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Introduction

The possibility of constructing and (at least partially) solving by algebraic and/or analytical methods,

one-dimensional interacting quantum spin chains, is one of the major achievements in the domain of

quantum integrable systems. Its main tool is the quantum R-matrix, obeying a cubic Yang-Baxter

equation, the “coproduct” properties of which allow the building of an L-site transfer matrix with

identical exchange relations and the subsequent derivation of quantum commuting Hamiltonians [1].

The same structure is instrumental in formulating the quantum inverse scattering procedure, initiated

by the Leningrad school [2].

A subsequent development was the definition of exactly solvable open spin chains with non-trivial

boundary conditions. These are characterised by a second object: the reflection matrix K, obeying

a quadratic consistency equation with the R matrix, with the generic abstract form RKRK =

KRKR [3–7]. Using again “coproduct-like” properties of this structure one constructs suitable

transfer matrices yielding (local) commuting spin chain Hamiltonians by combining K and semi-

tensor products of R [4].

Many efforts have been devoted to this issue [8–21], based on the pioneering approach of Sklyanin

and we here aim at treating a particular, but very significant, class of examples for this problem.

To better characterise the type of spin chain which we will be considering here it is important to

recall that both R and K matrices have an interpretation in terms of diffusion theory for particle-

like objects identified in several explicit cases with exact eigenstates of some quantum integrable

field theories such as sine–Gordon [22], non-linear Schrödinger equation [4, 23] or principal chiral

model [24]. R describes the basic 2-body scattering amplitudes and K describes a 1-body scattering

or reflection on a boundary. The Yang-Baxter equation (YBE) and reflection equation (RE) then

characterise consistent factorisability of any L-body amplitude in terms of 1- and 2-body scattering

amplitudes, regardless of the order of occurrence of the 1- and 2-body events in the diffusion process.

As a consequence, when one describes the scattering theory of a model with more than one type

of particle involved, one is led to introduce several operators of R and K type. The case which we

examine here corresponds to a situation where the states involved can be split into resp. particles

and anti-particles with a suitable representation of CP transformation acting on the states. Within

the context of integrable field theories it is justified to denote them respectively “solitons” S and

“antisolitons” A. Assuming that the 2-body diffusion conserves the soliton or antisoliton nature of

the particles, but that the reflection may change it, one should therefore consider four types of R

matrices (resp. RSS
SS, RSA

AS , RAS
SA, RAA

AA) connected by CP operations; and four reflection matrices

(resp. KS
S , KS

A, KA
S , KA

A). It then becomes possible to define several non-equivalent constructions

of commuting transfer matrices. As a consequence, one sees that a variety of spin chain models can

be built using a Sklyanin-like procedure, depending on which transfer matrix is being constructed

and which reflection matrices are used to build it. Locality arguments also come into play, leading

to more complicated combinations of transfer matrices as we shall presently see.

We shall here describe the construction, and present the resolution by analytical Bethe Ansatz

methods [16,25], of open spin chains based on the simplest rational R matrix solutions of the Yang-

Baxter equations for underlying sl(N ) and sl(M|N ) Lie (super) algebras. These solutions, with a
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rational dependence on the spectral parameter, are instrumental in defining the Yangian [26]. We

shall consider two types of associated reflection matrices K to build two distinct types of integrable

spin chains: one which entails purely soliton- and antisoliton-preserving reflection amplitude by two

matrices KS
S and KA

A (hereafter denoted “soliton-preserving case” or SP); the other which entails

the two soliton-non-preserving reflection amplitudes KA
S and KS

A (hereafter denoted “soliton-non-

preserving case” or SNP). Closed spin chains based on sl(M|N ) superalgebras were studied in

e.g. [27] and, in the case of alternating fundamental-conjugate representations of sl(M|N ) in [28].

The plan of our presentation is as follows:

We first define the relevant algebraic objects, R matrix and K matrix, together with their com-

patibility (Yang–Baxter and reflection) equations and their relevant properties. In particular we

introduce the various reflection equations which arise in the SP and SNP cases. Let us emphasise

that all notions introduced in the sl(N ) case will be straightforwardly generalised to the sl(M|N )

case, albeit with a graded tensor product.

In a second part we define the commuting transfer matrices which can be built in both cases, and

the local Hamiltonians which can be built from them. Locality requirement leads to considering a

product of two transfer matrices, resp. soliton-antisoliton and antisoliton-soliton, in the SNP case.

Once again this construction will be valid, with suitable modifications, for the sl(M|N ) case.

In a third part we discuss the symmetries of these transfer matrices induced by their respective

YBE and RE structures, in particular focusing on the connection between the SNP case and twisted

Yangians.

We then start the discussion of the analytical Bethe Ansatz formulation for the sl(N ) spin chains

in the SNP case. The derivation of suitable new fusion formulae explicited in Appendix A and B

makes it possible to get a set of Bethe equations.

