

Inhomogeneous Energy - Density Driven Instability in Presence of a Transverse DC Electric Fields in a Magnetized Plasma Cylinder

Suresh C. Sharma, Satoshi Hamaguchi

▶ To cite this version:

Suresh C. Sharma, Satoshi Hamaguchi. Inhomogeneous Energy - Density Driven Instability in Presence of a Transverse DC Electric Fields in a Magnetized Plasma Cylinder. 2004. hal-00001695

HAL Id: hal-00001695 https://hal.science/hal-00001695

Preprint submitted on 19 Oct 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Inhomogeneous Energy-Density Driven Instability in Presence of a Transverse DC Electric Fields in a Magnetized Plasma Cylinder

Suresh C. Sharma^{*} and Satoshi Hamaguchi

Science and Technology Center for Atoms, Molecules, and Ions Control, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan *Currently on Leave from the Physics Department, GPMCE (G.G.S. Indraprastha University,

Delhi), INDIA

ABSTRACT

Temporal evolution of the inhomogeneous energy density driven instability (IEDDI) is examined in presence of a nonuniform transverse dc electric field in collisional magnetized plasma cylinder. Using experimentally known parameters relevant to IEDDI, we have estimated the growth rate for ν =1, 2 and 3 nonlocal eigenmodes.

1. INTRODUCTION

IEDD waves propagate primarily in the $\vec{E} \times \vec{B}$ direction and have frequencies in a wide range near the ion cyclotron frequency. For $R(r)=k_{\Box}$ $v_E(r)/k_z v_{de} \ll 1$, the case of large v_{de} and small v_E , the electrostatic ion cyclotron (EIC) waves are current-driven (EIC Instability)^{1,2}. For $R \gg 1$, the case of small v_{de} and large v_E , the EIC waves are driven by the transverse, localized, dc electric field (IEDD Instability)³⁻⁴.

2. Instability Analysis

Fig. 1 A schematic diagram of the electric field model

Plasma waveguide radii b₁, a₁ equilibrium density n_{op} , $T_e \approx T_i$, collisional frequency (= v_e for electrons and =0 for ions), static magnetic field

B is in the z-direction, dc electric field $E_0(r)$ is in the radial direction, drift

 $\vec{v}(r) = \frac{\vec{cE}_0(r) \times \vec{B}}{B^2}, \text{ Electric fields } E_0(r) \text{ model}$ $E_0(r) = E_0 \quad \text{for } 0 < r < a_1 \quad \text{I region}$ $= 0 \quad \text{for } a_1 < r < b_1 \quad \text{II region}$

In addition electrons have a flow or drift (v_{de}) along the magnetic field direction. A nonlocal wave packet can couple these two regions, and a flow of energy from region I to region II enables the IEDD mode to grow. This gives rise to IEDDI.

Basic Equations

$$m_{\alpha} \frac{d \mathcal{V}_{\alpha}}{dt} = q_{\alpha} \overline{E} - \frac{e}{c} \overline{\mathcal{V}_{\alpha}} \times \overline{B} - \frac{\nabla(p_{\alpha})}{n_{\alpha}} - m_{\alpha} \mathcal{V}_{e} \overline{\mathcal{V}}_{\alpha}.$$
⁽¹⁾

$$\frac{\partial n_{\alpha}}{\partial t} + \nabla .(n_{\alpha} \vec{v}_{\alpha}) = 0$$
⁽²⁾

$$\nabla \cdot \vec{E} = 4\pi \rho_{\alpha} \tag{3}$$

where $\alpha = e, i$.

By solving equations (1)-(3), we obtain vth order Bessel equation for Φ_1

$$\frac{\partial^2 \Phi_1}{\partial \eta^2} + \frac{1}{\eta} \frac{\partial \Phi_1}{\partial \eta} + (1 - \frac{\nu^2}{\eta^2}) \Phi_1 = 0, \qquad (4)$$

$$\eta = k_I r \qquad \text{for } 0 < r < a_I, \\ = k_{II} r \qquad \text{for } a_I < r < b_I,$$

$$k_{I}^{2} = \frac{\left[\frac{\omega_{p}^{2}}{v_{te}^{2}k_{z}^{2}(-1+\frac{iv_{e}\omega_{1}}{k_{z}^{2}v_{te}^{2}})} - 1\right]k_{z}^{2}}{\left[1+\frac{\omega_{p}^{2}}{\omega_{c}^{2}} - \frac{\omega_{pi}^{2}}{\omega_{2}^{2} - \omega_{ci}^{2}}\right]}.$$
⁽⁵⁾

