnetic field. This ST feature has strong
effect on the electromagnetic wave propagation. In the microwave frequency region,
characteristic surfaces, like the upper hybrid resonance and the cut-off are very close to
the plasma edge. As a result, the electromagnetic (EM) waves are unable to penetrate
into the plasma interior. The only way to overcome this difficulty is to use the
linear conversion of the incident EM wave into the electron Bernstein wave (EBW)
occurring in the upper hybrid resonance (UHR). The latter has no density limitations
and can, in principle, carry the radio frequency power deep into the plasma. This
mechanism of wave conversion has been successfully demonstrated to produce heating
in over dense plasmas in the W7-AS stellarator [[J]. The plasma heating experiment
based on this scheme is in progress now in the MAST tokamak at Culham, UK. The
wave propagation, conversion in the UHR and absorption is usually accompanied, in
100 kW power level experiments, by nonlinear effects, in particular, by parametric decay
instabilities (Versator [[], FT-1 [P, W7-AS [f]). These instabilities lead to redistribution
of incident power between plasma species and can cause anomalous reflection, especially
when excited at the plasma edge.
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The present paper is devoted to analysis of the decay instability thresholds and
growth rates for specific conditions of low magnetic field typical for ST. The study is
focused upon the decay of UH wave into another UH wave and intermediate frequency
range wave satisfying the lower hybrid resonance condition, which was observed in the
UHR heating experiments mentioned above. The influence of plasma inhomogeneity on
its threshold is investigated for backscattering of the incident UH wave. Dependence
of the decay instability threshold on the pump frequency, necessary for the heating
experiment optimization, is studied.

The paper is organized as follows. In section P we deduce equations, describing
the decay of the incident high-frequency UH wave into UH wave and low-frequency LH
wave: (g — Uy + Cog, and consider them in WKB approximation. In section f] we
calculate an absolute instability threshold, which corresponds to UH wave induced back
scattering instability. Brief discussion follows in section [

2. Equations for wave amplitudes

We use slab plasma model, i.e. density and magnetic field gradients are assumed to
be along x axe. A magnetic field direction is chosen along z axe. We consider one
dimensional problem of pump wave parametric decay. UH pump wave is supposed to be
excited by external antenna via tunnelling effect (X—B scheme according to [{]), and
assumed to propagate in x direction. We consider here the high pump frequency case,
when the frequency is larger than doubled electron cyclotron frequency, corresponding
to the magnetic field in UHR: wg > 2w.. In this case the UH pump wave dispersion
curve (see figure [l[) does not possess a turning point and transformation to Bernstein
wave occurs without change of group velocity sign.

By indices g, 1, 2 we will mark frequency, wavenumber, complex amplitudes of the
electric fields and potentials of the pump wave, parametrically reflected UH wave and
LH wave correspondingly.

2.1. Nonlinear current and equation for LH wave

Poisson equation for LH waves can be represented in the following form [f]

aivBon = 2 [ () + 25 ) B2 4 D arprn ()
iv =— |lew Wo)—= w =dr
LH = 2 T\wW2) 75 x w2 1z PLH
Here ELH = —V ¢, is an electric field of LH wave, which is assumed to be potential,
e, n are the components of the dielectric tensor
w? w2, w?
_ pe pi _ pe
8(w)_1_w2_w026_w2_w2i7 n<w>_1_w2

which for LH wave frequency ws ~ \/wew.; take the form

2 2 w2
g(wa) = 1+ w’;"’ - w—l;;, n(wa) ~ — wp:
ce
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Parameter /7 is associated with particles thermal motion [g]

3( wi V2 w?; V2,
e%(w) — ( p Te + 4 Tq ) (2)

2 _ 2 w2 — A2 2 _ 2 02 _ 42
2 \w? —wi w? —4w? w?—wiw? — 4wy

where V., corresponds to electron and ion thermal velocity Vp.,;, = (21¢,/ me,i)l/ 2 In
particular, for LH wave (B) takes the form

3wp. (1 m;

2 ~ 9%pe [(Li2 | My
U (w2) =~ 2 <4VT6 + meVTi)

Thus, equation ([l), describing the excitation of LH wave, can be rewritten as
divDpy = =3 (wa)$7ty —£(w2) O] gy — €' (w2) O gy + k2N (w2)bri = dmpLi (3)

Here and below ’ denotes d/dz. A charge density p is associated with nonlinear current

JrH by continuity equation

8,0LH 8jLH

+ =0

ot ox
To obtain nonlinear current j; g we consider electron motion in the field of three potential
waves

e x
Uy = — Z {EZ exp {1/ ki(x')da' — iwit] + c.c.} — Weely
2m,
i=0,1,2 (4)
Uy = Weely