In Section 5 we consider the case of sl(M|N ) super algebra as underlying algebra. Contrary to

the previous case it is first needed to establish a classification for the reflection matrices based on

the rational (super Yangian) quantum R-matrix solution, both for SP and SNP conditions. We then

establish the Bethe equations for both SP and SNP cases. In the SP case in addition we consider

spin chains built from general K matrix solutions, in the SNP case we restrict ourselves to diagonal

K matrices.

1 Yang–Baxter and reflection equations

The R and K matrices obey sets of coupled consistency equations together with characteristic prop-

erties which we now describe.

1.1 The R matrix

We will consider in a first stage the sl(N ) invariant R matrices

R12(λ) = λI + iP12 (1.1)
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where P is the permutation operator

P12 =

N∑

i,j=1

Eij ⊗ Eji . (1.2)

Eij are the elementary matrices with 1 in position (i, j) and 0 elsewhere.

We define a transposition t which is related to the usual transposition T by (A is any matrix):

At = V −1 AT V where





V = antidiag(1, 1, . . . , 1) , for which V 2 = θ0 = 1
or

V = antidiag
(

1, . . . , 1︸ ︷︷ ︸
N/2

, −1, . . . ,−1︸ ︷︷ ︸
N/2

)
, for which V 2 = θ0 = −1 .

(1.3)

The second case is forbidden for N odd.

This R matrix satisfies the following properties:

(i) Yang–Baxter equation [1, 29–31]

R12(λ1 − λ2) R13(λ1) R23(λ2) = R23(λ2) R13(λ1) R12(λ1 − λ2) (1.4)

(ii) Unitarity

R12(λ) R21(−λ) = ζ(λ) (1.5)

where R21(λ) = P12R12(λ)P12 = Rt1t2
12 (λ) = R12(λ).

(iii) Crossing-unitarity

Rt1
12(λ) Rt2

12(−λ − 2iρ) = ζ̄(λ + iρ) (1.6)

where ρ = N
2

and

ζ(λ) = (λ + i)(−λ + i), ζ̄(λ) = (λ + iρ)(−λ + iρ). (1.7)

It obeys

[A1A2, R12(λ)] = 0 for any matrix A. (1.8)

The R matrix can be interpreted physically as a scattering matrix [22, 31, 32] describing the

interaction between two solitons that carry the fundamental representation of sl(N ).

To take into account the existence, in the general case, of anti-solitons carrying the conjugate

representation of sl(N ), we shall introduce another scattering matrix, which describes the interaction

between a soliton and an anti-soliton. This matrix is derived as follows

R1̄2(λ) = R̄12(λ) := Rt1
12(−λ − iρ) (1.9)

= Rt2
12(−λ − iρ) =: R12̄(λ) = R̄21(λ) (1.10)
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In the case N = 2 and for θ0 = −1 (sp(2) case), R̄ is proportional to R, so that there is no genuine

notion of anti-soliton. This reflects the fact that the fundamental representation of sp(2) = sl(2) is

self-conjugate. This does not contradict the fact that for N = 2 and for θ0 = +1 (so(2) case), there

exists a notion of soliton and anti-soliton.

The equality between R1̄2(λ) and R12̄(λ) in (1.9) reflects the CP invariance of R, from which one

also has R1̄2̄ = R12, i.e. the scattering matrix of anti-solitons is equal to the scattering matrix of

solitons. In (1.9), R̄12(λ) = (−λ − iρ)I + iQ12, in which Q12 is proportional to a projector onto a

one-dimensional space. It satisfies

Q2 = 2ρ Q and P Q = Q P = θ0Q . (1.11)

The R̄ matrix (1.10) also obeys

(i) A Yang–Baxter equation

R̄12(λ1 − λ2) R̄13(λ1) R23(λ2) = R23(λ2) R̄13(λ1) R̄12(λ1 − λ2) (1.12)

(ii) Unitarity

R̄12(λ) R̄21(−λ) = ζ̄(λ) (1.13)

(iii) Crossing-unitarity

R̄t1
12(λ) R̄t2

12(−λ − 2iρ) = ζ(λ + iρ) . (1.14)

Remark: The crossing-unitarity relation written in the literature usually involves a matrix M =

V T V . In our case, M turns out to be 1 for two reasons: (i) the factors qk of the quantum (trigono-

metric) case degenerate to 1 in the Yangian (rational) case; (ii) the signs usually involved in the

super case are in this paper (section 5) taken into account in the definition of the super-transposition

(5.3).

1.2 The K matrix

The second basic ingredient to construct the open spin chain is the K matrix. We shall describe in

what follows two different types of boundary conditions, called soliton preserving (SP) [8–11] and

soliton non–preserving (SNP) [12–14].

