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I. ABSTRACT

The influence of shaping of magnetic flux surfaces in tokamaks on gyrofluid edge tur-

bulence is studied numerically. Magnetic field shaping in tokamaks is mainly due to

elongation, triangularity, shift and the presence of a divertor X-point. A series of toka-

mak configurations with varying elongation 1 ≤ κ ≤ 2 and triangularity 0 ≤ δ ≤ 0.4, and

an actual ASDEX Upgrade divertor configuration are obtained with the equilibrium code

HELENA and implemented into the gyrofluid turbulence code GEM. The study finds

minimal impact on the zonal flow physics itself, but strong impact on the turbulence and

transport.

II. INTRODUCTION

Criteria for a design of future projected magnetized fusion plasma experiments like ITER

are primarily based on empirical power laws for the energy confinement time [1]. First-

principle based transport models continue as well to require reference to experimental

scalings, and are validated mainly only for core plasmas excluding the edge region [2].

The plasma shape of a tokamak enters into confinement time scalings and transport

modelling through parameters specifying a vertical elongation κ ≥ 1 and an outboard side

triangularity δ ≥ 0 that describe the deviation from a simple circular and axisymmetric

torus. Scaling laws for plasma confinement are derived by evaluating data from existing

tokamaks that usually have only limited possibilities for varying the flux surface shape.

The design criteria of the ITER plasma shape with κ = 1.7 and δ = 0.33 (at 95% flux

surface) are based on a conservative regime that is well established in present experiments

[1]. More extreme variations of flux surface shaping were investigated with the experiment

TCV (Tokamak à Configuration Variable) which is able to achieve configurations up to

κ = 3 and δ = 0.5 [3]. Experimental evidence suggests that large elongation is always
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beneficial for local and global energy confinement, whereas the effect of triangularity is

smaller and can even change sign depending on the size of the Shafranov shift.

One of the main requirements for successful performance of future fusion experiments

is the prospect of operation in a high confinement H-mode. The formation of a trans-

port barrier in a magnetically confined toroidal H-mode plasmas is closely related to the

presence of radially sheared poloidal or toroidal flows which act to suppress turbulent

convection [4,5]. Both neoclassical particle dynamics and also zonal structures in turbu-

lent potential fluctuations can lead to radially varying electric fields Ẽ(r) that drive flows

with velocity vE = (c/B2)Ẽ ×B perpendicular to a background magnetic field B [6–8].

The transition between states of low plasma confinement (L-mode) to the high con-

finement regime featuring such an edge transport barrier (H-mode) is up to now not

satisfactorily described by any of the existing first-principle theories [9]. The notion that

generation of zonal flows by inverse cascade of the turbulence can act to self-regulate by

suppressing the driving turbulent vortices has lead to the development of predator-prey

type bifurcation models that are able to describe specific characteristics of the L-H tran-

sition (see e.g. [10]). Early computations based on the resistive-g [11] and collisional drift

wave [12] models found self-generated sheared flows which could be argued as an L-H

transition trigger. However, more recent models in more comprehensive treatment of the

toroidal geometry do not find this [13].

After the initial discovery in the early divertor experiment ASDEX [14] it has been found

in numerous large tokamaks around the world that the presence of a divertor (originally

designed to improve the impurity exhaust) significantly enhances the prospect of reaching

the H-mode state.

There have been several approaches to model the confinement transition in magnetized

plasmas [9]. Validation of such models by numerical simulation and improved theory is

an issue of outstanding importance. Up to now both the transition models as well as the

numerical simulations have relied mainly on much oversimplified representations of the

plasma geometry. In our present work we intend to test the foundations of confinement and

transition models by using basic first-principle numerical simulations of plasma turbulence

that implement realistic flux surface shaping effects into a gyrofluid tokamak edge code.

The aim is to test and in principle falsify particular theoretical bases for heuristic models

and scenarios which are then applied to experimental modelling.

Spin-up and suppress scenarios (self generated zonal flows whose return effect should be

to reduce the turbulence and transport)in transition models can qualitatively be repro-

duced by first-principle simulations of edge turbulence [11,12]. However, the introduction

of 3D toroidal compressibility of the zonal flows opens channels in the nonlinear dynamics

of the vortex-flow interaction that strongly affect the flow energetics [16,17]. The ori-
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gin of the compression is the geodesic curvature of the magnetic field lines. The flow is

thereby coupled with poloidally asymmetric pressure sidebands which are consumed by

the turbulence and global Alfvén or parallel flow dynamics. This geodesic transfer mech-

anism represents a restoring loss channel for the zonal flows, ultimately placing them in

statistical equilibrium with the turbulence, with the Reynolds stress (spin-up) mechanism

continuing to operate. Since the latter acts on all frequencies, the geodesic acoustic mode

(GAM) oscillation itself need not be present for the geodesic transfer mechanism to oper-

ate. The net result of this is that turbulent transport in 3D toroidal edge computations

is found to be reduced but not completely suppressed by the self-generated zonal flows.

