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Abstract. The coupled dynamics of small- and large-scale flute type perturbations in a  
magnetized plasma is considered. It is shown that the small-scale wave packets are unstable 
with respect to the low frequency and long wavelength perturbations. These perturbations are 
accompanied by the excitation of the long wavelength modes of the density and velocity. One 
can distinguish two regimes of this parametric instability similar to the case of beam-plasma 
instability. The instability is of the resonant type (kinetic regime), when the instability growth 
rate is smaller than the spectral width of the small-scale flute fluctuations. In the opposite 
case, the instability becomes the coherent hydrodynamic type (hydrodynamic regime), so that 
all harmonics grow coherently. It is suggested this generic instability is responsible for the 
generation of mean flows, so called zonal flows and streamers, in magnetized plasma. 
 
 I. Introduction. 
 It is already well accepted that nonlinear interaction of short-scale fluctuations in 
magnetized plasma can generate low-frequency, large-scale nonlinear structures (so called 
zonal flows and streamers) that play an important role in controlling plasma transport 
properties in magnetic confinement systems.1-3 The transfer of wave energy towards the long 
wave length region and the formation of large-scale structures are results of the well-known 
inverse cascade guaranteed in two-dimensional (and quasi-two-dimensional) fluids by the 
conservation of energy and enstrophy.3 Zonal flows4 are defined here as symmetric structures 
with a finite scale in the direction of plasma inhomogeneity, significantly larger than the scale 
of the underlying small-scale turbulence. Streamers5 are convective cells which complement 
zonal flows, in that they have short extent in the direction of translation symmetry, i.e. 
perpendicular to plasma gradients, and are elongated structures in the direction of plasma 
inhomogeneity. Detailed investigation of the origin and dynamics of these flows is currently 
of great importance and presents a major challenge to the theory of plasma turbulence. 
 The mechanism for flow acceleration is commonly attributed to the effect of Reynolds 
forces generated by small-scale fluctuations.1 It was shown that the flow acceleration will 
occur if the underlying small-scale turbulence supports waves propagating in the direction of 
plasma inhomogeneity, and gradients in the turbulent Reynolds stress have to exist. When the 
large-scale structures are excited, they form an environment for the parent waves. This leads 
us to a scenario of self-regulated plasma turbulence in which long wavelength structures 
“live” in a background of short wavelength turbulence.On the other hand, these large-scale 
structures can modulate and regulate the turbulence dynamics itself via nonlinear coupling to 
the small-scale fluctuations. So, the parent waves and secondary flows form a self-regulating 
system and cannot be addressed in isolation.6  
 Here, we investigate the coupled dynamics of large-and small-scale flute perturbations 
in magnetized plasma. For this turbulence the contribution of density fluctuations and finite 
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ion Larmor radius effects are significant and must be taken into account.7 The evolution 
equations for mean flow generation are obtained by averaging the model equations for flute 
modes over fast small-scales.  These flows are, effectively, sheared flow layers which strain 
and distort the microscopic fluctuations they coexist with.8 Therefore the principal self-
regulatory mechanism of wave turbulence is shearing by self-generated flows. Then, the 
propagation of flute modes in weakly inhomogeneous media with slowly varying parameters 
due to flow induced velocity and density perturbations can conveniently be described with the 
help of a wave kinetic equation.  
 The flow generation and shearing occur via triad interaction, i.e. those with k + k’+ q~ 
0. We show, having this fact in the mind, that the spontaneous excitation of large-scale flows 
by small-scale flute mode turbulence can be described as instability, similar to a parametric 
instability of a pump wave.9 Namely, the small-scale wave packets are unstable with respect 
to the long wavelength perturbations. These perturbations are accompanied by the excitation 
of the long wavelength modes of the density and velocity, i.e. zonal flows and streamers. One 
can distinguish two regimes of the instability similar to the case of plasma-beam 
instabilities.9,10 The instability is of the resonant type (kinetic regime), when the instability 
growth rate is smaller than the spectral width of the small-scale flute fluctuations. In the 
opposite case, the instability becomes the coherent hydrodynamic type (hydrodynamic 
regime), so that all harmonics grow coherently. 
 The rest of the paper is organized as follows: In Sec.II, the model equations for flute 
oscillations are presented and linear properties of flute modes are outlined. In Section III, the 
nonlinear dynamics of coupled system is investigated. It includes formulation of evolution 
equations for zonal flows and streamers generation, and the wave kinetic equation describing 
the interaction of the small-scale flute turbulence and large-scale shear flows. The quasi-linear 
and stability analysis is performed in Sec.IY. Finally, the short discussion of the results 
obtained is given in Section V.  
 
