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Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas

A. Bonatto, R. Pakter, and F.B. Rizzato∗

Instituto de F́ısica, Universidade Federal do Rio Grande do Sul,

Caixa Postal 15051, 91501-970 Porto Alegre, Rio Grande do Sul, Brasil.

In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses
in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics.
We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance
in the subject of particle acceleration. Connections between these bifurcated solutions and results
of earlier analysis are made.

I. INTRODUCTION

Propagation of intense electromagnetic pulses in plas-
mas is a subject of current interest in a variety of areas
that make use of the available modern laser technolo-
gies, among which we include particle and photon accel-
eration, nonlinear optics, laser fusion, and others [1–6].
Intense electromagnetic pulses displace plasma electrons
and creates a resulting ambipolar electric field with the
associated density fields. Under appropriate conditions
all fields act coherently and the pulse keeps it shape.
Studies on pulse localization have been performed in a
variety of forms to unravel the corresponding numerical
and analytical properties. Kozlov et al. [7] investigate
numerically propagation of coupled electromagnetic and
electrostatic modes in cold relativistic electron-ion plas-
mas to conclude that small and large amplitude localized
solutions can be present. Mofiz & de Angelis [8] apply
analytical approximations to the same model and sug-
gest where and how localized solutions can be obtained.
Ensuing, more recent works provide even deeper under-
standing as various features are investigated, like influ-
ence of ion motion in slow, ion accelerating solitons [9],
existence of moving solitons [5], existence of trails lag-
ging isolated pulses [10, 11] and others. Some key points
however remain not quite understood, like the way small
amplitude localized solutions are destroyed; when iso-
lated pulses are actually free of smaller amplitude trails;
and more specific properties of the spectrum of stronger
amplitude solutions, to mention some. Those are issues
of relevance if one wishes to establish the existence range
and stability properties of the localized modes.

In the present paper we shall turn our attention to
small amplitude solitons propagating in underdense rar-
ified plasmas, since these kind of solitons may be of rele-
vance for wakefield schemes. In doing so we shall follow
an alternative strategy, other than the direct integration
of the governing equations which has been the standard
approach so far. We intend to examine the problem with
techniques of nonlinear dynamics [12]. A canonical repre-
sentation shall be constructed in association with several
tools of nonlinear dynamics like Poincaré maps and sta-
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bility matrices. This strategy naturally provides a clear
way to investigate the system since we intend to estab-
lish connection between the pulses of radiation and fixed
points of the corresponding nonlinear dynamical system
[13]. Several facts are known and we state some which are
of direct relevance for our analysis: small amplitude soli-
tons are created as the wave system becomes modulation-
ally unstable at an upper limit of the carrier frequency
and cease to exist beyond a lower limit of this carrier
frequency. Not much is known on how solitons are de-
stroyed at the lower boundary and we examine this point
to show that a series of nonlinear resonances and bifurca-
tions are responsible for process. A related relevant prob-
lem is when isolated pulses are actually free of smaller
amplitude trails and this has to do with the existence of
wakefields following the leading wave front which is of
relevance for particle acceleration, for instance. Those
are basic issues if one wishes to operate the wave system
under conditions suited for particle acceleration, and our
purpose with the present paper is to contribute towards
the analysis of these aspects.

II. THE MODEL

We follow previous works and model our system as
consisting of two cold relativistic fluids: one electronic,
the other ionic. Electromagnetic radiation propagates
along the z axis of our coordinate system and we rep-
resent the relevant fields in the dimensionless forms
eA(z, t)/mec

2 → A(z, t) for the laser vector potential,
and eφ(z, t)/mec

2 → φ(z, t) for the electric potential.
−e is the electron charge, me its mass, and c is the speed
of light; mi will denote ionic mass when appropriate. In
addition, we suppose stationary modulations of a circu-
larly polarized carrier wave for the vector potential in the
form A(z, t) = ψ(ξ̃)[x̂ sin(kz−ωt)+ ŷ cos(kz−ωt)] with

ξ̃ ≡ z − V t, whereupon introducing the expression for
the vector potential into the governing Maxwell’s equa-
tion one readily obtains V = c2k/ω. V could be thus read
as a nonlinear group velocity since we shall be working in
regimes where ω and k are related by a nonlinear disper-
sion relation. Manipulation of the governing equations
finally takes us to the point where two coupled equations
must be integrated - one controlling the vector potential,
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and the other the electric potential [7, 8]:

ψ′′ = −1

η
ψ +

V0

p
ψ

[

1

re(φ, ψ)
+

µ

ri(φ, ψ)

]

, (1)

φ′′ =
V0

p

[

(1 + φ)

re(φ, ψ)
− (1 − µφ)

ri(φ, ψ)

]

, (2)

where the primes denote derivatives with respect to ξ ≡
(ωe/c) ξ̃, re(φ, ψ) ≡

√

(1 + φ)2 − p(1 + ψ2), ri(φ, ψ) ≡
√

(1 − µφ)2 − p(1 + µ2ψ2), η ≡ ω2

e/ω
2, µ ≡ me/mi,

V0 ≡ V/c, and p ≡ 1 − V 2
0 , with ω2

e ≡ 4πnee
2/me as

the plasma frequency, and ne = ni as the equilibrium
densities. We further rescale ω/ck → ω and ωe/ck → ωe
in V0, η and p, which helps to simplify the coming investi-
gation: η preserves its form, V0 → 1/ω, and p→ 1−1/ω2.
A noticeable feature of the system (1) - (2) is that it can
be written as a Hamiltonian system of a quasi-particle
with two-degrees-of-freedom. Indeed, if one introduces
the momenta Pψ ≡ ψ′ and Pφ ≡ −φ′/p, the equations
for ψ and φ takes the form

ψ′ = ∂H/∂Pψ, P
′

ψ = −∂H/∂ψ, (3)

φ′ = ∂H/∂Pφ, P
′

φ = −∂H/∂φ, (4)

where the Hamiltonian H reads

H =
P 2

ψ

2
−p

P 2

φ

2
+

1

2η
ψ2+

V0

p2

[

re(φ, ψ) +
1

µ
ri(φ, ψ)

]

. (5)

H is constant since it does not depend on the “time”
variable ξ. Its constant value, let us call it E, can
be calculated as soon as the appropriate initial condi-
tions are specified. In our case we shall be interested
in the propagation of pulses vanishing for |ξ| → ∞, so
we know that conditions Pψ = Pφ = φ = ψ = 0 must
pertain to the relevant dynamics, from which one con-
cludes that E = (V0/p)

2 (1+1/µ). Additional conditions
arise from the presence of square roots in the Hamilto-
nian; the dynamics lies within regions where simultane-
ously r2e , r

2

i > 0. Combining these inequalities with the
boundary conditions one is led to conclude that the entire
dynamics must evolve within the physical region

φmin ≡
√

p(1 + ψ2) − 1 < φ <
1

µ
[1 −

√

p(1 + µ2ψ2)] ≡ φmax (6)

if p > 0. If p < 0 there is no restriction, but we shall see
that only positive values of p are of interest here. We can
also evaluate the linear frequencies of laser and wakefield
small fluctuations in the form

ψ′′ = Ω2

ψψ, φ
′′ = −Ω2

φφ, (7)

where

Ω2

ψ ≡ −1/η + 1/p (1 + µ), and Ω2

φ ≡ (1 + µ)/V 2

0
. (8)

The potential φ oscillates with a real frequency Ωφ which

can be shown to convert into ωe(1 + µ)1/2 if dimensional

variables are used for space and time. As for the vector
potential, to reach high-intensity fields from noise level
radiation, instability must be present, which demands
Ω2

ψ > 0 and, consequently from relation (8),

1 < ω2 ≤ 1 + ω2

e (1 + µ), (9)

so p > 0.
The threshold Ω2

ψ = 0 can be rewritten in the form ω =

ω∗ ≡
√

1 + ω2
e(1 + µ), where ω∗ is the linear dispersion

relation for electromagnetic waves. What we expect to
see are small amplitude waves when ω is slightly smaller
than ω∗, with amplitudes increasing as we move farther
from the threshold. In addition to that, another feature
worth of notice must be commented. If one sits very close
to the threshold, amplitude modulations of the laser field
are tremendously slow, while the oscillatory frequency
of the electric potential φ remains relatively high. The
resulting frequency disparity provides the conditions for
a slow adiabatic dynamics where, given a slowly varying
ψ, φ always accommodates itself close to the minimum
of

U(φ, ψ) ≡ −V0/p
2
[

re(φ, ψ) + µ−1ri(φ, ψ)
]