This geodesic transfer effect was first studied for the case of a basic circular toroidal

magnetic field. Modern tokamak plasma experiments exhibit a shaping of the confining

magnetic field that is considerably different from a perfect torus and feature character-

istics like a quasi elliptic elongation in the horizontal direction of up to a factor 2, some

triangularity on the outboard field side, and are usually equipped with a divertor for

impurity exhaust that introduces an X-point in the magnetic field. Field lines are accord-

ingly strongly and inhomogenously sheared and curved in the closed flux surface region of

the plasma edge near the separatrix. A schematic view of a shaped plasma cross section

is shown in Fig. 1.

In the following we give both first-principle numerical evidence and a clear physical

picture of how plasma shaping and the presence of a divertor via its modification of

plasma geometry can influence the outcome of the turbulence/flow interaction.

ASDEX Upgrade

plasma

flux tube

density

. FIG. 1. Poloidal cross section of a tokamak plasma (ASDEX Upgrade) showing the elongation and triangularity
of closed flux surfaces and a lower X-point on the separatrix. A section of the flux tube for drift wave turbulence
simulations winding around the torus along field lines is here locally intersecting the outer midplane of the plasma
edge.
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III. THE GYROFLUID ELECTROMAGNETIC MODEL GEM3

Transport in a fusion edge plasma is dominated by turbulent low-frequency drift wave

motion that causes a fluid-like convection through E×B vortices in a plane perpendicular

to the magnetic field direction.

The gyrofluid electromagnetic two-moment model GEM3 is a generalisation of the drift-

Alfvén wave equations for describing tokamak edge turbulence in the isothermal approx-

imation. By constructing moments from the nonlinear gyrokinetic equation the gyrofluid

continuity equations for the perturbed densities ñi and ñe and the force balance equations

for the parallel velocities ũ‖ and ṽ‖ can be obtained. The tilde symbol denotes dependent

variables, disturbances on a background which is homogeneous except for density profile

gradients given by ∇ni0 and ∇ne0, with scale length given by the additional parameter

L⊥ (for additional details cf. Ref. [18] for the equations and parameters and Ref. [21] for

the geometry). The ion equations are:

1

ni

(

∂

∂t
+ uE · ∇

)

(ñi + ni0) = −B∇‖

ũ‖

B
+ K

(

φ̃G

)

+
Ti

nie
K (ñi) (1)

1
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+
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e
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∂

∂t
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)

ũ‖ = −∇‖φ̃G − Ti

nie
∇‖ (ñi + ni0) − η‖J̃‖ (2)

and the electron equations are

1

ne

(

∂

∂t
+ vE · ∇

)

(ñe + ne0) = −B∇‖

ṽ‖
B

+ K
(

φ̃
)

− Te

nee
K (ñe) (3)
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e

(

∂

∂t
+ vE · ∇

)

ṽ‖ = −∇‖φ̃ +
Te

nee
∇‖ (ñe + ne0) − η‖J̃‖ (4)

with the current given by

4̃π

c
J‖ = nieũ‖ − neeṽ‖ = −∇2

⊥Ã‖. (5)

The two species are in addition connected by gyrofluid polarisation,

Γ1ñie + nie
2
Γ0 − 1

Ti

φ̃ = ñee, with Γ0 approximated by Γ0 = (1 − ρ2

i∇2

⊥)−1. (6)

The operator Γ0 gives the averaging to express guiding centre densities in terms of space

densities.

Finite gyroradius effects for electrons are neglected, but the ions are subjected to the

reduced potential φ̃G given by weighted gyroaveraging,

φ̃G = Γ1(φ̃), with Γ1 = Γ
1/2

0 , approximated by Γ1 = (1 − 1

2
ρ2

i∇2

⊥)−1. (7)
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The E × B advection velocity for electrons is vE = (c/B2)B × ∇φ, and the finite

gyroradius equivalent for ions is uE = (c/B2)B ×∇φG .