II. Basic equations 
 Flute modes are low frequency oscillations ( 1<<Ωiω  with cmeB ii 0=Ω  and ω  
being the frequency of the flute mode) of a weakly inhomogeneous magnetized plasma that 
are uniform in the direction of the external magnetic field )0( || =k . To describe the flute 
modes in such a plasma we use the two-fluid macroscopic equations as basic equations. The 
analysis will be performed for the most straightforward case of the slab geometry r≡),( yx . 
Suppose that such a quite dense ( 14 2

0
2

0 >Bcmn iπ ) plasma is immersed in a constant 
magnetic field . The curvature of magnetic field lines which always exists in 
magnetic confinement devices is imitated by the fictional gravity 

),0,0( 00 B=B
)0,0),(( xg=g . Because of 

treating a low-β plasma, we assume the electric field of the perturbation to be potential, 
. The plasma density is expressed as Φ−∇=E ),()(),( 0 tnxntN rr δ+= , where the equilibrium 

plasma density n0(x) is assumed to be slowly varying with x over a characteristic length-scale. 
For the low-frequency perturbations we can neglect the charge separation and, instead of the 
Poisson equation, use the condition of quasineutrality.7  

It is well known that the finite ion temperature effect is important for the theory of flute 
modes. Therefore the ion fluid is considered as having a finite temperature, for simplicity 
Ti=Te=T here. Then, to the first order in the parameter iΩω  we reduce our basic equations to 
a pair of coupled nonlinear equations for the dimensionless density 0),( nntn δ=r  and the 
potential ,),( trΦ 11
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Here we have neglected the inertia of electrons, the effect of a temperature gradient and the 

collisional viscosity of the stress tensor; 
0

*v
eB
cTκ

=  the ion diamagnetic drift velocity, 

0ln 0 >−≡
dx

ndκ  and 
i

Tg
m R

= , R is the characteristic-scale length of magnetic field 

inhomogeneity. The {} brackets denote the Poisson bracket, { } [ ], ,a b a b= ⋅ ∇ ×∇z  and 
. The finite Larmor radius (FLR) effect is incorporated to the lowest order by the term 

proportional to T.  
⊥∇ ≡ ∇

 Analysis of Eqs.(1)-(2) shows that there are important differences in our model in 
contrast to the well-known Hasegawa-Mima equation describing the electrostatic drift wave 
turbulence. First, basic equations consist of two fields associated with the perturbed potential 
and the perturbed density. Second, for drift wave turbulence the nonlinearity appears from the 
ion polarization drift. For the flute mode turbulence the contribution of density fluctuations to 
the ion polarization drift is significant and is taken into account by the second term on RHS of 
Eq.(2). The polarization drift nonlinearity is well studied in the drift model and is known to 
cascade power towards long-scales. However, the diamagnetic component of polarization 
nonlinearity is known to sufficiently modify cascade properties. Moreover, the right-hand side 
(RHS) of Eq.(1) contains also so-called convective ExB nonlinearity that behaves in exactly 
the opposite fashion cascading power into the shorter scale length.12,13  

 Since the linear physics of the flute modes is well documented,7 we provide only a 
brief overview here. Linearizing Eqs.(1)-(2) for small perturbations ( ) ( rk )⋅+−∼Φ itin ωexp, , 
we can obtain the dispersion relation for the flute modes with the wave (linear) 
eigenfrequency being 
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where , and 2 2 2 ,x yk k k k κ= + >> iTii V Ω=ρ  is the ion Larmor radius. If , then Eq.(3) 

describes pure unstable flute modes with a growth rate 

0T =

g
k
ky κγ =0 . It is clear that the linear 

growth rate vanishes for modes with 0=yk . Thus, convective cells that have short poloidal 
extend can be generated by the linear instability mechanism, whereas poloidally symmetric 
flows can be generated only through some nonlinear interaction mechanism. Accounting for 
the FLR effect leads to the stabilization of flute instabilities for RLk ni 422 ≥ρ ,  where 

 and R are the characteristic-scale lengths of plasma and magnetic field 
inhomogeneities, respectively.  