1.2.1 Soliton preserving reflection matrices

In the case of soliton preserving boundary conditions, the matrix K is a numerical solution of the

reflection (boundary Yang–Baxter) equation [3]

Rab(λa − λb) Ka(λa) Rba(λa + λb) Kb(λb) = Kb(λb) Rab(λa + λb) Ka(λa) Rba(λa − λb) , (1.15)
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and it describes the reflection of a soliton on the boundary, coming back as a soliton.

Another reflection equation is required for what follows, in particular for the ‘fusion’ procedure

described in the appendices

R̄ab(λa − λb) Kā(λa) R̄ba(λa + λb) Kb(λb) = Kb(λb) R̄ab(λa + λb) Kā(λa) R̄ba(λa − λb) . (1.16)

Kā is a solution of the anti-soliton reflection equation obtained from (1.15) by CP conjugation and

actually identical to (1.15) due to the CP invariance of the R-matrix. It describes the reflection of

an anti-soliton on the boundary, coming back as an anti-soliton.

Equation (1.16) appears as a criterion for a consistent choice of a couple of solutions Ka and Kā

of (1.15), yielding the commutation of transfer matrices (hereafter to be defined).

Graphically, (1.15) and (1.16) are represented as follows:

b

a b

a

a b
b

a

These K matrices (solutions of the soliton preserving reflection equation (1.15)) have been classified

for sl(N ) Yangians in [33]. This classification can be recovered as a particular case of our proposition

5.1, where the sl(M|N ) Yangians are studied. Yang–Baxter and reflection equations will indeed take

the same form albeit with a graded tensor product in the superalgebraic case (see section 5 for more

details). Proposition 5.2 then provides the classification of pairs {Ka(λ), Kā(λ)} which obey (1.15)

and the compatibility equation (1.16).

1.2.2 Soliton non-preserving reflection matrices

In the context of soliton non-preserving boundary conditions one has to consider [12–14] the case

where a soliton reflects back as an anti-soliton. The corresponding reflection equation has the form

Rab(λa − λb) K̃a(λa) R̄ba(λa + λb) K̃b(λb) = K̃b(λb) R̄ab(λa + λb) K̃a(λa) Rba(λa − λb). (1.17)

Note that equation (1.17) is satisfied by the generators of the so-called twisted Yangian [34,35], which

will be discussed in section 3.2.

Similarly to the previous case, one introduces K̃ā, describing an anti-soliton that reflects back as

a soliton, satisfying (1.17) and the consistency condition

R̄ab(λa − λb) K̃ā(λa) Rba(λa + λb) K̃b(λb) = K̃b(λb) Rab(λa + λb) K̃ā(λa) R̄ba(λa − λb) . (1.18)

Graphically, (1.17) and (1.18) are represented as follows:
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a

b
b a

a

b
b

The K matrices corresponding to the soliton non-preserving reflection equation are classified in

proposition 5.3, in the case of sl(M|N ) Yangians, where once again similar Yang–Baxter and reflec-

tion equations occur. Proposition 5.4 then provides the classification of pairs {K̃a(λ), K̃ā(λ)} which

obey (1.17) and the compatibility equation (1.18).

2 The transfer matrix

We are now in a position to build open spin chains with different boundary conditions from the

objects K, K̃, R and R̄ [4]. Our purpose is to determine the spectrum and the symmetries of the

transfer matrix for the case where soliton non-preserving boundary conditions are implemented. We

first recall the general settings for the soliton preserving case.

2.1 Soliton preserving case

Let us first define the transfer matrix for the well-known boundary conditions, i.e. the soliton

preserving ones. The starting point is the construction of the following monodromy matrices:

Ta(λ) = K+
a (λ) Ta(λ) K−a (λ) T̂a(λ), (2.1)

T a(λ) = K+
ā (λ) Tā(λ) K−ā (λ) T̂ā(λ) . (2.2)

with

Ta(λ)=RaL(λ) . . . Ra1(λ) , T̂a(λ)=R1a(λ) . . . RLa(λ) ,

Tā(λ)=R̄aL(λ) . . . R̄a1(λ) , T̂ā(λ)=R̄1a(λ) . . . R̄La(λ) . (2.3)

The numerical matrices K−a (λ), K−ā (λ) are solutions of (1.15), (1.16) and K+
a satisfies a reflection

equation ‘dual’ to (1.15),

Rab(−λa + λb) K+
a (λa)

t Rba(−λa − λb − 2iρ) K+
b (λb)

t

= K+
b (λb)

t Rab(−λa − λb − 2iρ) K+
a (λa)

t Rba(−λa + λb) . (2.4)

The solutions of (2.4) take the form K+
a (λ) = Kt

a(−λ − iρ), where Ka(λ) is a solution of (1.15).

Similarly K+
ā (λ) satisfies a reflection equation dual to (1.15), the solutions of which being of the
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form K+
ā (λ) = Kt

ā(−λ − iρ). In addition, K+
ā satisfies also a compatibility condition dual to (1.16).

Actually, the dual reflection equations happen to be the usual reflection equations after a redefinition

λc → −λc − iρ.