The differential operators are the parallel gradient

∇‖ = (1/B)(B + B̃⊥) · ∇, (8)

with magnetic field disturbances B̃⊥ = (−1/B)B × ∇Ã‖ as additional nonlinearities,

the perpendicular Laplacian

∇2

⊥ = ∇ · [(−1/B2)B × (B ×∇)], (9)

and the curvature operator

K = ∇ · [(c/B2)B ×∇)]. (10)

The edge plasma is further characterised by collisionality C = 0.51ǫ̂(νecs/L⊥)(me/Mi),

magnetic induction β̂ = ǫ̂(4πpe/B
2), electron inertia µ̂ = ǫ̂(me/Mi) with the scale ratio

parameter controlling the ion inertia, ǫ̂ = (qR/L⊥)2, and cs =
√

Te/Mi is the sound speed.

We choose nominal parameters to reflect typical tokamak edge conditions: C = 5, β̂ =

1, µ̂ = 5 and ǫ̂ = 18350.

The computational domain is set to 64 × 256 nodes in units of the drift scale ρs =

(c/eB)
√

TeMi for (x, y) and 16 nodes in one field line connection length (2πqR) in −π <

z < π. The dimensions are chosen to appropriately account for statistical isotropy in

small scales in both perpendicular directions with satisfactory spectral overlap, and for an

extended box size in the electron drift direction y to reflect the “thin-atmosphere” nature

of the edge layer. A grid resolution down to ρs together with a radial (x) domain size

comparable to L⊥ guarantees inclusion of all scales necessary for the nonlinear dynamics

that are essential for the drift wave turbulence characteristics [16].

IV. FLUX TUBE REPRESENTATION OF TOKAMAK GEOMETRY

Tokamak equilibria are computed by solving the Grad-Shafranov / Lüst-Schlüter equa-

tion with the code HELENA [20], implemented as described in Ref. [13]. A set of nested

flux surfaces in straight field line Hamada coordinates (V, θ, ζ) is obtained by specifica-

tion of given radial profiles of pressure and rotational transform, and of the shape of the

bounding last closed flux surface. These Hamada coordinates are then transformed into

a field aligned system and re-scaled into local flux tube coordinates (x, y, z) [19].

A transformation of the coordinate y, which signifies the electron diamagnetic drift

direction perpendicular to the magnetic field within flux surfaces, is applied in order to

avoid grid deformation by local magnetic shear [21] .Otherwise, grid cells are sheared

strongly in y direction particularly near the X-point region, with malign consequences on
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nonlinear dynamics, especially in the vorticity, that lead to a violation of the basic drift

wave character and overestimate linear MHD-like dynamics. The differential operators

are then expressed in terms of the flux tube coordinates: The curvature operator becomes

K = Kx(z)∇x + Ky(z)∇y, (11)

the perpendicular Laplacian in flute mode ordering is

∇2

⊥ = gxx(z)
∂2

∂x2
+ 2gxy(z)

∂2

∂x∂y
+ gyy(z)

∂2

∂y2
, (12)

and the parallel derivative is

∇‖ = bz(z)
∂

∂z
, (13)

noting also that the factor of B2 in ρ2
i also depends on z. Some metric coefficients gij

that were obtained for elongation κ = 1 and κ = 2 with triangularity δ = 0 and δ = 0.4

are shown in Fig. 2. Increasing elongation κ specifically rises the local magnetic shear

S = ∇‖(g
xy/gxx) and reduces Kx both in the upper and lower regions of the torus that

correspond to flux tube coordinates z = ±π/2. Local and global magnetic shear have a

damping influence on tokamak edge turbulence [15], whereas geodesic curvature acting

through Kx upon ky = 0 modes maintains the coupling for a loss channel from zonal flow

energy eventually to turbulent vortices [16]. Both mechanisms help to reduce the local

turbulent E ×B heat transport Q = T 〈vE×Bñ〉. Normal curvature Ky on the other hand

strengthens primarily the interchange forcing of the turbulence (ky 6= 0).
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FIG. 2. Metric element gxx, gxy (unshifted), normal curvature Ky, geodesic curvature Kx, magnetic field
strength B and local magnetic shear S in a tokamak with elongation κ = 1 and triangularity δ = 0 (dashed
lines), compared to a configuration with κ = 2 and δ = 0.4 (thin solid lines) and to an actual ASDEX Upgrade
configuration (bold solid lines).
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V. INFLUENCE OF ELONGATION AND TRIANGULARITY

