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Abstract

Using the Langevin approach and the multiscale technique, a kinetic

theory of the time and space nonlocal fluctuations in the collisional plasma

is constructed. In local equilibrium a generalized version of the Callen-

Welton theorem is derived. It is shown that not only the dissipation

but also the time and space derivatives of the dispersion determine the

amplitude and the width of the spectrum lines of the electrostatic field

fluctuations, as well as the form factor. There appear significant differ-

ences with respect to the non-uniform plasma. In the kinetic regime the

form factor is more sensible to space gradient than the spectral function

of the electrostatic field fluctuations. As a result of the inhomogeneity,

these proprieties became asymmetric with respect to the inversion of the

frequency sign. The differences in amplitude of peaks could become a new

tool to diagnose slow time and space variations in the plasma.

PACS: 52.25.Dg; 52.25.Gj; 05.10.Gg; 05.40.-a
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Fluctuations find an application in diagnostic procedures. Indeed,
plasma parameters such as temperature, mean velocity, density and
their respective profiles can be determined by incoherent (Thom-
son) scattering diagnostics [1], i.e. by the proper interpretation of
data obtained from the scattering of a given electromagnetic field
interacting with the system. The key point of interpretating them
is the knowledge of the intensity of the dielectric function fluctu-
ations or equally of the electron form factor (δneδne)ω,k. Here ω
and k are respectively the frequency and wavevector of the autocor-
relations. Due to the Poisson equation the electron form factor in
the spatially homogeneous system is directly linked to the electro-
static field fluctuations, which have been the object of active study
since the early 1960s [1]. In the thermodynamic equilibrium, the
electrostatic field fluctuations satisfy the famous Callen-Welton

fluctuation-dissipation theorem [2]:

(δEδE)ωk = Θ
8πImε(ω,k)

ω |ε(ω,k)|
2 (1)
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linking their intensity to the imaginary part of the dielectric function ε(ω,k),
and the temperature Θ in energy units. The spectral function (1) has peaks,
corresponding to proper plasma frequencies. The matter becomes more tricky in
the non-equilibrium case, when the state of the plasma is given by Maxwellian
distributions characterized by different constant temperatures and velocities
per species (Θa,Va; a = e, i). We have indeed shown [3], that, in the collisional
regime equations (1) should be revisited. We stressed the fact that a kinetic
approach should be taken. Introducing fluctuations by the Langevin method,
we have elaborated a ”revisited” Callen-Welton formula containing, beside the
terms appearing in Eq. (1), new terms explicitly displaying dissipative non
equilibrium contributions.

(δEδE)ωk =
∑

a,b=e,i

8πΘa

(ω − k ·Va) |ε(ω,k)|
2 [Imχa+νab(Θa−Θb)Φ1+νab(k ·Va−k · Vb)Φ2],

(2)
where χa (a = e, i) is the complex dielectric susceptibility of the a-th component
It is important that these new terms contain the interparticle collision frequency
νab, the differences in temperatures (Θa − Θb) and velocities (Va − Vb), and
the functions Φ1 and Φ2 of real parts of the dielectric susceptibilities. It is
however not evident that the plasma parameters - temperature, velocities and
densities can be kept constant . Inhomogeneities in space and time of these
quantities will certainly also contribute to the fluctuations. Obviously, to treat
the problem, a kinetic approach is required , especially when the wavelength
of the fluctuations is larger than the Debye wavelength. To derive nonlocal
expressions for the spectral function of the electrostatic field fluctuation and
for the electron form factor we use the Langevin approach to describe kinetic
fluctuations [4, 5]. The starting point of our procedure is the same as in [3]. A
kinetic equation for the fluctuation δfa of the one-particle distribution function
(DF) with respect to the reference state fa is considered. In the general case the
reference state is a none-equilibrium DF which varies in space and time both
on the kinetic scale ( mean free path lei and interparticle collision time νei