From their explicit expression, one can deduce that the monodromy matrices T (λ) and T (λ) obey

the following equations:

Rab(λa − λb) Ta(λa) Rba(λa + λb) Tb(λb) = Tb(λb) Rab(λa + λb) Ta(λa) Rba(λa − λb) (2.5)

Rab(λa − λb) T a(λa) Rba(λa + λb) T b(λb) = T b(λb) Rab(λa + λb) T a(λa) Rba(λa − λb) (2.6)

R̄ab(λa − λb) T a(λa) R̄ba(λa + λb) Tb(λb) = Tb(λb) R̄ab(λa + λb) T a(λa) R̄ba(λa − λb) , (2.7)

which just correspond to the soliton preserving reflection equations (1.15) and (1.16). One can recog-

nise, in the relation (2.5), the exchange relation of reflection algebras based on R-matrix of Y(slN ).

The form of K± determines the precise algebraic structure which is involved, see section 3.

In this case, two transfer matrices (soliton–soliton and anti-soliton–anti-soliton) can be written

t(λ) = Tra Ta(λ), t̄(λ) = Tra T a(λ) . (2.8)

As usual in the framework of spin chain models, the commutativity of these transfer matrices,

[t(λ), t(µ)] = 0 (2.9)

[t̄(λ), t̄(µ)] = 0 [t(λ), t̄(µ)] = 0 (2.10)

is ensured by the above exchange relations satisfied by the monodromy matrices. The first commu-

tator guarantees the integrability of the model, whose Hamiltonian is given by

H = −
1

2

d

dλ
t(λ)

∣∣∣
λ=0

, (2.11)

the locality being ensured because R(0) = P.

The commutators (2.10) will be needed so that the fusion procedure be well-defined (see appendices).

The transfer matrix for K+(u) = K−(u) = 1 satisfies a crossing-like relation (see for details [14,25])

t(λ) = t̄(−λ − iρ) . (2.12)

The eigenvalues of the transfer matrices as well as the corresponding Bethe Ansatz equations have

been derived for diagonal K matrices in [8, 16].

2.2 Soliton non-preserving case

This case was studied in [14] for the sl(3) chain only. Here we generalise the results for any sl(N ).

One introduces two monodromy matrices

Ta(λ) = K̃+
a (λ) Ta(λ) K̃−a (λ) T̂ā(λ) ,

T a(λ) = K̃+
ā (λ) Tā(λ) K̃−ā (λ) T̂a(λ) , (2.13)
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where now

Ta(λ)=Ra 2L(λ)R̄a 2L−1(λ) . . .Ra 2(λ)R̄a 1(λ) , T̂ā(λ)=R1 a(λ)R̄2 a(λ) . . . R2L−1 a(λ)R̄2L a(λ) ,

Tā(λ)=R̄a 2L(λ)Ra 2L−1(λ) . . . R̄a2(λ)Ra1(λ) , T̂a(λ)=R̄1a(λ)R2a(λ) . . . R̄2L−1 a(λ)R2L a(λ) .
(2.14)

Note that, in this case, the number of sites is 2L because we want to build an alternating spin chain,

which is going to ensure that the Hamiltonian of the model is local. This construction is similar to

the one introduced in [36], where however a different notion of R̄ was used.

The numerical matrices K̃−a , K̃−ā are solutions of (1.17), (1.18). The numerical matrices K̃+
a and K̃+

ā

are solutions of the following reflection equations:

Rab(−λa + λb) K̃+
a (λa)

t R̄ba(−λa − λb − 2iρ) K̃+
b (λb)

t

= K̃+
b (λb)

t R̄ab(−λa − λb − 2iρ) K̃+
a (λa)

t Rba(−λa + λb) (2.15)

Rab(−λa + λb) K̃+
ā (λa)

t R̄ba(−λa − λb − 2iρ) K̃+
b̄

(λb)
t

= K̃+
b̄

(λb)
t R̄ab(−λa − λb − 2iρ) K̃+

ā (λa)
t Rba(−λa + λb) (2.16)

R̄ab(−λa + λb) K̃+
ā (λa)

t Rba(−λa − λb − 2iρ) K̃+
b (λb)

t

= K̃+
b (λb)

t Rab(−λa − λb − 2iρ) K̃+
ā (λa)

t R̄ba(−λa + λb) (2.17)

The two transfer matrices (anti-soliton–soliton and soliton–anti-soliton) are defined by

t(λ) = Tra Ta(λ) , t̄(λ) = Tra T a(λ) . (2.18)

The commutators

[t(λ), t(µ)] = 0 , [t̄(λ), t̄(µ)] = 0 and [t(λ), t̄(µ)] = 0 (2.19)

are respectively ensured by the exchange relations of the monodromy matrices, namely

Rab(λa − λb) Ta(λa) R̄ba(λa + λb) Tb(λb) = Tb(λb) R̄ab(λa + λb) Ta(λa) Rba(λa − λb) , (2.20)

Rab(λa − λb) T a(λa) R̄ba(λa + λb) T b(λb) = T b(λb) R̄ab(λa + λb) T a(λa) Rba(λa − λb) , (2.21)

R̄ab(λa − λb) T a(λa) Rba(λa + λb) Tb(λb) = Tb(λb) Rab(λa + λb) T a(λa) R̄ba(λa − λb) . (2.22)

The relation (2.20) has to be compared with the exchange relation of twisted Yangians based on

R-matrix of Y(slN ). We will come back to this point in section 3.

