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Abstract. A case of moving one-dimensional electromagnetic (EM) solitons formed in a 
relativistic interaction of a linearly polarized laser light with underdense cold plasma is 
investigated. The relativistic Lorentz force in an intense laser light pushes electrons into 
longitudinal motion generating coupled longitudal-transverse wave modes. In a weakly 
relativistic approximation these modes are well described by a dynamical equation of the 
generalized nonlinear Schrödinger type, with two additional nonlocal terms [1]. An original 
analytical solution for a moving EM soliton case is here calculated in an implicit form. The 
soliton motion down-shifts the soliton eigen-frequency while decreases its amplitude. An 
influence of the soliton velocity on stability properties is analytically predicted.  

INTRODUCTION 

Relativistic electromagnetic (EM) solitons in laser driven plasmas were analytically 
predicted and found by PIC (particle-in-cell) simulations [2]-[8]. It has been estimated 
that, for ultra-short laser pulses, up to 40% of the laser energy can be trapped by 
relativistic solitons, creating a significant channel for laser beam energy conversion. 

Relativistic EM solitons are localized structures self-trapped by a locally modified 
plasma refractive index via relativistic electron mass increase and an electron density 
drop due to the ponderomotive force of an intense laser light [2]-[4]. A train of 
relativistic EM solitons is typically found to form behind the intense laser pulse front.  

In this paper, we treat a case of a linearly polarized laser light. In laser-plasma 
interactions, relativistic Lorentz force sets electrons into motion, generating coupled 
longitudinal-transverse wave modes. These modes in the framework of a weakly 
relativistic cold plasma approximation in one-dimension, can be well described by a 
single dynamical equation of the generalized nonlinear Schrödinger type [1], with two 
extra nonlocal terms. A new analytical solution for the moving EM soliton case is 
calculated in the implicit form and the soliton motion effect on its self-frequency and 
amplitude is outlined. Moreover, the influence of the soliton velocity on the EM 
solition stability is discussed. These results are compared with the one for a standing 
(non-moving) relativistic EM soliton case, obtained by some of these authors [1]. 
Finally, numerical simulations of the model dynamical equation were performed in 
order to check the good agreement with our analytical results. 



DYNAMICAL EQUATIONS 

We consider a long intense laser pulse propagating through a cold collisionless 
plasma and start with the fully nonlinear relativistic one-dimensional model for the 
EM wave equation, the continuity equation and the electron momentum equation, for a 
cold plasma with fixed ions. These equations, in the Coulomb gauge,  read: 
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where 2/mceAa =  is normalized vector potential in the y direction, n is the electron 
density, p is the electron momentum in the x direction, 2/12222 )/1( cmpa ++=γ , ||E  is 

the longitudinal electric field, n0 is the unperturbated electron density, and 
2/1

0
2 )/4( mnep πω =  is the background electron plasma frequency. 

In a weakly relativistic limit for 1|| <<a  and 1|| <<nδ , the wave equation for the 
vector potential envelope A is obtained, as  (details are given in [1]):  
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Equation (4) has a form of a generalized nonlinear Schrödinger (GNLS) equation 
with two extra nonlocal (derivate) nonlinear terms. We can readily derive two 
conserved quantities: photon number P and Hamiltonian H: 
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 Now, we look for a localized solution of (4) in a form of a moving soliton: 
 ])(exp[)( 2tiuiuA λθρ += , (6) 
where, vtxu −= , and v  is the soliton velocity. Under the boundary conditions 

0)(,)(),( →uuu uuu ρρρ  when ±∞→u , the first integration of (4) gives: 
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Additional integration of (7) yields a moving soliton solution in an implicit form 
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where 
6/v16/3
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0 −
−λ=ρ  is the maximum amplitude of the linearly polarized moving 



EM soliton with the eigen-frequency 22 v−=Λ λ . With the soliton velocity v put to 
zero the above expression readily coincides with the standing soliton solution of the 
GNLS equation (4), given in [1]. Furthermore, with the ansatz (6), explicit 
contribution of the velocity dependent - "kinetic" terms in the Hamiltonian (7) is 
singled out, by 
 

duv
v

vvH uuuuuu∫ 












+













+−+−−= 244

2
222222

616

3
4

3

2
22/1 ρρρρρρρρ .          (9) 