−1)
and on the larger hydrodynamic scales. These scales are much larger than
the characteristic fluctuation time ω−1. In the non-equilibrium case we can
therefore introduce a small parameter µ = νei/ω, which allows us to describe
fluctuations on the basis of a multiple space and time scale analysis. Obviously,
the fluctuations vary on both the ”fast” (r, t) and the ”slow” (µr, µt) time and
space scales: δfa(x,t) = δfa(x, t, µt, µr) and fa(x,t) = fa(p, µt, µr). Here x

stands for the phase-space coordinates (r,p). The Langevin kinetic equation
for δfa has the form [4, 3]

L̂axt(δfa(x,t) − δfS
a (x,t)) = −eaδE(r, t)·

∂fa(x,t)

∂p
, (3)

where
L̂axt = ∂

∂t + v · ∂
∂r

+ Γ̂a(t, r); Γ̂a(t, r,p) = eaE· ∂
∂p

− δÎa;

δÎa is the linearized Balescu-Lenard collision operator.
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The Langevin source in Eq. (3) is determined [3] by following equation:

L̂axtδfa(x,t)δfb(x′,t′)
S

= δabδ(t − t′)δ(x − x′)fa(x′,t′).
The solution of Eq. (3) has the form

δfa(x,t) = δfS(x,t)−
∑

b

∫
dx′

t∫

−∞

dt′Gab(x,t,x′,t′)ebδE(r
′

, t′)·
∂fb(x

′,t′)

∂p′
, (4)

where the Green function Gab(x,t,x′,t′) of the operator L̂axt is determined by

L̂axtGab(x,t,x′,t′) = δabδ(x − x′)δ(t − t′)

with the causality condition Gab(x,t,x′,t′) = 0, when t < t′. Thus, δfa(x,t)δfb(x′,t′)
S

and Gab(x,t,x′,t′) are connected by the relation:

δfa(x,t)δfb(x′,t′)
S

= Gab(x,t,x′,t′)fb(x
′,t′).

For the stationary and spatially uniform systems, when DF fa and the op-
erator Γ̂a do not depend on time and space, Gab(x,t,x′,t′) can depend only on
its time and space variables through the difference t − t′ and r − r′. In the
general case, when the one-particle DF fa(p,µr,µt) and the operator Γ̂a slowly
(in comparison with the correlation scales) vary in time and space, and when
non-local effects are considered, the time and space dependence of Gab(x,t,x′,t′)
is more subtle.

Gab(x,t,x′,t′) = Gab(p,p′, r − r′,t−t′, µr′,µt′). (5)

For the homogeneous case this non-trivial result was obtained for the first
time in [6]. For inhomogeneous systems it has been generalized recently in [7].

The relationship (5) is directly linked with the constitutive relation between
the electric displacement and the electric field:

Di(r,t) =
∫

dr′
t∫

−∞

dt′εij(r, r
′, t, t′)Ej(r

′, t′).

Previously two kinds of constitutive relations were proposed phenomenolog-
ically for a weakly-inhomogeneous and slowly time-varying medium:

(i) the so-called symmetrized constitutive relation [8]:

Di(r,t) =

∫
dr′

∫ t∫

−∞

dtεij(r − r′,t−t′; µ
r + r′

2
,µ

t+t′

2
))Ej(r

′, t′). (6)

(ii) the non- symmetrized constitutive relation [9]:

Di(r,t) =

∫
dr′

∫ t∫

−∞

dtεij(r − r′,t−t′; µr,µt))Ej(r
′, t′). (7)

Both phenomenological formulations (i) and (ii) are unsatisfactory. The correct
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expression should be

Di(r,t) =

∫
dr′

∫ t∫

−∞

dtεij(r − r′,t−t′; µr′,µt′))Ej(r
′, t′). (8)

Taking into account the first-order terms with respect to µ from (4) and (5)
we have