In the SNP case, one can show [14] that the transfer matrices for K̃+(u) = K̃−(u) = 1 exhibit a

crossing symmetry, namely

t(λ) = t(−λ − iρ) , t̄(λ) = t̄(−λ − iρ) . (2.23)

Starting from (2.14) and (2.18), the Hamiltonian of the alternating open spin chain is derived as

[14, 17]

H = −
1

2

d

dλ
t(λ) t̄(λ)

∣∣∣
λ=0

. (2.24)
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The locality is again ensured by R(0) = P, and integrability is guaranteed by (2.19).

We can explicitly write the open Hamiltonian in terms of the permutation operator and the R(0)

and R̄(0) matrices. Let us first introduce some notations:

R̄ij = R̄ij(0), R̄′ij =
d

dλ
R̄ij(λ)

∣∣∣
λ=0

and Ř′ij = Pij
d

dλ
Rij(λ)

∣∣∣
λ=0

. (2.25)

After some algebraic manipulations, in particular taking into account that Tr0 P0i R̄0i ∝ I, we obtain

the following expression for the Hamiltonian (2.24) (for a detailed proof see [14])

H ∝
L∑

j=1

R̄′2j−1 2j R̄2j−1 2j +
L−1∑

j=1

R̄2j+1 2j+2 Ř′2j 2j+2 R̄2j+1 2j+2

+
L−1∑

j=1

R̄2j+1 2j+2 R̄2j−1 2j R̄′2j−1 2j+2 R̄2j−1 2j+2 R̄2j−1 2j R̄2j+1 2j+2

+

L−1∑

j=1

R̄2j+1 2j+2 R̄2j−1 2j R̄2j−1 2j+2 Ř′2j−1 2j+1 R̄2j−1 2j+2 R̄2j−1 2j R̄2j+1 2j+2

+ Tr0 Ř′0 2L R̄2L−1 2L P0 2L−1 R̄0 2L−1 R̄2L−1 2L + R̄12 Ř′12 R̄12, (2.26)

which is indeed local including terms that describe interaction up to four first neighbours.

It is easily shown, acting on (2.14) by full transposition, that t̄(λ) ∝ tt1...t2L(λ) provided that

(K̃−a )t ∝ K̃−ā . Eigenvectors of H in (2.26) are determined by sole evaluation of eigenvectors of t(λ).

We shall therefore only need to consider diagonalisation of t(λ) in what follows.

3 Symmetry of the transfer matrix

In the two (SP and SNP) boundary cases, the use of exchange relations for the monodromy matrices

allows us to determine the symmetry of the transfer matrix. For simplicity, we fix K+(λ) (or K̃+(λ))

to be I, leaving K−(λ) (or K̃−(λ)) free.

3.1 Soliton preserving boundary conditions

In this case, the general form for K−(λ) [33] is conjugated (through a constant matrix) to the

following diagonal matrix:

K−(λ) = iξI + λE with E = diag(+1, ..., +1︸ ︷︷ ︸
m

,−1, ...,−1︸ ︷︷ ︸
n

) . (3.1)

In the particular case of diagonal solutions, one recovers the scaling limits of the solutions obtained

in the “quantum” case in [37]. The monodromy matrix then T (λ) generates a B(N , n) reflection

algebra as studied in [38]. Taking the trace in space a of the relation (2.5), we obtain:

(λ2
a − λ2

b) [ t(λa) , T (λb) ] = (2i λa −N ) [ T (λa) , T (λb) ] (3.2)
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From the asymptotic behaviour (λ → ∞) of the R matrix

R0i(λ) = λ
(
I +

i

λ
P0i

)
, (3.3)

we deduce

T (λ) = λ2L+1

(
E +

i

λ

(
ξ +

L∑

j=1

B0j

)
+ O(

1

λ2
)

)
(3.4)

where B0j = P0j E0+E0 P0j . We can write B0j =
∑N

α,β=1 Eαβ⊗bαβ
j , with Eαβ the elementary matrices

acting in space 0, and bαβ
j realizing the gl(m) ⊕ gl(n) algebra (in the space j).

Picking up the coefficient of λ2L
b in the relation (3.2), one then concludes that

[
t(λa) ,

L∑

j=1

bαβ
j

]
= 0 , (3.5)

i.e. the transfer matrix commutes with the gl(m) ⊕ gl(n) algebra.