$$k_{II}^{2} = \frac{\left[\frac{\omega_{p}^{2}}{v_{te}^{2}k_{z}^{2}(-1+\frac{iv_{e}(\omega-k_{z}v_{de})}{k_{z}^{2}v_{te}^{2}})} - 1\right]k_{z}^{2}}{\left[1+\frac{\omega_{p}^{2}}{\omega_{c}^{2}} - \frac{\omega_{pi}^{2}}{\omega^{2}-\omega_{ci}^{2}}\right]}.$$
(6)

Now dividing Eq. (5) by (6), and cross-multiplying , we get

$$\epsilon_{\rm r}(\omega,k) + i \epsilon_{\rm i}(\omega,k) = 0,$$
(7)

where

$$\begin{aligned} \boldsymbol{\mathcal{E}}_{r}(\boldsymbol{\omega},k) &= 1 + \frac{\omega_{p}^{2}}{k_{z}^{2} v_{te}^{2}} - \frac{\omega_{p}^{2}}{k_{z}^{2} v_{te}^{2}} \frac{\omega_{pi}^{2}}{[(\omega_{2}^{2} - \omega_{ci}^{2}]]} \frac{k_{I}^{2}}{(k_{I}^{2} - k_{II}^{2})(1 + \frac{\omega_{p}^{2}}{\omega_{c}^{2}})} \\ &+ \frac{\omega_{p}^{2}}{k^{2} v_{te}^{2}} \frac{\omega_{pi}^{2}}{(\omega^{2} - \omega_{ci}^{2})} \frac{k_{I}^{2}}{(k_{I}^{2} - k_{II}^{2})(1 + \frac{\omega_{p}^{2}}{\omega_{c}^{2}})} - \\ &\frac{\omega_{pi}^{2}}{[(\omega_{2}^{2} - \omega_{ci}^{2}]]} \frac{k_{I}^{2}}{(k_{I}^{2} - k_{II}^{2})(1 + \frac{\omega_{p}^{2}}{\omega_{c}^{2}})} - \frac{\omega_{pi}^{2}}{(\omega^{2} - \omega_{ci}^{2})} \frac{k_{II}^{2}}{(k^{2} - k_{II}^{2})(1 + \frac{\omega_{p}^{2}}{\omega_{c}^{2}})}, \end{aligned}$$

$$\mathcal{E}_{i}(\omega,k) = \mathcal{V}_{e} \Big[\frac{\omega_{i}}{k_{z}^{4} v_{te}^{4}} \frac{\omega_{p}^{2} \omega_{pi}^{2}}{(\omega^{2} - \omega_{ci}^{2})} \frac{k_{I}^{2}}{(k_{I}^{2} - k_{II}^{2})(1 + \frac{\omega_{p}^{2}}{\omega_{c}^{2}})} - \frac{\omega_{i}}{k_{z}^{4} v_{te}^{4}} \frac{\omega_{p}^{2} \omega_{pi}^{2}}{(\omega^{2} - \omega_{ci}^{2})} \times \frac{k_{II}^{2}}{(k_{I}^{2} - k_{II}^{2})} + \frac{(\omega - k_{z} v_{de})}{k_{z}^{4} v_{te}^{4}} \frac{k_{I}^{2} \omega_{p}^{2}}{(k_{I}^{2} - k_{II}^{2})} - \frac{(\omega - k_{z} v_{de})}{k_{z}^{4} v_{te}^{4}} \frac{k_{I}^{2} \omega_{p}^{2}}{(k_{I}^{2} - k_{II}^{2})} \times \frac{\omega_{pi}^{2}}{(k_{I}^{2} - k_{II}^{2})} + \frac{\omega_{pi}^{2}}{(k_{I}^{2} - k_{II}^{2})} \Big].$$

(9)