, (10)

the “minus” sign on the right hand side accounting for
the negative effective mass of φ as seen in Eq. (5); note
that φmin of Eq. (6) refers to the smallest available φ and
not to the minimum of U . When ψ = 0, a condition to
be used shortly in our Poincaré plots, U has a minimum
at φ = 0 which is thus a stable point in the adiabatic
regime. As one moves away from the threshold, faster
modulations and higher amplitudes may be expected to
introduce considerable amounts of nonintegrable behav-
ior and chaos into the system. This kind of perspec-
tive agrees well with the result of previous works where
adiabatic regions have been interpreted to be essentially
associated with small amplitude quasineutral dynamics
[7]. One of our interests here is to precisely see how the
adiabatic dynamics is broken as one moves deeper into
nonintegrable regimes. An additional fact must be ob-
served as one searches for adiabatic solutions and this
has to do with how close to the minimum of U on must
sit so as to find these adiabatic solutions. The corre-
sponding discussion parallels that on wave breaking of
relativistic eletrostatic waves. First of all note that if
we do not set φ right at the respective minimum of U ,
the electric potential will oscillate around the minimum
which will be itself displaced due to the action of the
slowly varying ψ. Again when ψ = 0, inequality (6) re-
veals that φ must lie in the range φmin =

√
p− 1 < 0 to

φmax = 1/µ(1 −√
p) > 0. Not all these values are how-

ever actually allowed in adiabatic dynamics. Oscillations
will occur consistently only if the orbit is free to wander
to the right and left hand sides of the minimum φ = 0
and this can only happen when the oscillating orbit is
entirely trapped within the attracting well of U . U < 0,
and a quick calculation shows that

U(φmin)2 − U(φmax)
2 = 2

√
p(1 − µ2)×
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FIG. 1: Oscillating (I) and wave breaking (II) regions for the
electric potential at ψ = 0. ∆U is defined in the text.

(1 −√
p)V 2

0
µ−2p−7/2 > 0, (11)

so U(φmax) > U(φmin), which sets a limit to cyclic or-
bits: φ must be such that the corresponding potential
will never be above the level U(φmin). To illustrate all
these comments, the reader is referred to Fig. 1 where
the potential ∆U ≡ U(φ, ψ = 0) − U(φ = 0, ψ = 0) is

represented: orbits of region I, φmin < φ < φ̃, will os-
cillate back and forth, but orbits in region II eventually
reach φmin where re → 0.

Since it can be shown that the electronic density de-
pends on re in the form ne ∼ r−1

e [7, 8], break down
of the theory indicates wave breaking on electrons. Also
shown in the figure is the wave breaking energy

Ewbr ≡ ∆U(φmin) =
V 2

o

p2

[

1 +
1

µ
− 1

µVo

√

(1 − µφmin)2 − p

]

≈ ω3

ω3
e

if µ, p≪ 1, (12)

separating regions I and II. Our conclusion is that even
with extremely slow modulations, oscillations of φ must
be limited so as to satisfy the conditions discussed above.
Not only that, but the very same figure suggests how non-
integrability affects localization of our solutions: as one
moves away from adiabaticity and into chaotic regimes,
trajectories initially trapped by U may be expected to
chaotically diffuse towards upper levels of this effective
potential, escaping from the trapping region, approach-
ing Ewbr and eventually hitting the boundary at φmin
or, in general, attaining re = 0 for ψ 6= 0. If this is so,
we have an explanation on how small amplitude solitons
are destroyed, one of the issues of interest in the subject
[5]. We now look at the problem with help of methods of
nonlinear dynamics.

III. ANALYSIS WITH NONLINEAR

DYNAMICS

We introduce our Hamiltonian phase space in the
form of a Ponicaré surface of section mapping where the
pair of variables (φ, Pφ) is recorded each time the plane
ψ = 0 is punctured with Pψ < 0. Once we have de-
fined the map this way, we can also investigate the ex-
istence and stability of periodic solutions of our coupled
set of equations with the aid of a Newton-Raphson al-
gorithm. The Newton-Raphson method locates periodic
orbits and evaluates the corresponding stability index α
which satisfies |α| < (>)1 for stable (unstable) trajecto-
ries [14]. Parameters are represented in a form already
used in earlier investigations on the subject: we first
set a numerical value for V0 and then obtain ω = 1/V0