1
nL κ −≡

 
III. Coupled dynamics of small-and large-scale flute modes 

To understand nonlinear dynamics of the system under consideration we now carry out 
an analytical analysis of Eqs.(1)-(2). To begin with we employ the ansatz of scale separation 
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to distinguish between the small-scale fluctuations of flute modes and the large-scale shear 
flow pattern generated in the final state. To describe the evolution of the coupled system 
(wave turbulence + large-scale plasma flows) we represent the electrostatic potential Φ as a 
sum of a large-scale flow Φ  quantity and a small-scale turbulent part Φ~ . A similar 
representation has been chosen for the plasma density:  

nnn ~,~ +=Φ+Φ=Φ .                                            (4) 
As we are interested in mode coupling, it is useful to expand Φ~  and n~  into a Fourier 

series: 
( ) ( )rkrrkr ⋅=⋅Φ=Φ ∑∑ itntnitt

k
k

k
k exp)(),(~,exp)(),(~ .                      (5a) 

The requirement that Φ and n must be real imposes the following constraints on the complex 
Fourier amplitudes: . The large-scale flows can likewise be represented 
as 

** , kkkk nn =Φ=Φ −−

  ( ) ( ) ..exp)(),(.,.exp)(),( ccitntnccitt qq +⋅=+⋅Φ=Φ rqrrqr                 (5b) 

where the condition kq <<  holds. Zonal flow structures are characterized by  and 0≠xq
streamer-like structures have . In order to describe the formation of these large-scale 0≠yq
flows by small-scale flute modes, we perform the average over the fast-scales the basic 
Eqs. (1),(2). Then for zonal flows, the evolution equations (1) and (2) become decoupled and 
are reduced to 
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It is explicitly seen from Eq.(6) that the mean plasma density associated with zonal flows 
does not evolve with time, i.e. can be considered as a constant.  

 Corresponding evolution equations for streamers after averaging over the fast-scales 
have the form 
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It is clear from Eqs. (8)-(9) that density and potential fluctuations associated with streamers 
remain coupled, and dynamics of streamers is covered by more complicated equations in 
comparison with the case of zonal flows. Eq.(8) shows that, in contrast to the case of zero-
frequency zonal flows, streamers always have a real frequency, sufficiently lower however 
than that of parent waves. 
 The flute mode turbulent medium is now a weakly inhomogeneous medium with 
slowly varying parameters. The sources of this slow spatial and temporal variations are flow 
induced velocity and density perturbations. The propagation of flute modes in such weakly 
inhomogeneous medium can be conveniently described with the help of a wave kinetic 
equation for the wave action density in r-k space),( tN k r 14  
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The linear frequency of flute modes entering this equation is modified in the presence of the 
flows because of the Doppler shift induced by the flow velocity,  
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Here  is associated with the Doppler effect introduced by E×B flows (0V Φ ), and  
corresponds to the lowest-order FLR corrections due to finite ion temperature. Thus, the 
small-scale turbulence will be sheared by both the flow shear and the diamagnetic effect. 

1V

 
IY. Quasilinear and stability analysis 
 
a) Quasilinear theory 
 We assume that the wave spectrum consists of an equilibrium part  averaged over 

the short spatial scales, but evolving in time and k, and a perturbed part 

)0(
kN

kN~ , i.e. 

kkk NNN ~)0( += . For simplicity, we take  in the simplest, quadratic form, 
, with 

)( kNSt
2)( kkk NNSt ω∆= kω∆  being a nonlinear damping rate, accounting for local nonlinear 

coupling. Thus, the stationary spectrum can be established in the equilibrium, 
, and the RHS of Eq.(10) is close to zero.kkkN ωγ ∆= /2)0( 10 

The quantity kN~  may be straightforwardly calculated via linearization of the wave 
kinetic equation (10): 
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with ( )...ab  in the second term meaning again the averaging over the short spatial scales. Then, 
assuming the temporal )( kω<<Ω  and spatial )( kq <<  variations for small perturbations 

( ) ( rq ⋅+Ω−∼Φ iTinNk exp,, )~ , modulation of kN~  is calculated from Eq.(12), to yield 
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Here the quantity  is the response function,  ( qR ,Ω )
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with  being the flute mode group velocity, and gv kδω  is the total decorrelation frequency 
which may also include the linear growth rate and a nonlinear frequency shift. In the weakly 
nonlinear regime  

( ) ( )gqR qv−Ω→Ω πδ, . 
For the wide spectrum of fluctuations, one obtains  

kqR δω/1),( →Ω . 
 The broad spectrum of large-scale structures regulates turbulence by the process of 
random shearing, which may be represented, in the spirit of quasilinear theory, by diffusion in 
k space. Such shearing is now understood to be the key mechanism that governs the self-
regulation and saturation of wave turbulence. 