3.2 Soliton non-preserving boundary conditions

We have already mentioned that the monodromy matrix T (λ) satisfies one of the defining relations

(2.20) for the twisted Yangians Y±(N ) [34, 35]. The general form for K̃−(λ) is given in proposition

5.3: it is constant and obeys (K̃−)t = ǫK̃− with ǫ = ±1.

We need to investigate the asymptotic behaviour (λ → ∞) of the R and R̄ matrices given by

(1.1) and (1.10) respectively:

R0i(λ) = λ
(
I +

i

λ
P0i

)
and R̄0i(λ) = −λ

(
I +

i

λ
P̂0i

)
, (3.6)

where we have introduced

P̂0i = ρ I − Q0i . (3.7)

Accordingly, the monodromy matrices (2.14) take the following form

T0(λ) = (−λ2)L
(

I +
i

λ

L∑

i=1

(
P0,2i + P̂0,2i−1

)
+ O(

1

λ2
)
)
,

T̂0̄(λ) = (−λ2)L
(

I +
i

λ

L∑

i=1

(
P̂0,2i + P0,2i−1

)
+ O(

1

λ2
)
)

(3.8)

and finally

T0(λ) K̃− T̂0̄(λ) = λ4L
(
K̃− +

i

λ

2L∑

i=1

S0i + O(
1

λ2
)
)
, (3.9)

where

S0,2i = P0,2iK̃
− + K̃−P̂0,2i , S0,2i−1 = K̃−P0,2i−1 + P̂0,2i−1K̃

− . (3.10)
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Similarly to the previous case, one can show from equation (2.20) that (this time for K̃− = 1 only):

[
t(λa),

2L∑

i=1

S0i

]
= 0 (3.11)

In this particular case S realises the so(N ) (or sp(N )) generators. When N is even, as already

mentioned, there are two possibilities for the projector Q. More specifically the choice θ0 = 1 in (1.3)

corresponds to the so(N ) case, whereas θ0 = −1 corresponds to the sp(N ) case.

Remark: The same construction (open chain with twisted boundary conditions) can be done start-

ing from the so(N ), sp(2N ) and osp(M|2N ) R-matrix [39]. However, since the fundamental rep-

resentations of these algebras are self-conjugated, solitons and anti-solitons define the same object.

Hence, the “twisted” boundary conditions should be equivalent to open chains with “ordinary”

boundary conditions. Indeed, it has been shown in [39] that boundary reflection equations (defining

the boundary algebra) and twisted reflection equations (defining the twisted Yangian) are identical.

4 Spectrum of the transfer matrix

Our purpose is to determine the spectrum of the transfer matrix for the sl(N ) case.

4.1 Treatment of non-diagonal reflection matrices (SP case)

In the soliton preserving case, the classification of reflection matrices associated to the Yangian

Y (gl(N )) has been computed in [33]. It can been recovered from the sl(M|N ) case given in propo-

sition 5.1. Using this classification, it is easy to show the following proposition [40]:

Proposition 4.1 Let K(λ) be any diagonalizable reflection matrix. D(λ), the corresponding diagonal

reflection matrix, can be written as

D(λ) = U−1 K(λ) U (4.1)

where U , the diagonalization matrix, is constant. Let tK(λ) = Tra(Ta(λ)Ka(λ)T̂a(λ)) and tD(λ) =

Tra(Ta(λ)Da(λ)T̂a(λ)) be the corresponding transfer matrices (we set K+ = I).

Then, tK(λ) and tD(λ) have the same eigenvalues, their eigenvectors (say vK and vD respectively)

being related through

vK = U1U2 . . . UL vD (4.2)

Proof : The fact that the diagonalization matrix is a constant (in λ) is a consequence of the classifi-

cation (see [33] and proposition 5.1). Using the property (1.8), one can show that

tK(λ) = U1U2 . . . UL tD(λ) (U1U2 . . . UL)−1 , (4.3)

which is enough to end the proof.

The general treatment (including the super case) for diagonal reflection matrices is done in section
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5.4.4. From the above property, this treatment (for diagonal matrices) is enough to obtain the

spectrum for all the transfer matrices associated to all the reflection matrices (provided they are

diagonalisable).

As an illustration of this proposition, we compute the eigenvalues associated to the non-diagonal

reflection matrix [3, 10]

K(λ) =




−λ + iξ 0 · · · 0 2kλ

0 c λ + iξ
. . . 0

...
. . .

. . .
. . .

...

0
. . . c λ + iξ 0

2kλ 0 · · · 0 λ + iξ




with c2 = 4k2 + 1 (4.4)

It is easy to see that K(λ) is diagonalized by the constant matrix

U =




−k
ξ

0 · · · 0 k
ξ

0 1
. . . 0

...
. . .

. . .
. . .

...