Actually, the expression (8) for a moving EM soliton, predicts a two-parameter family 
of existing solutions of eq.(4). To illustrate, with the Photon number-P as the constant 
parameter, in figure 1, we plot stationary solutions as a function of the soliton 
amplitude-ρ0 (λ) and its velocity- v. For P- photon energy conserved, it appears that 
with an increasing velocity the maximum amplitude decreases while the soliton profile 
broadens; up to a point when the EM  localization criteria  is lost. These results could 
be directly applicable, e.g., for a case of a  slow adiabatic acceleration of isolated EM 
solitons in a non-uniform electron plasma. 

  

 

 

 

 

 

 

 

FIGURE 1. Soliton solutions versus the soliton 
amplitude ρ0 (λ) and its velocity –V, for P=const 

 FIGURE 2. Broadening of the soliton profile. 

 

SOLITON STABILITY 

In order to check the stability of the moving soliton, we use the renown Vakhitov-
Kolokolov stability criterion [9,1]. According to this criterion, solitons are stable (with 
respect to longitudinal perturbations) if: 
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where, P0  is the soliton photon number defined by (5). The function )(0 λP  can be 
analytically calculated for the soliton solution given by (8), as: 
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When the soliton velocity is equal to zero above result (11) agrees with the standing 

soliton solution, obtained earlier in [1]. According to the condition (10), moving EM 
solitons turn out to be stable in the region Sλλ <  (fig. 3). We conclude that small 
amplitude linearly polarized moving solitons within the weakly relativistic model are 
stable. 

 

FIGURE 3. Photon number )(0 λP  variation for different soliton velocities. 

 

Comparing the Photon number )(0 λP  variation for the moving soliton with the 
stationary one we see the influence of the soliton velocity on the stability region. As 
the soliton velocity increases, stability region are shifting toward greater values of λ .  

SIMULATION  RESULTS 

In order to check our analytical results and our prediction concerning the moving 
soliton dynamics and the influence of the velocity on soliton stability, we have 
performed direct numerical simulation of the nonlinear model equation (4). We have 
used a numerical algorithm based on the split-step Fourier method10, which was 
originally developed for the NLS equation.  

Numerical results prove that the initially launched moving solitons (8) with the 
soliton parameters inside the stability region remain stable. The evolution of the 
initially launched soliton with amplitude A0=0.4 and photon number P=1.8 inside the 
stability region, for different soliton velocities is shown in Fig.4. The influence of the 
soliton velocity on its dynamics is shown in Fig. 5. Comparing the evolution of the 
initially launched standing soliton (v=0) with amplitude A0=1.63 outside the stability 
region ( 5.0=λ ) (a), and the evolution of the moving soliton with the same λ  but with 
the velocity v=0.7 (b), we can see that soliton velocity acts as a stabilizing factor on its 
dynamics. As an illustration of an unstable behavior, a moving soliton with parameters 
(λ, v) outside the stability region is shown in Fig. 5(c). 
 



 
 
 

 

 

 

 
 
FIGURE 4. Spatio-temporal evolution of EM solitons, inside the stability region with amplitude 
A0=0.4, photon number P=1,8 for different  initial velocities: (a) v=0; b) v=0.4; and c) v=0.6 



 

 

FIGURE 5. (a) Standing soliton in the unstable region (λ=0.5) with amplitude A0=1.63; (b) Moving 
soliton with the same λ as in (a), v=0.7, A0=0.3; (c) moving soliton in the unstable region, 
λ=0.55, v=0.4, A0=1.66 

CONCLUSIONS 

• Analytical solutions for moving linearly polarized EM solitons, described by 
the weakly relativistic GNLS model equation, are found for the first time. 

• For an isolated EM soliton case (P= const.), a soliton velocity increase results 
in a reduction of the maximum amplitude and broadening of the soliton profile.  

• Weakly relativistic moving EM solitons are stable; with the stability region 
shifting toward larger amplitudes in comparison to the standing soliton case. 

• Simulations of the model GNLS equation have confirmed analytical results.   
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