ON TURBULENCE AND TRANSPORT

We construct a series of tokamak equilibria for elongation κ = 1.00, 1.25, 1.50, 1.75, 2.00

and triangularity δ = 0, 0.1, 0.2, 0.3 and 0.4 with equal profiles of pressure and rotational

transform. The flux tube is chosen for a radial position V/V0 = 0.90 which for typical

L-mode tokamak experiments is located in the strong pressure gradient pedestal region

defining the plasma edge. The background density profile and rotational transform are

linearised within the bounds of the radial computational domain. We restrict our sim-

ulations for now to the closed field line region lying a few tens of ion gyroradii inside

from the separatrix, thus avoiding complications that occur by a divergent metric and

associated grid deformation when the last closed flux surface is approached in the vicinity

of an X-point. Ultimately, the goal of edge turbulence simulations will be to combine

sufficiently well resolved nonlocal drift wave computations with a representation of the

realistic field line geometry crossing the separatrix to the bounded scrape-off layer region.

When the plasma shape is thus varied, we have a particular interest in the effects on

fluctuation time and spatial scales, on the radial variation of flux surface averaged (zonal)

flows, and on turbulent transport.

The cross-field turbulent transport is locally determined by the radial component of

E × B convection of the fluctuating density and thus for isothermal plasma given by

Qe = Teṽxñe and Qi = Tiũxñi. (14)

The local flows Q(x, y, z) are fluctuating in time, and for specifying a quantitative value

to it the time average over a sufficiently long window, that covers all relevant frequency

scales, is taken during the final phase of simulations after all initial linear transients and

spin-up of flows and oscillations have reached saturation. The zonally averaged (over

the yz-domain) flux is given by 〈Q(x)〉y,z. The units of transport fluxes obtained by

this procedure are given by standard gyro-Bohm normalisation to pecs(ρs/L⊥)2. The

integration obtaining the global transport across an entire magnetic flux surface takes the

variation of surface area with elongation into account: the poloidal circumference λ of an

ellipse scales roughly like λ ≈ 2πr[0.75(1+κ2)/κ−0.5] which gives λ(κ ≡ 2) ≈ 1.4λ(κ ≡ 1)

for volume-averaged flux surface radius r =
√

V/2πR0. We observe that the influence of

elongation via the turbulence dynamics on local transport fluxes is much larger than the

additional factor on global scalings given by this surface factor: The electron transport

flux Fe (where Qe = TeFe) shown in Fig. 3 is reduced to more than a third when elongation

is increased from a circular cross section to κ = 2.
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FIG. 3. Dependence of turbulent electron transport Fe (in gyro-Bohm units) on elongation κ for various values
of triangularity between δ = 0 and 0.4.

The same set of data results for Fe is displayed against triangularity δ in Fig. 4. For

κ = 1 the transport flux is independent from triangularity within the error bars given by

the deviation of the fluctuating data from its time average. For higher elongation κ = 2

we observe that transport Fe is increased from the normalised value of 0.20 to 0.28 by

increasing triangularity from 0 to 0.4.
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FIG. 4. Same data as Fig. 3: Dependence of turbulent transport Fe on triangularity δ for various values of
elongation between κ = 1 (top) and 2 (bottom). Error bars show the standard deviation of fluctuating data from
their time average.
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A good fit to the transport data within fluctuation error bars is obtained by

Fe(κ, δ) ≈ F1,0 · κ−2.15+1.46δ (15)

where F1,0 = F (κ = 1, δ = 0). For fixed gradients and in the present isothermal ap-

proximation, the local diffusivity χ is proportional to Fe and thus to the roughly inverse

quadratic scaling with κ given in Eq. 15. At a glance, this appears to contradict the naive

view one may find by simply deconstructing global experimental energy confinement scal-

ings, which can lead to inferring a nearly complete lack of κ scaling on local transport

[22]. The latter result was obtained by assuming a scaling of χ with a safety factor q(κ):

there, a variation of q with elongation is a result of the assumption of independently

scaling toroidal current I and toroidal magnetic field BT . In addition, the thermal energy

content of the plasma is approximated by the average pressure and total volume V , where

V ∼ κ has been assumed. This assumption might be too crude, as flux surfaces are more

circular towards the plasma centre where the pressure is largest, than at the edge at which

κ usually is defined.