δfa(x, t) = δfS
a (x, t) −

∑

b

∫
dp′dρ

∞∫

0

dτ

(1−µτ
∂

∂µt
−µρ·

∂

∂µr
)ebδE(r−ρ, t−τ)Gab(ρ, τ,p,p′, µt, µr)·

∂fb(p
′, µt, µr)

∂p′
, (9)

(ρ = r− r′, τ = t − t′).
¿From the Poisson equation

δE(r, t) = −
∂

∂r

∑

b

eb

∫
1

|r− r′|
δfb(x

′, t)dx′ (10)

and performing the Fourier-Laplace transformation

δE(k, ω) =
∞∫
0

dt
∫

drδE(r, t) exp(−∆t + iωt− ik · r).

from (9) we have

δE(k,ω, µt, µr) = δEs(k,ω) +
∑

a

4πie2
a

∫
dp[(1 + i

∂

∂ω

∂

∂µt
)

×
k

k2
L̂−1

aωk
δE(k, ω, µr, µt) ·

∂fa(p, µr,µt)

∂p

−i
∂

∂µri
δE(k, ω, µr, µt)

∂

∂ki

k

k2
L̂−1

aωk

∂fa(p, µr,µt)

∂p
]. (11)

Here and in the following for simplicity we omit µ, keeping in mind that deriva-
tives over coordinates and time are taken with respect to the slowly varying
variables. The resolvent in (11) is determined by the following relation:

∫
dρ

∞∫
0

dτ exp(−∆τ + iωτ − ik · ρ)Gab(ρ, τ,p,p′,µt, µr) = L̂−1
aωkδabδ(p− p′).

The approximation in which Eq. (11) was derived corresponds to the geo-
metric optics approximation [10]. At first-order and after some manipulations,
one obtains from Eq. (11) the transport equation in the geometric optics ap-
proximation, which is not considered in the present article, and the equation for
the spectral function of the electrostatic field fluctuations:

Reε(ω,k)[(δEδE)ω,k −
1

|ε̃(ω,k)|
2 (δEδE)S

ω,k] = 0, (12)
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where we introduced
ε̃(ω,k) = 1 +

∑
a

χ̃a(ω,k); ε(ω,k) = 1 +
∑
a

χa(ω,k)

χ̃a(ω,k) = (1 + i
∂

∂ω

∂

∂t
− i

∂

∂r
·

∂

∂k
)χa(ω,k, t, r), (13)

and where
χa(ω,k, t, r) = −

4πie2

a

k2

∫
dpL̂−1

aωkk · ∂
∂p

fa(p,t, r)
is the susceptibility for a collisional plasma. In the same approximation the

spectral function of the Langevin source (δEδE)S
ω,k takes the form

(δEδE)S
ω,k = 32π2

∑

a

e2
aRe

∫
dp(1+i

∂

∂ω

∂

∂t
−i

∂

∂k
·

∂

∂r
)

1

k2
L̂−1

aωkfa(p, r, t). (14)

If Reε(ω,k) 6= 0, it follows from Eqs. (12) and (14)that the spectral func-
tion of the nonequilibrium electrostatic field fluctuations is determined by the
expression:

[(δEδE)ω,k =

32π2
∑
a

e2
aRe

∫
dp(1 + i ∂

∂ω
∂
∂t − i ∂

∂k
· ∂

∂r
) 1

k2 L̂−1
aωk

fa(p, r, t)

|ε̃(ω,k)|
2 . (15)

The effective dielectric function ε̃(ω,k) in the denominator of Eq. (15) de-
termines the spectral properties of the electrostatic field fluctuations and its
imaginary part

Imε̃(ω,k) = Imε(ω,k) +
∂

∂ω

∂

∂t
Reε(ω,k, t, r) −

∂

∂k
·

∂

∂r
Reε(ω,k, t, r), (16)

determines the width of the spectral lines near the resonance. Note that when
expanding the Green function in Eq. (9) in terms of the small parameter µ,
there appear additional terms at first order. It is important to note that the
imaginary part of the dielectric susceptibility is now replaced by the real part,
which is greater than imaginary part by the factor µ−1. Therefore, the second
and third terms in Eq. (16) in the kinetic regime have an effect comparable to
that of the first term. At second order in the expansion in µ the corrections
appear only in the imaginary part of the susceptibility, and they can reasonably
be neglected. It is therefore sufficient to retain the first order corrections to solve
the problem.