which must be larger than the unity as demanded by
condition (9). However, we shall keep Vo close to the
unit, and thus ω slightly larger than one, so as to rep-
resent wave modes propagating nearly at the speed of
light. This is the convenient setting if one is interested
in fast electron acceleration by wakefields. After Vo is
established, the electron plasma frequency is calculated
as ω2

e = ηω2, η satisfying condition (9) again. We note
that η = ω2

e/ω
2 = V 2

0 ω
2
e = V 2

0 ω
2

e,nonscaled/c
2k2, so hold-

ing V0 constant while increasing η, is entirely equivalent
to the more usual practice of holding V0 and the orig-
inal ωe, while decreasing k and the original ω. In all
cases analyzed here we take µ = 0.0005 as in Kozlov et
al [7]. In addition to that, we shall take Vo = 0.99 to rep-
resent the high speed conditions of wakefield schemes.
Now a crucial step is this: since isolated pulses cannot
be seen in periodic plots we alter slightly the energy E
to E = V0/p

2(1 + 1/ µ) (1 + ǫ), ǫ ≪ 1 so the vanishing
tail Pψ = Pφ = ψ = φ = 0 is avoided. With this maneu-
ver we convert isolated pulses into trains of quasi-isolated
pulses, a situation amenable to the use of nonlinear dy-
namics and the associated periodic plots; periodicity is
in fact physically meaningful if pulses result from peri-
odic self-modulations of initially uniform modes [15]. In
all cases we make sure that as ǫ → 0 the trains go into
individual packets and convergence is attained. The in-
stability threshold for the vector potential is obtained in
the form η∗ = p/(1+µ) = 0.0198 so ωp ≪ ω as it must be
in the underdense plasmas. To investigate the adiabatic
regime of the relevant nonlinear dynamics we examine
phase portraits for η slightly larger than η∗. In panel (a)
of Fig. 2 we set η = 1.00001 η∗.

such a relatively small departure from marginal sta-
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FIG. 2: (a) Phase plot near the modulational instability
threshold, with η = 1.00001η∗ ; (b) stability index versus η;
(c) phase plot after the inverse tangency seen in panel (b),
with η = 1.0001η∗ . ǫ = 10−11.

bility, modulations are slow with |Ωφ| ≫ |Ωψ |, adiabatic
approximations are thus fully operative and what we see
in phase space is just a set of concentric KAM surfaces
rendering the system nearly integrable. The central fixed
point corresponds to an isolated periodic orbit since it
represent a phase locked solution that return periodi-
cally to ψ = 0 φ → 0, and the surrounding curves de-
pict regimes of quasiperiodic, nonvanishing fluctuations
of φ. Resonant islands are already present but still do
not affect the central region of the phase plot where the
solitary solution resides. In general we have observed
that increasingly large resonance islands are present away
from the central region. When η grows the behavior of
the central fixed point can be observed in terms of its
stability index represented in Fig. 2(b). The index os-
cillates within the stable range initially, which marks the
existence of a central elliptic point near the origin. The

10-12

10-10

10-8

10-6

10-4

-1.0 10-4 -5.0 10-5 0.0 100 5.0 10-5 1.0 10-4

eφ

Φ

e
wbr

confined orbit

∆U(φ)

(a)

10-12

10-10

10-8

10-6

10-4

-1.0 10-4 -5.0 10-5 0.0 100 5.0 10-5 1.0 10-4

e
wbr

eφ

Φ

(b)

FIG. 3: Dynamics as represented in the eφ versus Φ space:
(a) η = 1.00001η∗ ; (b) η = 1.00021η∗ . ewbr ≡ χeEwbr/(χe +
Ewbr).

stability index however finally reaches α = +1 as indi-
cated in the figure, beyond which point no orbit is found.
This indicates a tangent bifurcation with a neighbouring
orbit which terminates the existence of the central point
[16]. Immediately after tangency, the phase plot at ψ = 0
is still constricted to small values of φ as seen in Fig. 2(c)
where η = 1.0001η∗. Larger values of η cause diffusion
towards upper levels of U(φ) and we can see that in Fig.
(3), where we investigate the behaviour of the energy

Eφ ≡ pP 2

φ/2 + ∆U (13)

corresponding to the electrostatic field φ. Instead of
working directly with the form (13) we represent diffusion
in terms of compact variables

eφ ≡ χeEφ
χe + Eφ

, (14)

Φ ≡ χφ φ

χφ + |φ| , (15)

where χe and χφ represent the scale above which the
corresponding variables are compactified.