Here dot * means d/dt. Electric field of three waves is taken in geometrical optics
(or WKB) approximation. This approximation is not valid if the decay point zg4,
determining in the inhomogeneous plasma by the conditions

ko(ﬂ?d) = ]ﬁ(l’d) + kg(l’d), Wp = W1 + Wa (5)

is situated in the vicinity of LH wave turning point (see section f] for proper discussion
of corresponding criteria).
In deducing ([l) we assumed following criteria to be satisfied

k3V2 k2V2 Wy — Wee Wy — 2Wee
< K1, - <K 1, — > 1, — > 1
026 w% szTe szTe

First criterion, which characterizes kp-approximation, allows us to get nonlinear

component of a solution of (f]) in the form
2

e ki wi + Wy e ‘
=g 3 e tBee || G i ik

wl — w N . X '
(@ —w)? ]_ " E;E exp ll/ (k; — kj)da’ — i(w; — wj)t} + c.c.}

ce

+

Averaging vy we neglect high-frequency terms. That yields

e? w1 — W k k
(vm) = o (20 —212)E0E;

2 _ 2 42 2 _
4me (u}() wS) Wee \W1 Wee ) Wee

X exp {1/ (ko — k1)da’ — i(wo — wl)t] + c.c.
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Taking into account that j gy = —en (v y) and passing to the complex amplitudes of
the potential ¢y = (¢2 + ¢3)/2 one obtains an equation for LH wave

— 07 (wa) " — e(wa) @y — €' (w2) By + k2n(w2)da
; ko ky .
D) (bo(bl

€ Wy B
2 2 _
wl Wee WO Wee

2me w

kam%—kn<2

ce

X exp [i / (o — Ky )z — i(wo — wl)t] (6)

2.2. Nonlinear current and equation for UH wave

For UH waves we have ]

d d? )
Dup = — || e(wo) + (7(wo) = | B +ig(wo) B | = dmpun
dx da? (7)
g Wy o
@Ey = 1g(w0)§Ex
Here corresponding components of dielectric tensor take the following form for the
frequency of UH wave w} ~ wfy = w), + w?,

w [& wce
elwy) =1- 27” g(wy) =~

Parameter ¢r(w;) can be represented as
VA,

2
2ot gy <7

(3 (w1) =

Considering potential UH wave EVH — —V ¢y, and substituting integrated second

equation of ([d) to the first, one obtains
2

w
— (p ()t — () — €' (w)dyn + 9° () 5 dun = dmpun (8)
A charge density pypy is associated with nonlinear current jy g as
0 0(j
pun + <jUH> - 07 jUH - _ednwngo

ot or

Here v,,, describes electron motion in the field of the pump wave

2
1 WpeWo

Vo = — — {iEO exp i/ ko(z")dx" — iwet | + C.C.}

2 _ 2
8mne wi — wz,

Density modulation dn,, is caused by the electron motion in the field of LH wave

1 w26k2 . [ [° / I ]
0Ny, = ————5—— 1By exp 1/ ko(2")da" — iwat | + c.c.
8me wy — Wz, L i

Here we omitted a contribution of LH wave component along the magnetic field, which
is smaller in factor of k?V2, /w3 < 1.

Averaging the nonlinear current, we leave the terms varying with frequency wg—ws
only. That gives

2
1 e Whe u.)okg

om) = Tz o 22
16m me wZ, wi — we,

(o i [ e~ -] e
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yielding (§) for the complex amplitude of the potential ¢yy = (¢1 + ¢7)/2 in the form

2

w
— G (w1)g)" — e(wr)o] — &' (w1)e) + 92(w1)c—2¢1
e Wi, kok3 (ko — ks)

2

- 2 2 _
2me wz, Wi

b0y €Xp [i /m(k:o — ko)da' — i(wp — wo)t (9)

ce

2.3. WKB-analysis of the equations obtained

A dispersion relations, which can be obtained from equations (B), (§), when ppy =
prr = 0, take the following form [[]: for UH waves

b
c(enr) = Een) (B~ 1) (10)
0,1

where the transformation wavenumber is

o wo g o wce/c

k== =
* C ET(WQ) ET(Q}())

and for LH waves
4 kQ
— 62 k2 ﬁ 4_ nK; 11

o) = Ghle) (B4 75) == 1)
Equations ([I0), (1)) allow us to obtain group velocities of the corresponding waves. We
get

Wy — Wi k! wWow? P
Vo,1 = €2T(w0,1)0’17 (ko,l + - ) y Vg = E?p(wQ) 5266 (l{?Q — *) (12)