0
. . . 1 0

c−1
2c

0 · · · 0 c+1
2c




. (4.5)

The corresponding diagonal matrix is given by

D(λ) = c diag(−λ + iξ′, λ + iξ′, . . . , λ + iξ′) , with ξ′ =
ξ

c
, (4.6)

in accordance with the classification of reflection matrices. The tK(λ) eigenvalues as well as the

Bethe equations are identical to the ones of tD(λ). They can be deduced from the general treatment

given in section 5.4.4, taking formally n1 = n2 = N = 0 and specifying m1 = 1. They can also be

viewed as the scaling limit of quantum groups diagonal solutions [15]. The eigenvectors are related

using the formula (4.2), with the explicit form (4.5) for U .

This general procedure can be applied for an arbitrary spin chain, provided the diagonalization

matrix is independent from the spectral parameter and commutes, see eq. (1.8), with the R-matrix

under consideration. When K+(λ) is not I, this technics can also be used if K+(λ) and K−(λ) can

be diagonalized in the same basis [41]. Note however that the classification does not ensure the full

generality of such an assumption.

4.2 Pseudo-vacuum and dressing functions

We present below the case when soliton non-preserving boundary conditions are implemented with

the simplest choice K̃± = I. Results for more general choices of K̃− can be deduced from the

superalgebra case treated in section 5.5.3.
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We first derive the pseudo-vacuum eigenvalue denoted as Λ0(λ), with the pseudo-vacuum being

|ω+〉 =

2L⊗

i=1

|+〉i where |+〉 =




1
0
...
0


 ∈ C

N . (4.7)

Note that the pseudo-vacuum is an exact eigenstate of the transfer matrix (2.8), and Λ0(λ) is given

by the following expression

Λ0(λ) = (a(λ)b̄(λ))2Lg0(λ) + (b(λ)b̄(λ))2L

N−2∑

l=1

gl(λ) + (ā(λ)b(λ))2LgN−1(λ). (4.8)

with

a(λ) = λ + i, b(λ) = λ, ā(λ) = a(−λ − iρ), b̄(λ) = b(−λ − iρ) (4.9)

and

gl(λ) =
λ + i

2
(ρ − θ0)

λ + iρ
2

, 0 ≤ l <
N − 1

2

gN−1
2

(λ) = 1, for N odd

gl(λ) = gN−l−1(−λ − iρ) . (4.10)

We remind that ρ = N
2
.

We make at this point the assumption that any eigenvalue of the transfer matrix can be written as

Λ(λ) = (a(λ)b̄(λ))2Lg0(λ)A0(λ) + (b(λ)b̄(λ))2L

N−2∑

l=1

gl(λ)Al(λ) + (ā(λ)b(λ))2LgN−1(λ)AN−1(λ) (4.11)

where the so-called “dressing functions” Ai(λ) need now to be determined.

We immediately get from the crossing symmetry (2.23) of the transfer matrix:

A0(λ) = AN−1(−λ − iρ), Al(λ) = AN−l−1(−λ − iρ) . (4.12)

Moreover, we obtain from the fusion relation (A.10) the following identity, by a comparison of the

forms (4.11) for the initial and fused auxiliary spaces:

A0(λ + iρ)AN−1(λ) = 1 . (4.13)

Gathering the above two equations (4.12), (4.13) we conclude

A0(λ)A0(−λ) = 1 . (4.14)

Finally from equations (B.13) important relations between the dressing functions are entailed for

both soliton preserving and soliton non-preserving boundary conditions. In particular,

N−1∏

l=0

Al(λ + i(N − 1) − il) = 1. (4.15)
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Taking into account the constraints (4.12), (4.14) and (4.15) one derives the dressing functions:

A0(λ) =

M (1)∏

j=1

λ + λ
(1)
j − i

2

λ + λ
(1)
j + i

2

λ − λ
(1)
j − i

2

λ − λ
(1)
j + i

2

,

Al(λ) =
M (l)∏

j=1

λ + λ
(l)
j + il

2
+ i

λ + λ
(l)
j + il

2

λ − λ
(l)
j + il

2
+ i

λ − λ
(l)
j + il

2

×
M (l+1)∏

j=1

λ + λ
(l+1)
j + il

2
− i

2

λ + λ
(l+1)
j + il

2
+ i

2

λ − λ
(l+1)
j + il

2
− i

2

λ − λ
(l+1)
j + il

2
+ i

2

, 1 ≤ l <
N − 1

2
(4.16)

together with the property Al(λ) = AN−1−l(−λ − iρ), and, for N = 2n + 1:

An(λ) =
M (n)∏

j=1

λ + λ
(n)
j + in

2
+ i

λ + λ
(n)
j + in

2

λ − λ
(n)
j + in

2
+ i

λ − λ
(n)
j + in

2

λ + λ
(n)
j + in

2
− i

2

λ + λ
(n)
j + in

2
+ i

2

λ − λ
(n)
j + in

2
− i

2

λ − λ
(n)
j + in

2
+ i

2

, (4.17)

Note that the dressing does not depend on the value of θ0.