For the local equilibrium case where the reference state fa is Maxwellian, we
have the identity:

∫
dp(1+i ∂

∂ω
∂
∂t−i ∂

∂k
· ∂
∂r

) 1
k2 L̂−1

aωkfa(p, t, r) = i
ωa

∫
dpfa(p, t, r)−

iΘa

ωa4πe2
a

χ̃a(ω,k) (ωa = ω − kVa) and Eq.(15) takes the form

(δEδE)ω,k =
∑

a

8π Θa

ωa |ε̃(ω,k)|2
Imχ̃a(ω,k). (17)
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In this case the small parameter µ is determined on the slower hydrodynamic
scale. For the case of equal temperatures and Va = 0 one obtains a generalized
expression for the Callen-Welton formula:

(δEδE)ω,k =
8π ΘImε̃(ω,k)

ω |ε̃(ω,k)|
2 . (18)

To calculate explicitly (δEδE)ω,k we will restrict our analysis to the vicinity
of the resonance, i.e. ω = ±ω0, where Reε(ω0,k) = 0. We can develop ε̃(ω,k) =

(ω − ω0sgnω)∂Reε
∂ω ⌊ω=ω0sgnω +i[Imε + ( ∂2

∂ω∂t − ∂
∂k

· ∂
∂r

)Reε]⌊ω=ω0sgnω . Thus

(δEδE)ω,k = γ̃
(ω−ω0sgnω)2+γ̃2

8πT
ω∂Reε/∂ω ⌊ω=ω0

, where

γ̃ = [Imε +
∂2

∂ω∂t
Reε −

∂

∂k
·

∂

∂r
Reε]/

∂Reε

∂ω
⌊ω=ω0sgnω (19)

is the effective damping decrement. For the case where the system parameters
are homogeneous in space but vary in time, the correction is still symmetric
with respect to the change of sign of ω, but the intensities and broadening are
different, and the intensity integrated over the frequencies remains the same as in
the stationary case. However, when the plasma parameters are space dependent
this symmetry is lost. The spectral asymmetry is related to the appearance of
space anisotropy in inhomogeneous systems. The real part of the susceptibility
Reε is an even function of ω. This property implies that the contribution of the
third term to the expression of the damping decrement (19) is an odd function
of ω. Moreover this term gives rise to an anisotropy in k space.

Let us estimate this correction for the plasma mode (ω0 = ωL) Reε =

1 −
ω2

L

ω2 (1 + 3 k2Θ
mω2 ), Imε =

ω2

L

ω2

νei

ω , ω2
L = 4πne2

m =
Θk2

D

m and

γ̃ = [νei +
2

n

∂n

∂t
+ 6

ωL

nk2
D

k·
∂n

∂r
sgnω]/2. (20)

For the spatially homogeneous case there is no difference between the spectral
properties of the longitudinal electric field and of the electron density. They are
connected by the Poisson equation. This statement is no longer valid when
considering an inhomogeneous plasma. Indeed the longitudinal electric field
is linked to the particle density by the nonlocal Poisson relation (10). In the
latter case, an analysis similar to that made above can also be performed for
the particle density. ¿From Eq. (4) there follows

δna(k,ω, r,t) = δnS
a (k,ω, r,t)+

∑

b

4πikebea

k2

∫
dp[(1+i

∂

∂ω

∂

∂t
)L̂−1

aωkδnb(k, ω, r, t)·
∂fa(p, r, t)