3 7.3
Wo,1 kO,l pe k2

One can see from ([I0),([7), (I2) that in the probing frequency range under consideration

Wo > 2wee, which is used at present for EBW heating in MAST, there is no change of
the group velocity sign in the UHR point. The transformation point of LH wave, which
is shifted from LH resonance position (where e(ws) = 0), is the turning point of LH
wave, and group velocity changes the sign there. Corresponding dispersion curves are
represented in figure fIl. We consider the most interesting case of ky > 0, k; < 0, when the
group velocity directions give rise to positive feedback loop, which can lead to absolute

decay instability [[, B, B, 0]

=

We consider equations (), (H) in WKB approximation, substituting

T

@o,1,2 . ’ ;.

¢012 = 0 exXp |1 k?()lg(l‘ )dl‘ —lelgt
o Ko,1,24/00,1,2 o o

and neglecting corresponding small terms. In the vicinity of the decay point () we have
at’ = viay exp {—i/ (ko — k1 — k?g)dl’,:|

ay = Upaj exp [1/ (ko — k1 — k?g)dl’,:|
e Wi o koap e w kaag

— vy =
dme wiw?2, /—vouivy’ dme W — w2, \/—vgu10y

v =

(13)
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100

-100 -
Figure 1. UH and LH waves dispersion curves in high frequency case (wy > 2we).

3. Absolute instability threshold

Absolute instability can arise, when decay conditions ([J) allow two decay points 1 5 to
exist, and the group velocities directions provide positive feedback loop. In this case,
according to [[, [, the absolute instability threshold is determined by the following
conditions on the waves amplification coefficient

|[S12(@1)| [Sa (z2)| = 1 (14)

where Sji(x;) is the wave amplitude ay, which leaves the vicinity of decay point z;, due
to incidence onto this point of the wave a; of unit amplitude

VT g g L V2T gy
I({Z|+1) ’ I'(-i|Z]+1)
where Z = (?1v,v, and / is the length of the decay region

e = { L o)~ ko)~ e}

512 =

r=xq
The spectrum of the instabilities arising is determined by the condition on the
phase, gained in the feedback loop
2
o= / [ko(z') — kr(a’) — ko(2)] da’ + g —27N, N=1,2,... (15)
x1

To calculate the decay instability threshold we act in accordance with following
procedure. We calculate the terms, involved in ([[4) using ([[J), and then substitute
them to ([[4)), obtaining an equation for threshold power.

At first we calculate the decay point coordinates 1 2. It should be noted that the
UHR position zy g (w;) of the parametrically reflected UH wave is shifted in respect to
the UHR position of the pump wave zyp(wp). This shift can be estimated as
2L [ZL’UH(WO)] Wow2

wpe [Tum (wo)]
C [ldn(z) 202 dB(x)]"
C|n da w2 B dz

ryp(w) — rum(wo) =

L(x) (16)
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where n(x), B(x) are plasma density and magnetic field correspondingly. The decay
points x, s are situated in the vicinity of pump wave UHR resonance xypg(wp). It
can be shown that for real plasma parameters the distance between UH resonances
zug(wi) — xyg(wo) is substantial to provide

ET(wo)k:pre
]{; ~N — -
k1 [y s (wo)] o

This allows us to neglect ki(x12) in the decay condition ([), writing it as

ko(ﬂfl,z) = k2($1,2) (17)

To solve this equation we assume the dielectric permeability € to vary linearly in the

L ki = ko [rum(wo)]|

region considered

x — xypg(wo) r —xrp(ws)

e(x,wy) = ——F—+, e(r,wy) = ——F—=
SO Tt T Tl
and obtain from ([[0), (I7), (I7)
~4
%*
ko(wn) = ky(w1) = =5, kglaa) = k3(a) = sy (18)

“un
where following parameters are introduced
- Aot + N3k

=y =% A= Llvn(wo)l (r(wo), A3 = Llrpu(ws)] ((ws)

o =
DS R

and sy g denotes the largest solution of the equation

2+ %i‘ . JTUH(WO) - SULH(WQ)
UH 2 3 3
*un Ay = Ap

Equations ([§) determine in the indistinct form decay point positions in question.
They allow us to calculate the parameters necessary for formulation of threshold power
equation. In particular, the phase, gained in the feedback loop, can be represented as

2 T2 .6E, -2 o«
S =20 (hy— ky)* + = SNITUH ) D
gha(he = k)T 5 = g >

The length of the coherence region can be determined as

2L(x172)w0v1 (SL’LQ>
62(33172) ~ R
1 ce

(19)

