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The turbulent transport of minority species/impurities isinvestigated in 2D
drift-wave turbulence as well as in 3D toroidal drift-Alfvén edge turbulence. The
full effects of perpendicular and – in 3D – parallel advection are kept for the
impurity species. Anomalous pinch effects are recovered and explained in terms
of Turbulent EquiPartition (TEP)

1 Anomalous Pinch in 2D Drift-Wave Turbulence

The Hasegawa-Wakatani model [1] for 2D resistive drift-wave turbulence reads

dt(n−x) = C (ϕ−n)+µn∇2
⊥n, dtω = C (ϕ−n)+µω∇2

⊥ω, (2)

with ω ≡ ∇2
⊥ϕ anddt ≡ ∂/∂t + ẑ×∇⊥ϕ ·∇⊥. Here,n andϕ denote fluctuations

in density and electrostatic potential.ω is the vorticity,∇× ẑ×∇⊥ϕ. The pa-
rameters in the HW system are the parallel couplingC , and diffusivities,µn,µω.
2D impurity transport in magnetized plasma is modeled by thetransport of a pas-
sive scalar field:

dtθ−ζ∇⊥ ·

(
θdt∇⊥ϕ

)
= µθ∇2

⊥θ, (3)

whereθ is the density of impurities,µθ the collisional diffusivity, andζ = mθ
qθ

e
mi

ρs
Ln

the influence of inertia, which enters via the polarization drift. The latter makes
the flow compressible, consequently for ideal (massless) impurities,ζ = 0 and
advection is due to the incompressible electric drift only.In all cases the impurity
density is assumed to be so low compared to the bulk plasma density that there is
no back-reaction on the bulk plasma dynamics.
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Figure 1: (a) Vorticity and (b) density of inertial impurities in the saturated state
with C = 1 andζ = 0.01, L = 40. Other parameters:µn = µω = µθ = 0.02.

1.1 Vorticity - Impurity correlation

The equation for the impurities can be rewritten in the form:

dt(lnθ−ζω) = ζ∇⊥ lnθ ·dt∇⊥ϕ+
µθ
θ

∇2
⊥θ .

If the diffusivity µθ is of orderζ ≪ 1 and fluctuationsθ1 of the impurity density
measured relative to a constant impurity backgroundθ0 do not exceed a corre-
sponding level, the quantity lnθ− ζω is approximately a Lagrangian invariant.
Turbulent mixing will homogenize Lagrangian invariants inTEP states [2, 3],
leading to

lnθ−ζω ≈ const,

which constitutes a prediction about the effect of compressibility on the initially
homogeneous impurity density field. The conservation of impurity density yields

θ
θ0

≈ 1+ζω,

which conforms with the assumed ordering. We thus predict a linear relation be-
tween impurity densityθ and vorticityω, the proportionality constant being the
mass–charge ratioζ. This is related, but not the same as, to the aggregation of
dense particles in vortices in fluids due to the Coriolis force [4]. The predic-
tion is verified by numerical simulations of inertial impurities in saturated HW-
turbulence forC = 1. The simulations are performed on a[−20,20]2 domain,
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Figure 2: Scatter plot of impurity
density and the vorticity field att =
100 for different values of the mass–
charge ratioζ in the saturated state in
HW with C = 1: ζ = 0.05 (red),ζ =
0.01 (green), andζ = 0.002 (blue).
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Figure 3: Evolution of the radial
drift velocity of inertial impurities in
the saturated state in HW withC =
1. The impurities are uniformly dis-
tributed att = 0.

using 5122 gridpoints, and impurity diffusivity 0.02. The impurity density field is
initially set to unity. The impurity density field forζ = 0.01 is presented together
with vorticity in Figure 1. Figure 2 shows a scatter plot of the point values of
impurity density and vorticity at time 150 for three different values ofζ. The pro-
portionality factorθ = 1+Kω is determined to be slightly below one:K ≃ 0.82ζ.

1.2 Anomalous pinch

The role of inertia for a radially inward pinch is investigated by considering the
collective drift of impurities. Ideal impurities do on average not experience a drift,
but this is not the case for inertial impurities, since compressibility effects arrange
for a correlation betweenθ1 andω. Note that only the deviations from the above
discussed linear relationshipθ = 1+Kω result in a net flow, as

∫
Kωvr dx= 0 for

periodic boundary conditions.
The evolution of the radial drift velocity, measured as the net radial impurity

transport, is presented in Figure 3. The radial drift velocity has a definite sign that
depends on the sign ofζ. There is a continuous flow of impurities in a definite di-
rection (inward for positively charged impurities). This resembles the anomalous
pinch observed in magnetic confinement experiments [5]. Average radial drift ve-
locities computed using the values of the drift fromt = 25 tot = 150 are presented
in Table 1. The scaling of the average radial drift withζ is seen to be remarkably
linear.
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Table 1: Radial drift velocity of impurities for different values of the mass–charge
ratio ζ in the saturated state in HW withC = 1. Calculated as the average value
betweent = 25 andt = 150. Parameters:µn = µω = µθ = 0.02.