In our computations, however, the same q and p profiles are maintained in the calculation

of the numerical equilibria throughout variations of κ and δ in HELENA. This approach

is favourable when the attention shall be focused on first principle physics mechanisms,

like the geodesic transfer effect and normal curvature forcing in our present study. The

complimentary approach to calculate the equilibria by specifying I(r) instead of q(r) will

lead to a rise of both q and global magnetic shear ŝ = (r/q)(∂q/∂r) with increasing

elongation. While stronger shear reduces the turbulent transport [15], an increase in q

enters into the parallel to perpendicular scale length ratio ǫ = (qR/L⊥)2, which directly

scales fundamental plasma parameters (µ̂, β̂) and the coupling of curvature operators in

the turbulence code. It will of course be worthwhile to undertake such a complimentary

approach in some future turbulence study in order to validate the empirical scaling.

VI. SHEARED FLOWS IN THE PRESENCE OF A TOKAMAK DIVERTOR

Time traces are resolved down to 1/20th of the drift frequency ωDW = cs/L⊥, and

long computational runs are required to account for zonal flows with ω ≈ 0. A typical

number of time steps is 105. Geodesic acoustic mode (GAM) oscillations may be dis-

tinctly detectable for some parameters and are expected for circular geometry around

ω/ωDW = (2L⊥/R)
√

(1 + τi)/2. In our case, ωGAM = 0.03ωDW . In general, the GAM fre-

quency is determined by the geodesic curvature term Kx and is influenced by flux surface

deformation.

The variation of Kx with elongation κ in the HELENA metric can be understood by

expressing the cylindrical coordinates (R, Φ, Z) of a plasma in an axisymmetric configu-

rations in terms of flux coordinates (ρ, θ, φ) by
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R = R0 + (ρ/κ) cos θ and Z = (ρκ) sin θ. (16)

The geodesic curvature effect is the action of the curvature operator K upon ky = 0. In

local flux tube coordinates and low beta approximation this works through the part

Kx∂x = (cB0/B
2)(∂z lnB2)∂x (17)

where the radial dependence of the magnetic field strength may in a low aspect ratio

approximation (ǫ = ρ/R0 ≪ 1) be written as

B ≈ B0R0/R = B0[1 + (ǫ/κ) cos θ]−1, (18)

where in flux tube coordinates z = θ, so that

Kx ∼
(

2ρ

R

)

1

κ
sin θ. (19)

This factor 1/κ in the geodesic curvature term does also accordingly scale the geodesic

acoustic mode frequency: stronger elongation shifts the GAM resonance frequency in the

spectrum closer to the zero-frequency zonal flow. The same argument, now applied to the

normal curvature term Ky, also accounts for a corresponding scaling of the (interchange)

drift wave frequency likewise with κ−1.
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FIG. 5. Local frequency spectra φ̃(ω) for κ = 1 (black) and κ = 2 (blue), both for δ = 0. Arrows indicate the
drift wave and GAM resonances.

For the parameters used in our computations, the GAM peak does not protrude very

distinctly but can still be identified on the flat top of the spectra. In Fig. 5 the discrete

Fourier transform spectrum φ̃(ω) for a measurement of φ̃ at a local point in the centre of

the xyz-domain is shown: the spectrum below the GAM resonance is mostly flat except
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for the distinct zonal flow peak at ω = 0. The higher frequency part shows a typical ω−α

cascade structure, where the exponent α changes at some point for larger frequencies.

The change of exponent occurs around the drift frequency ω̂ ≈ 1, which for our choice of

edge parameters coincides also with the Alfvén frequency. One may identify three ranges

in the spectrum: A flat top region between the zonal flows and GAM frequencies, one

intermediate cascade range between the GAM and drift wave frequencies with α ≈ 1− 2,

and another cascade range between the drift wave and the dissipation times scale with

α ≈ 3 − 5.

As expected from the above considerations, both GAM and drift wave frequencies are

reduced by increasing elongation to lower values ω → ω/κ. The whole spectrum is thus

shifted to the left for κ = 2 in Fig. 5.

In addition to computing the flux surface shapes with varying elongation and trian-

gularity discussed above, HELENA can also be used to obtain equilibria with an outer

boundary defined by an experimentally reconstructed separatrix position. In this way we

obtain an equilibrium in the typical shape of an ASDEX Upgrade (AUG) [23] lower single

null divertor configuration (as shown in Fig. 1). The additional asymmetric shaping by

the presence of an X-point in the lower part of the torus leads to an increase of local mag-

netic shear near z = −π/2 and an associated local reduction of geodesic curvature. The

elongation and triangularity of this configuration are otherwise comparable to κ ≈ 1.6

and δ = 0.3. This AUG configuration was first used in edge turbulence computations in

Ref. [19], where the dependence of transport on β̂, and thus on the Shafranov pressure

shift, was established: it was found that the onset of MHD ballooning mode turbulence

is prevented for typical tokamak edge parameters due to the shaping effects in realistic

geometry, and the nature of transport is still basically of the drift-Alfvén wave character.