Substituting the expression for kN~  into the Eq.(13) and using the standard quasi-linear 
theory, we can rewrite the equation for  as diffusion-like equation: )0(
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where  notes the diffusivity of waves by large-scale flows. Indeed, the k-space diffusion 
coefficient for the zonal flows ( ) after simple manipulations can be written in the form: 
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Thus, the zonal flows constitute a random strain field which randomly refracts flute modes, 
causing a diffusive increase in  which in turn enhances their coupling to small-scale (high-

) dissipation.  
xk

xk
In contrast to zonal flows, shearing by streamer structures ( 0≠yq ) refers to poloidal 

shearing of radial streamer flows, rather than the usual process of radial shearing of poloidal 
flows. In this case, the stochastic refraction of eddies by poloidally sheared streamer flows is 
described as  
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The second term in parentheses of Eqs.(17),(18) comes from density modulation (diamagnetic 
effect). 
 
b) Stability analysis 
 The spontaneous excitation of large-scale flows by small-scale flute mode turbulence 
can be described as instability, similar to a parametric instability of a pump wave: the small 
scale wave packets are unstable with increment qγ with respect to the long wavelength 
perturbation. We distinguish two regimes of this instability. The instability is of resonant type 
(kinetic regime) if the growth rate qγ < kδω , the spectral width of the flute mode turbulence. 
In this case, coupled Eqs. (6) – (9) and (12 ) can be solved to show that modulations of the 
wave packets and flows are unstable. Indeed, using (14a ) and (14b ) in Eqs.(6 ) – (9) we 
obtain the following growth rate 
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for streamers. Here  is the real frequency of streamers defined by StΩ
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The resonant type of instability is obtained from (19a ) and (19b) by using the resonant 
response function )()/(),( gkg iiqR qvqv −Ω→+−Ω=Ω πδδω . Then, the instability may be 
interpreted as a result of the resonant interaction of the flute wave packet with slow 
modulations of the mean flow. The similarity with Landau resonance in the kinetic plasma 
theory is evident. In both cases, the conditions for growth, 0>qγ , are equivalent to 

inequalities 0
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These conditions are typically satisfied in flute mode turbulence and therefore no population 
inversion is required.  
 When the growth rate qγ becomes large compared to the characteristic frequency 
spread kδω  for the background flute mode fluctuations, individual  components contribute 
to the instability coherently, so called hydrodynamic regime. In order to elucidate the physics 
of this instability, we consider a simple case of a monochromatic wave packet with 

. Then, the dispersion relation for the instability (we consider the zonal 
flow excitation only) takes the form 
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It is seen from Eq.(20) that the criterion for the instability is  
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and thus reduces to a general Lighthill criterion  02
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readily be seen that the growth rate of the coherent instability, 0Nqcoh
q ∝γ , is large 

compared to that of resonant instability, 
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Y. Conclusions 
 We have shown by performing the analysis similar to one used in the theory of 
parametric instabilities that small-scale flute mode packets are unstable with respect to the 
long wavelength perturbations. These perturbations are accompanied by the excitation of the 
long wavelength modes of velocity and density, i.e. zonal flows and streamers.  
 Depending on the relation between the nonlinear growth rate and the spectral width of 
the background flute mode turbulence, the instability is of the resonant type (kinetic regime) 
or coherent type (hydrodynamic regime). These mechanisms constitute two regimes of the 
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same process (generation of large-scale flows), similar to the case of beam-plasma 
instabilities.  
 It follows from the analysis, that the kinetic regime of the generation of large-scale 
flows is characterized by the growth rate smaller than that of hydrodynamic regime. 
Moreover, the criterion for the coherent instability is similar to the general Lighthill criterion 
for modulation instability. 
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