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Abstract

The complete short mean free path description of magnetized plasma in the drift ordering has

recently been derived. The results correct the previous expressions for the ion pressure

anisotropy (or parallel ion viscosity) and the perpendicular ion viscosity - the ion gyro-

viscosity is unchanged. In addition, the electron problem is solved for the first time to obtain

the electron pressure anisotropy (parallel electron viscosity) and the electron gyro-viscosity -

the perpendicular electron viscosity is negligible. The results have been used to obtain a

reduced fluid description appropriate to the edge of a tokamak. In addition, the complete

description has been used to evaluate the radial transport of toroidal angular momentum that

determines the radial electric field and flows in a tokamak.

1. Short Mean Free Path Closure

The short mean free path description of magnetized plasma as originally formulated by

Braginskii [1] in 1957 assumes an ordering in which the ion mean flow is on the order of the

ion thermal speed. Mikhailovskii and Tsypin [2] realized that this MHD ordering is not the

one of most interest in many practical situations in which the flow is weaker and on the order

of the ion heat flux divided by the pressure. In their ordering the ion flow velocity is allowed to

be on the order of the diamagnetic drift velocity - the case of interest for most fusion devices in

general, and the edge of many tokamaks in particular. Their drift ordering retains heat flow

modifications to the viscosity that are missed by the MHD ordering of Braginskii. Indeed,

short mean free path treatments of turbulence in magnetized plasmas must use some version of

the Mikhailovskii and Tsypin results to properly retain temperature gradient terms in the gyro-

viscosity. However, the truncated polynomial expansion solution technique of Mikhailovskii

and Tsypin made two assumptions that we remove to obtain completely general results [3].

First, they neglected contributions to the ion viscosity that arose from the non-linear part of the

collision operator. We find that removing this assumption gives rise to heat flux squared terms

in the ion pressure anisotropy and perpendicular ion viscosity that are the same size as terms

found by Mikhailovskii and Tsypin. Second, their truncated polynomial expansion of the ion

distribution function is an inadequate approximation to the gyro-phase dependent portion of

the ion distribution function. We find that their approximate form is not accurate enough to

completely and correctly evaluate many of the terms in the perpendicular collisional viscosity.

The modifications to the pressure anisotropy and perpendicular collisional viscosity that we

evaluate are valid for turbulent and collisional transport, and also allow stronger poloidal



density, temperature, and electrostatic potential variation in a tokamak than the standard

Pfirsch-Schlüter ordering. We have also evaluated the electron pressure anisotropy and gyro-

viscosity. Combining the ion and electron descriptions with the Maxwell equations gives a

closed system of fluid equations for the plasma density, and the ion and electron temperatures

and mean velocities.

2. Reduced Collisional Description for Tokamak Edge Plasma

Starting with our corrected short mean free path fluid equations, we derived a system of

non-linear reduced moment equations, suitable for numerical modeling, that describe field-

aligned fluctuations in low-beta collisional magnetized edge plasma [4]. These equations

advance the plasma density, electron and ion pressures (or, equivalently, temperatures), parallel

ion flow velocity, parallel current, vorticity (or, equivalently, electrostatic potential), perturbed

parallel electromagnetic potential, and perturbed magnetic field. The equations locally conserve

particle number and total energy, and insure that perturbed magnetic field and total plasma

current are divergence-free. In addition, while intended primarily for modeling plasma edge

turbulence, they contain the neoclassical results for plasma current, parallel ion flow velocity,

and parallel gradients of equilibrium electron and ion temperatures.  These equations assume

that neoclassical transport of angular momentum is unimportant since they employ the gyro-

viscous cancellation  (which assumes that the variation of the magnetic field is weak compared

to the spatial variations of density and temperature). Consequently, they assume that the

turbulence dominates over neoclassical transport to set the radial electric field. However, more

work is necessary to determine whether the assumptions that go into deriving reduced

descriptions in general and the vorticity equation in particular are valid because the

approximations employed can introduce spurious electric fields. These spurious radial electric

fields can be removed by subtracting off the appropriate flux surface averages that arise

because of the use of the gyro-viscous cancellation and other approximations. It is important to

remember that in the absence of turbulence and ion temperature variation a radial Maxwell-

Boltzmann, rigid rotor response e∂Φ/∂ψ+ n−1∂pi /∂ψ = constant must be obtained, where  n,

pi and Φ are the plasma density, ion pressure, and electrostatic potential,  respectively, with ψ

the poloidal flux function and e the magnitude of the charge on an electron (we assume singly

charged ions).

3. Angular Momentum Transport in the Pfirsch-Schlüter Regime

For neoclassical transport in general tokamak geometry the radial electric field is

determined by the condition that the radial flux of toroidal angular momentum vanish, that is,

by   〈R
2∇ζ⋅

t 
π ⋅∇ψ〉 = 0 where   

t 
π  is the ion stress tensor, ζ  is the toroidal angle, R is the

cylindrical radial distance from the symmetry axis, and ψ is the flux function associated with

the magnetic field   

r 
B = I∇ζ+∇ζ×∇ψ . In a collisional tokamak plasma this neoclassical limit is



referred to as the Pfirsch-Schlüter regime since they were the first to investigate the return

particle and heat flows that are necessary to satisfy the lowest order particle and energy balance

equations. The general expression for the radial flux of toroidal angular momentum is quite

complex and the first systematic evaluation was by Hazeltine in 1974 [5]. Our results [6] differ

from his for the following two reasons: (i) his expression for the radial flux of toroidal angular

momentum is incomplete [7] - he solved a kinetic equation [8] that can be shown to be missing

some second order in the ion gyro-radius expansion terms needed to obtain the full gyro-

viscosity [2, 3] as well all higher order terms needed for a direct determination of the

perpendicular viscosity, and (ii) he assumed that both ion pressure and electrostatic potential

separately had no poloidal variation rather than requiring that they need only satisfy the

constraint of parallel ion momentum conservation.