The local magnetic shear S = ∂zg
xy/gxx is displayed in Fig. 2 for the AUG model,

the circular κ = 1 and the elongated tokamak κ = 2. For the upper region of the

torus near z = +π/2 the local shear is comparable to the case of an equivalent up-down

symmetric configuration with the average elongation κAUG = 1.6. In the lower part

around z = −π/2 near the X-point we see that S is increased to a level corresponding to

an elongation of 2. On flux surfaces nearer to the separatrix (V/V0 = 1) than the present

radius (V/V0 = 0.90) local magnetic shear is further considerably increased in the X-point

region, whereas geodesic curvature Kx is further lowered. The AUG model thus has, for

the present flux tube position, properties relevant to the turbulence dynamics that are in

some aspects in between those of up-down symmetric configurations with κ = 1.6 and 2.0.

Transport in the AUG model is reduced to Fe = 0.5 compared to Fe = 0.9 for the circular

torus. The nonlinear growth rate ΓN = Fe/2Etot is only slightly lower for the AUG model

with ΓN = 0.007 ± 0.001 than for the circular torus with ΓN = 0.0085 ± 0.001.
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FIG. 6. Radial kx spectra of flux surface averaged vorticity 〈Ω〉 = ∂x〈uy〉, related to nonlinear growth rate ΓN :
the ASDEX Upgrade configuration (bold line) has slightly larger (+16 %) cumulative amplitude in all modes of
the vorticity spectrum than the circular tokamak (thin dashed line). The reduction of geodesic curvature with
increasing κ thus enhances the shear flow only insignificantly by effectively lowering the coupling of zonal flows
to GAMs.

A reduction of geodesic curvature by elongation and X-point shaping might be expected

to lead to a weakening of the geodesic transfer coupling mechanism for energy from zonal

flows to GAMs. This can be analysed by comparing the flux surface averaged vorticity

〈Ω(x)〉 = ∂x〈uy(x)〉 (20)

for the configurations of the circular torus with the AUG model. The zonal flow velocity

uy(x) is derived from the electrostatic potential fluctuations by 〈uy(x)〉 = (c/B)∂x〈φ̃(x)〉.
The zonal vorticity 〈Ω〉 thus represents the radial shearing of zonal flows, which is con-

sidered responsible for the turbulent shear flow decorrelation and energetic damping of

vortices [10]. Concerning the geometric effect on this, however, we find that the cumu-

lative amplitude of the modes in the radial spectrum of zonal vorticity is only slightly

increased by 10− 20% for the elongated AUG for 〈Ω〉 expressed in terms of the nonlinear

growth rate ΓN in Fig. 6. The lowest kx mode in these spectra makes up for approximately

8% of the total vorticity. Evidence for an enhancement of shear flows by elongation and

X-point shaping is present but weak. The reduction of turbulent edge transport is thus

mainly a result of the local magnetic shear effect [15].

It can be expected that the enhancement of zonal flows is more pronounced for stronger

shaping, when the separatrix is approached by either specifying a flux tube nearer to

V/V0 = 1, or by allowing for a radially inhomogeneous metric in the turbulence code

in simulations with global profile evolution. We have observed in such global models

that a spin-up of zonal flows in a radially narrow region of the computational domain

12



(e.g. by injecting vorticity locally) can extend to broader parts of the x-domain. A

realistic representation of the geometry approaching the X-point however requires high

grid resolution and is computationally challenging even for a code like GEM3 which applies

coordinate techniques designed to mitigate this problem.

VII. CONCLUSION

We have presented results for simulations of gyrofluid edge turbulence in realistic toka-

mak geometry. It is found that turbulent transport Fe is reduced by increasing flux surface

elongation κ. The influence of triangularity δ is much weaker and generally also depends

on elongation and on a pressure shift. While geodesic acoustic modes (GAM) and the

overall turbulence frequency spectra depend on flux surface geometry, we find only a

minor enhancement of flow shear by elongation and X-point shaping. The damping of

transport observed in our simulations in realistic tokamak geometry is mainly a result of

local magnetic shear.
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