Last important parameter is the value of LH wave group velocity in the decay
points. It can be estimated as

2wow? 3 ™13
~ ~ )2 2%ce
_Ug(xl) ~ U2<.T2) ~ eT(WQ)i)\nge |:§ (q) - 5):|
We will be interested in the absolute instability threshold for mode ® = 27. This

mode has apparently almost the same threshold as fundamental mode N = 0, which
has the lowest one, but still can be described in WKB approximation. In this case

| Z(z1)] = |Z(22)| = —L(z1)l(22)v0(21) V2 (1)
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and to estimate the threshold we should solve an equation

27e™Z|

!
1Z1 G2

which gives |Z] ~ 0.110. Substituting obtained expressions for decay points ([§) and

coherence region length ([[9) to ([J) one obtains, that |Z| should be calculated as

|Z|_( e )2 L35, [3 ((I) ﬁ)]l/?) 8P,
Ame ) Wt wol2(wo) 0y (ws) L2 2 p?

T
To obtain the threshold we have taken here |ag|* = 87 P(w — w?2,)/(w?), where P is the

ce

pump wave power per unit square (in erg/(s - cm?)).

Taking into account that for typical ST parameters in UHR wy ~ wp., and
considering maximum k, ~ wy/(5Vr.), when we can neglect LH wave Landau damping,
we obtain for ® = 27 a scaling for the threshold power P*

W fol/3T613/GBl/3
cm2/3CHZ BV 1I/6T1/3 ’ TA/3
where fo[GHz] is the probing frequency, T,[eV] is the electron temperature, Lcm] is the

P*[W/em®| =1.4-1077

density inhomogeneity scale ([[f]), B[T] is the magnetic field in plasma.

We calculate P* for MAST tokamak parameters: fy = wy/(27) = 57.5 GHz,
T. = 100 eV, B = 3.2 kGs (in UHR position), L = 5 cm. In this case one obtains
P* = 0.9 MW/m?, which gives for gaussian antenna beam with radius p = 10 cm
threshold power P ~ 30 kW.

4. Discussion

At first we discuss the approximations used. Our analysis is performed in WKB
approximation, which holds true, when two following conditions are satisfied:

e Decay points x; o are situated far enough from LH wave turning point x.. More
accurately, taking into account that electric field of LH wave in the vicinity of the
turning point can be expressed in terms of Airy function, it can be written as

T1o — T > ly (20)

where Airy scale £4 = 22/3),. In our case

xl,QEA— T - E <(I> B g)]2/3

and the condition (B0) can be shown to be satisfied even for & = 27,

e Length of decay region is not larger than Airy scale, which provides that all decay
region is situated far enough from the turning point. The coherence region size ([[9)
can be estimated as ( ~ (2)\8%*)1/ ? and it can be shown that condition

14

— <1 (21)

la

can be satisfied for wide range ST experiment parameters.
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Figure 2. Approximate representation of the dispersion curves in the vicinity of
decay points.

e The distance between extraordinary wave cut-off and UHR, which can be estimated

as
Wee

Ax ~ L

Wo
should be much larger than pump wavelength in the decay region. The last can be
estimated as Ag(z12) ~ 27/s.. Corresponding condition, which provides WKB-
representation of the UH waves to be correct, takes the form

Wee T g ) Loty
= el
2mwy
This criterion is rather strict due to low magnetic field, which is typical for ST. But

it can be shown to be satisfied for MAST experiment parameters, where p ~ 6.

Our consideration, which is based on the formulae ([4)), seems to be sensitive to
the possibility to consider decay points as separate amplifiers of the incident wave. The
condition for that is 9 — 21 > ¢, which is equivalent to

“o=[ie-3) 5 .

l 2 2 A2

Comparing that with (B]), one obtains that () can be satisfied for ® = 27 in rather
narrow range of parameters. But, actually, an accurate analysis shows, that for the
dispersion curves behavior, which in the region in question can be approximated as
in figure [, the decay points joint influence is the same as given by our consideration.

5. Conclusion

In the paper absolute instability of parametrical reflection of upper hybrid wave is
analyzed in WKB approximation. The reflection is assumed to be accompanied by
radiation of lower hybrid wave. KEquations, describing the decay, obtained in kp-
approximation. The decay threshold is determined. It is shown that threshold power
increases with pump frequency and electron temperature. Threshold power is estimated
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for typical parameters of experiment in MAST tokamak. It is shown that in this case

parametrical reflection arises, if probing power exceeds 90 W/cm?, which gives 30 kW

in a beam of 10 cm radius.
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