This kind of choice allows us to represent in the same
plot the very extensive variations of energy and electric
potential, without deforming these quantities when they
are small, near their initial conditions. We found it con-
venient to use χe = χφ = 0.0001 to discuss diffusion.
In Fig. 3(a) we take η = 1.00001η∗ so we are in the
regular regime; as expected, no diffusion is observed and
the quasi-particle stays near its initial condition Pφ = 0,
φ = 10−8. For η = 1.00021η∗ as in panel (b), the central
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fixed point no longer exist. In addition to that, KAM
surfaces no longer isolate the central region of the phase
plot and diffusion is observed. The quasi-particle moves
toward Ewbr and eventually arrives at this critical energy
producing wave breaking on electrons. At this point the
simulation stops with the electron density diverging to
infinity. Diffusion is initially slow and becomes faster as
energy increases. One sees voids in the diffusion plots
which correspond to resonant islands in the phase space,
so as diffusion proceeds the quasi-particle escalates along
the contours of the resonances that become progressively
larger as already mentioned - this is why the process is
initially slow, becoming faster in the final stages. For
larger values of η no resonance is present and the quasi-
particle moves quickly toward Ewbr. In case of panel (b)
one can still see various pulses before wave breaking, but
when η is so large that resonances are no longer present,
wave breaking can be instantaneous. We finally note the
following relevant fact. For Vo → 1, it is known that
the amplitude of the electromagnetic pulses are small [5].
But as one goes beyond the adiabatic regime, our dis-
cussion on diffusion allows to conclude that even small
initial pulses eventually reach very high values, which
provides the condition for formation of strong electric
fields with the corresponding implications on particle ac-
celeration. We illustrate the feature with a final figure,
Fig. 4, where, in a diffusive regime with η = 1.0004η∗,
the electric field −φ′ = −pPφ is shown to evolve from
small values near initial conditions to the limiting wave
breaking value which agrees with the calculated value
|φ′| ∼

√

2ω/ωe ∼ 3.5.
We read all these features as it follows. For small

enough η’s there are locked solutions representing iso-
lated pulses coexisting with surrounding quasiperiodic
solutions where φ does not quite vanish when ψ does.

As η increases past the inverse tangent bifurcation but
prior to full destruction of isolating KAM surfaces, one
reaches a regime of periodical returns to ψ = 0, although
in the presence of a slightly chaotic φ motion. Those
cases where ψ = 0 but φ 6= 0, correspond to quasineutral
ψ pulses accompanied by trails of φ activity as described
in Refs. [10] and [11]. We see that trails can be regular or
chaotic. Finally, for large enough η’s, KAM surfaces no
longer arrest diffusion and wave breaking does occur as
re → 0, as we have checked. At this point adiabatic mo-
tion is lost and this is likely to correspond to that point
where small amplitude solitary solutions are entirely de-
stroyed as commented in Refs. [5] and [9].

IV. FINAL CONCLUSIONS

To summarize, we have used tools of nonlinear dy-
namics to examine the problem of wave propagation in
relativistic cold plasmas, discussing underdense regimes
appropriate to wakefield schemes. Nonlinear dynamics
provides a unified view on the problem, thus allowing to
address simultaneously several relevant questions. In this
paper we have kept our interest focused on weakly non-
linear modes where a transition from adiabatic to nonin-
tegrable dynamics was observed. Starting with very low
amplitude regimes near the onset of modulational insta-
bility, one has either isolated pulses or pulses coexisting
with regular φ trails. As one increases η, thus moving
away from the onset, pulses with slightly larger amplitude
exist but are never fully isolated since tangent bifurca-
tions annihilate the central fixed point and create ubiq-
uitous chaotic electrostatic trails. However, electrostatic
activity is still surrounded by KAM surfaces and there-
fore confined to small amplitudes. Now as one pushes
amplitudes a little higher, isolating KAM surfaces are
destroyed, pulses are no longer possible at all and wave
breaking does occur. There are therefore three clearly
identified regimes in the problem: (i) regular or adiabatic
regimes where the dynamics is approximately integrable,
(ii) a weakly chaotic regimes where chaos is present but
chaotic diffusion is still absent due to the presence of lin-
gering isolating KAM surfaces, and finally (iii) diffusive
chaotic regimes where isolating KAM surfaces are absent.
Thermal effects should be added All those issues are of
significant importance for plasma accelerators and shall
be developed in future publications.
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