Although the general expression for the radial electric field is quite lengthy [6], two

simple limits can be deduced: (i) the limit of concentric circular flux surfaces and (ii) the case

of a strong up-down asymmetry as might be expected just inside the separatrix in single null

divertor geometry. The general expressions are substantially more involved because the gyro-

viscosity must be evaluated to higher order in the Pfirsch-Schlüter expansion procedure that

assumes δ ≡ ρ/L⊥  << Δ ≡ λ/L || << 1, with ρ  and λ  the ion gyro-radius and ion mean free

path and L ⊥ and L || the perpendicular and parallel scale lengths.

We assume that the plasma current Ip  is in the direction of increasing toroidal angle

(the ∇ζ  direction) in order to make ψ increase outward from the magnetic axis. As a result, the

direction of the toroidal magnetic field is determined by the sign of the flux function I. The

curvature and gradient B drift are towards a lower X-point when I is positive and Ip  in the ∇ζ

direction. To write down our results in a compact form it is convenient to define a rotation

frequency ω =  −c[∂Φ/∂ψ+ (en)−1∂pi /∂ψ] since in the absence of temperature variation and

momentum sources or sinks the only solution allowed is one that is ∂ω/∂ψ = 0 , which is

consistent with the generalized radial Maxwell-Boltzmann response ω = constant.

For an up-down symmetric tokamak, the lowest order gyro-viscous contribution to the

radial flux of toroidal angular momentum vanishes, and the next order correction in the

Pfirsch-Schlüter expansion (δ/Δ  << 1) must be evaluated.  The resulting expression for

arbitrary cross section, aspect ratio, magnetic field, and plasma pressure simplifies substantially

for a circular, concentric flux surface model. For this case it is convenient to denote the radius

of the flux surface by r and use Bt = B0R0 /R  for the toroidal magnetic field with R0 the

radius of the magnetic axis and r/R0 << 1. We then find that the shear in the frequency ω is

simply given by

r

Ω0

dω

dr
≈ −

0.19q3ρ0
2Te

Te + Ti

dlnTi

dr

 

 
 

 

 
 
2

, (1)



where q is the safety factor and we defineΩ0 = eB0 /Mc and ρ
0

= vi /Ω0, with vi = (2Ti /M)
1/2

the ion thermal speed and M the ion mass. The result of Eq. (1) is in agreement with the result

of Claassen and Gerhauser for T
e
=T

i
 [9]. According to (1) the radial variation of ion

temperature is responsible for driving a shear in the electric field that results in a departure

from radial Maxwell-Boltzmann behavior.  Consequently, the ion flow is sheared as well, and

to lowest order can be written in the form

  

r 
V =ω(ψ)R

2∇ζ + u(ψ)
r 
B , (2)

where  u ≈ −(1.8cI /e〈B2〉)∂Ti /∂ψ [5]. Notice that the shear in the poloidal flow is controlled

by the ion temperature gradient rather than the radial electric field

For the strongly up-down asymmetric case of a single null divertor the expression for

the shear in the electric field (or ω ) in general tokamak geometry is given by

  

dω

dψ
≈ −

4IdTi/dψ

3Mν〈B2〉

〈R2
r 
B ⋅∇lnB〉

R2Bp
2B−4 R2B2+ 3I2( )

 , (3)

where   〈R
2
r 
B ⋅∇lnB〉 vanishes for an up-down symmetric configurations and determines the

sign of the shear dω/dψ for asymmetric ones. Again, once (3) is solved for ω  it can be

inserted into (2) to find the ion flow. Expression (3) depends on the ion collision frequency ν

since it is found by balancing the lowest order gyro-viscosity with the collisional perpendicular

viscosity. The up-down symmetric result of (1) is obtained by evaluating the gyro-viscosity to

higher order in the δ/Δ  << 1 expansion so the collision frequency cancels out and then

performing an aspect ratio expansion. It takes extremely strong up-down asymmetry to make

the asymmetric term on the right side of (3) dominate over the symmetric term. Normally the

general expression with both types of terms retained must be employed for single null divertor

configurations.

4. Drift Kinetics

The drift kinetic equation of Hazeltine [8] is widely viewed as the best available.

However, we have recently shown that it does not contain information needed to use it to

evaluate the full gyro-viscosity [10]. The reason is that the Hazeltine derivation assumes that

the magnetic moment dependence and the energy dependence of the distribution function are

both the same order. In most magnetically confined plasmas the lowest order distribution

function is isotropic in velocity space. If the Hazeltine drift kinetic equation is used in such

situations then it is missing some terms that are second order in the gyro-radius expansion.

When these terms are retained the equation becomes more complex, but the full gyro-viscosity

can be obtained for arbitrary collisionality [10].

5. Summary



We have performed an in depth study of collisional plasmas and applied the results to

tokamaks to obtain a reduced description and to evaluate the axisymmetric neoclassical

Pfirsch-Schlüter radial electric field for arbitrary cross-section and pressure. If, as believed,

energy inverse cascades from short turbulent scales to large structures which set-up

axisymmetric sheared zonal flows that control the turbulence level, then these neoclassical

features must be retained in a complete description to evaluate the full axisymmetric response.
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