∂p

−i
∂

∂ri
δnb(k, ω, r, t)

∂

∂ki
L̂−1

aωk

∂fa(p, r, t)

∂p
]. (21)

At the first order approximation and after some manipulations, one obtains the
following expression for the electron form factor for a two-component (a = e, i)

6



plasma:

(δneδne)ω,k =
2nek

2

ωek2
D

∣∣∣1 + ˜̃χi(ω,k)
∣∣∣
2

∣∣∣˜̃ε(ω,k)
∣∣∣
2 Im˜̃χe(ω,k)

+

∣∣∣∣∣
˜̃χe(ω,k)

˜̃ε(ω,k)

∣∣∣∣∣

2
Θi

Θe

2nek
2

ωik2
D

Im ˜̃χi(ω,k), (22)

where we used for local equilibrium the following expression for the ”source”

(δnaδnb)
S
ω,k = δab

Θa

ωa

k2

2πe2
a

Im˜̃χa(ω,k),

and ˜̃ε(ω,k) = 1+
∑
a

˜̃χa(ω,k); ˜̃χa(ω,k) = (1+i ∂
∂ω

∂
∂t−i 1

k2

∂
∂ri

kj
∂

∂ki

kj)χa(ω,k, t, r).

As above we can expand ˜̃ε(ω,k) near the plasma resonance ω = ωL. Thus, for
the electron line,

(δneδne)ω,k =
˜̃γ

(ω−signωL)2+(˜̃γ)2
2nek2

ωk2

D
∂Reε/∂ω

⌊ω=ωL
,

where

˜̃γ = [Imε +
∂2Reε

∂t∂ω
−

1

k2

∂

∂ri
kj

∂

∂ki
kjReε]/

∂Reε

∂ω
⌊ω=ωLsgnω (23)

is the effective damping decrement for the electron form factor. At this stage
of calculation, let us note that the damping decrements for the electrostatic
field fluctuations [Eq. (19)] and for the electron density fluctuations [Eq. (23)]
are not the same. The origin of this difference is that the Green function for
electrostatic field fluctuation and density particle fluctuations are not the same.
This property holds only in the inhomogeneous situation. An estimation for the
plasma mode is then:

˜̃γ = [νei +
2

n

∂n

∂t
+

ωL

nk2
k·

∂n

∂r
(1 +

6k2

k2
D

)sgnω]/2. (24)

¿From this equation we see that the inhomogeneous correction in Eq.(24) is
greater than the one in Eq. (20) by the factor 1 + k2

D/6k2. For the same
inhomogeneity; i.e., the same gradient of the density, we plot the form fac-
tor (δneδne)ω,k together with the (δEδE)ω,k as functions of frequency (Fig.
1). This figure shows that the asymmetry of the spectral lines is present both
for (δneδne)ω,k and (δEδE)ω,k. However, this effect is more pronounced in
(δneδne)ω,k than in (δEδE)ω,k.

Conclusion 1 We have shown that the amplitude and the width of the spectral
lines of the electrostatic field fluctuations and form factor are affected by new
non-local dispersive terms. They are not related to Joule dissipation and appear
because of an additional phase shift between the vectors of induction and electric
field. This phase shift results from the finite time needed to set the polarization
in the plasma with dispersion. Such a phase shift in the plasma with space dis-
persion appears due to the medium inhomogeneity. These results are important
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for the understanding and the classification of the various phenomena that may
be observed in applications; in particular, the asymmetry of lines can be used as
a diagnostic tool to measure local gradients in the plasma.
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sic Research (grant 03-02-16345).
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Figure 1: The electron form factor (δneδne)ω,k ( solid line) and the spectral
function of electrostatic field fluctuations (δEδE)ω,k (dashed line) as a function

of frequency. k·∂n
∂r

=
νeink2

D

54ωL

; kD

k = 6
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