We write $\omega = \omega_r + i\gamma (|\gamma| \le \omega_r)$. The real and imaginary part of the frequencies are given by

$$\omega_{r} = k_{\theta} v_{E} + \left[\omega_{ci}^{2} + \frac{k_{I}^{2}}{k_{p}^{2}(k_{I}^{2} - k_{II}^{2})} \frac{k_{z}^{2} c_{s}^{2}}{(1 + \frac{\omega_{p}^{2}}{\omega_{c}^{2}})}\right]^{1/2}.$$
(10)

$$\boldsymbol{\omega}_{r} = k_{\theta} v_{E} + \left[\frac{\omega_{ci}^{2} \frac{k_{I}^{2}}{(k_{I}^{2} - k_{II}^{2})} \frac{k_{z}^{2} c_{s}^{2}}{(1 + \frac{\omega_{p}^{2}}{\omega_{c}^{2}})k_{p}^{2}}}{(1 + \frac{\omega_{p}^{2}}{\omega_{c}^{2}})k_{p}^{2}}\right]^{1/2}.$$
(11)

$$\gamma = V_{e} \Big[\frac{\{1 - \frac{k_{z}v_{de}(1+R)}{\omega_{r}}\}\omega_{p}^{2}\omega_{pi}^{2}k_{I}^{2}\omega_{p}^{2}}{k_{z}^{4}v_{te}^{4}\omega_{r}(k_{I}^{2} - k_{II}^{2})\omega_{c}^{2}(1 + \frac{\omega_{p}^{2}}{\omega_{c}^{2}})} - \frac{(\omega_{r} - k_{z}v_{de})k_{I}^{2}\omega_{p}^{2}}{k_{z}^{4}v_{te}^{4}(k_{I}^{2} - k_{II}^{2})} \Big(1 - \frac{\omega_{pi}^{2}}{(\omega_{r} - k_{\theta}v_{E})^{2} - \omega_{ci}^{2}}\Big] \Big(1 + \frac{\omega_{pi}^{2}}{\omega_{c}^{2}}\Big) \Big] \Big/ 2\frac{\omega_{pi}^{4}}{k_{z}^{2}c_{s}^{2}}\frac{1}{(k_{I}^{2} - k_{II}^{2})(1 + \frac{\omega_{p}^{2}}{\omega_{c}^{2}})} \Big[\frac{(\omega_{r} - k_{\theta}v_{E})k_{I}^{2}}{[(\omega_{r} - k_{\theta}v_{E})^{2} - \omega_{ci}^{2}]^{2}} + \frac{k_{II}^{2}}{\omega_{r}^{3}}\Big],$$

(12)

Equation (10) gives the real frequency of IEDD modes in presence of a transverse dc electric fields.

RESULTS

3. Parameters³:

1. Finite gyroradius parameter $b(=k_{\theta}^2 \rho_i^2) = 0.1 - 0.8$, $n_{p0} \approx 1 \times 10^9 \text{ cm}^{-3}$, $T_e = T_i \approx 0.2 \text{ eV}$, m_i/m (Sodium) = 4.6×10^4 , $k_{\Box} = 2.8 \text{ cm}^{-1}$, $k_z = 0.65 \text{ cm}^{-1}$, $v_e = 3.22 \times 10^8 \text{ sec}^{-1}$, $v_E = 3.3 \times 10^8 / \text{B}(\text{in Gauss})$, $v_{de} = \sim 1.76 \times 10^4 \text{ cm/sec}$. We have plotted in Fig. 2 the normalized growth rate (γ/ω_{c1}) [a) for v=1, b) for v=2 and c) for v=3 eigenmodes] of the IEDD instability as a function of the finite gyroradius parameter *b* for the same parameters as mentioned above. The growth rate of the instability increases with the finite gyroradius parameter *b* and reaches maximum in accordance with the experimental observations by Koepke *et al*³

Fig. 2 : Normalized growth rate (γ/ω_{ci}) of the inhomogeneous energydensity driven instability as a function of the finite gyroradius parameter $b(=k_{\theta}^2 \rho_i^2)$ [a) for v=1 b) for v=2, and c) for v=3 eigenmodes]. The parameters are given in the text.

REFERENCES

- 1. M. E. Koepke and W. E. Amatucci, IEEE Trans. Plasma Sci. 20, 631 (1992).
- 2. S. C. Sharma, M.Sugawa and V.K. Jain, Phys. Plasmas, 457 (2000). J.Plasma and Fusion Res. Series, Vol. 2, 161 (1999).
- 3. M. E. Koepke, J.J. Carroll III, M.W.Zintl, C.A. Selcher and V.Gavrishchaka, Phys.Rev. Lett. **80**, 1441 (1998).
- 4. G. Ganguli, Y.C.Lee, and P.Palmadesso, Phys. Fluids 28, 761 (1985).