ζ radial drift
−0.010 8.67×10−4

0.001 −8.66×10−5

0.002 −1.73×10−4

0.005 −4.35×10−4

0.010 −8.69×10−4

0.020 −1.75×10−3

0.050 −4.55×10−3
−0.002
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2 Drift-Alfvén Turbulence

We now consider drift-Alfvén turbulence in flux tube geometry [6, 7, 8]. The
following equations for the fluctuations in densityn, potentialφ with associated
vorticity ω = ∇2

⊥φ, currentJ and parallel ion velocityu arise in the usual drift-
scaling:

∂ω
∂t

+{φ,ω} = K (n)+∇qJ+µω∇2
⊥ω, (4a)

∂n
∂t

+{φ,nEQ+n} = K (n−φ)+∇q (J−u)+µn∇2
⊥n, (4b)

∂
∂t

(
β̂Aq + µ̂J

)
+ µ̂{φ,J} = ∇q (nEQ+n−φ)−CJ, (4c)

ε̂
(

∂u
∂t

+{φ,u}

)
= −∇q (nEQ+n) . (4d)

The evolution of the impurity density is given by

dtθ = (ζ/ε̂)∇⊥ · (θdt∇⊥φ)−θK (φ)−∇‖ (θu)−µθ∇2
⊥θ (5)

Standard parameters for simulation runs wereµ̂= 5, q = 3, magnetic shear̂s= 1,
andωB = 0.05, with µω = µn = 0.025, corresponding to typical edge parameters
of large fusion devices. Simulations were performed on a grid with 128×512×32
points and dimensions 64×256×2π in x,y,s corresponding to a typical approx-
imate dimensional size of 2.5 cm× 10 cm× 30 m [6]. Here we present results
from a lowβ̂ = 0.1 run withC = 11.5. In Figure 4 the dynamical evolution of the
impurity density is exemplified in a plot showing the poloidal projection of the
impurity density.
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Figure 4: Impurity distribution projected onto a poloidal cross-section (radial di-
mension not to scale). Initial distribution (left) and after 25 time units (right).

The flux Γ of the impurity ion species can in lowest order be expressed by the
standard parameters used in modeling and in evaluation of transport experiments:
a diffusion coefficientD and a velocityV, which is associated to a pinch effect,

Γy(s) = −D(s)∂x 〈θ〉y +V(s)〈θ〉y . (6)

From scatter plots ofΓ(r)/〈n〉y versus∂x ln〈n〉y, values forD(s) andV(s) are
obtained. The poloidal (coordinates) dependence ofD andV is rather strong and
shown, with numerical uncertainties, in Fig. 5. The effective advective velocity
V(s) changes sign and is at the high field side directed outwards. This pinching
velocity is due to curvature and can be consistently explained in the framework
of Turbulent EquiPartition (TEP) [9, 3] as follows: In the absence of parallel
advection, finite mass effects and diffusion, Eq. (5) has thefollowing approximate
Lagrangian invariant

L(s) = lnθ+ωBxcos(s)−ωBysin(s) . (7)

TEP assumes the spatial homogenization ofL by the turbulence. As parallel
transport is weak, each drift planes = const. homogenizes independently. This
leads to profiles〈L(s)〉y = const.(s). At the outboard midplane (s = 0) the im-
purites are effectively advected radially inward leading to an impurity profile
(〈lnθ〉y ∝ const.−ωBx), while at the high field side they are effectively advected
outward (〈lnθ〉y ∝ const.+ ωBx). One should note that this effective inward or
outward advection is not found as an averageE×B velocity, but is mitigated by
the effect of spatial homogenization ofL under the action of the turbulence. The
strength of the “pinch” effect is consequently proportional to the mixing properties
of the turbulence and scales with the measured effective turbulent diffusivity. We
arrive at the following expression for the connection between pinch and diffusion:

V(s) = −αωBcos(s)D(s) . (8)
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Figure 5: Impurity diffusionD (a) and pinch velocityV (b) over poloidal position
(s) with error-bars. The pinch velocity is compared toωb ∗ cos(s) ∗D(s) (dashed
line).

Considering a stationary case with zero flux and Eq. (7) we obtainα = 1. The bal-
looning in the turbulence level causes the inward flow on the outboard midplane
to be stronger than the effective outflow on the high-field side. Therefore, aver-
aged over a flux surface and assuming a poloidally constant impurity density, a net
impurity inflow results. This net pinch is proportional to the diffusion coefficient
D in agreement with experimental observations [10].
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