The numbers M (l) in (4.17) are related as customary to the eigenvalues of diagonal generators Sl

of the underlying symmetry algebra (determined in the previous section), namely

S1 =
1

2
M (0) − M (1), Sl = M (l−1) − M (l) with Sl =

1

2
(Ell − El̄l̄), 1 ≤ l <

N − 1

2
(4.18)

with M (0) = 2L.

Recall that for the sl(N ) case the corresponding numbers M (l), see e.g. [11], are given by the following

expressions

Ell = M (l−1) − M (l), l = 1, . . . ,N (4.19)

with M (0) = 2L and M (N ) = 0. If we now impose M (l) = M (N−l) and consider the differences

Ell − El̄l̄, we end up with relations (4.18), in accordance with the folding of sl(N ) leading to so(N )

and sp(N ) algebras.

4.3 Bethe Ansatz equations

From analyticity requirements one obtains the Bethe Ansatz equations which read as:
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4.3.1 sl(2n + 1) algebra

e1(λ
(1)
i )2L = −

M (1)∏

j=1

e2(λ
(1)
i − λ

(1)
j ) e2(λ

(1)
i + λ

(1)
j )

M (2)∏

j=1

e−1(λ
(1)
i − λ

(2)
j ) e−1(λ

(1)
i + λ

(2)
j ) ,

1 = −
M (l)∏

j=1

e2(λ
(l)
i − λ

(l)
j ) e2(λ

(l)
i + λ

(l)
j )

∏

τ=±1

M (l+τ)∏

j=1

e−1(λ
(l)
i − λ

(l+τ)
j ) e−1(λ

(l)
i + λ

(l+τ)
j )

l = 2, . . . , n − 1,

e− 1
2
(λ

(n)
i ) = −

M (n)∏

j=1

e−1(λ
(n)
i − λ

(n)
j ) e−1(λ

(n)
i + λ

(n)
j )e2(λ

(n)
i − λ

(n)
j ) e2(λ

(n)
i + λ

(n)
j )

×
M (n−1)∏

j=1

e−1(λ
(n)
i − λ

(n−1)
j ) e−1(λ

(n)
i + λ

(n−1)
j ), (4.20)

where we have introduced

ex(λ) =
λ + ix

2

λ − ix
2

.

It is interesting to note that equations (4.20) are exactly the Bethe Ansatz equations of the osp(1|N−

1) case (see e.g. [14, 19]).

4.3.2 sl(2n) algebra

e1(λ
(1)
i )2L = −

M (1)∏

j=1

e2(λ
(1)
i − λ

(1)
j ) e2(λ

(1)
i + λ

(1)
j )

M (2)∏

j=1

e−1(λ
(1)
i − λ

(2)
j ) e−1(λ

(1)
i + λ

(2)
j ) ,

1 = −
M (l)∏

j=1

e2(λ
(l)
i − λ

(l)
j ) e2(λ

(l)
i + λ

(l)
j )

∏

τ=±1

M (l+τ)∏

j=1

e−1(λ
(l)
i − λ

(l+τ)
j ) e−1(λ

(l)
i + λ

(l+τ)
j )

l = 2, . . . , n − 1,

e−θ0(λ
(n)
i ) = −

M (n)∏

j=1

e2(λ
(n)
i − λ

(n)
j ) e2(λ

(n)
i + λ

(n)
j )

×
M (n−1)∏

j=1

e2
−1(λ

(n)
i − λ

(n−1)
j ) e2

−1(λ
(n)
i + λ

(n−1)
j ). (4.21)

The Bethe Ansatz equations are essentially the same as the ones obtained from the folding of the

usual sl(N ) Bethe equations (see e.g. [8,11]) for M (l) = M (N−l). It can be realised from the study of

the underlying symmetry of the model that this folding has algebraic origins, as mentioned previously.
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5 sl(M|N ) superalgebra

In this section, we generalise the previous approach on (SP and SNP) boundary conditions to the

Z2-graded case based on the sl(M|N ) superalgebra.

5.1 Notations

The Z2-gradation, depending on a sign θ0 = ±, is defined to be (−1)[i] = θ0 for i an sl(M) index

and (−1)[i] = −θ0 an sl(N ) index.

The sl(M|N ) invariant R matrix reads

R12(λ) = λI + iP12 , (5.1)

where P is from now on the super-permutation operator (i.e. X21 ≡ PX12P ) such that

P =
M+N∑

i,j=1

(−1)[j]Eij ⊗ Eji (5.2)

The usual super-transposition T is defined for any matrix A =
∑

ij Aij Eij, by

AT =
∑

ij

(−1)[i][j]+[j] Aji Eij =
∑

ij

(
AT
)ij

Eij . (5.3)

As for the sl(N ) case, we will use a super-transposition t of the form

At = V −1 AT V . (5.4)

The convention for θ0 and the expression of V are chosen accordingly to the selected Dynkin diagram.

Let us recall that for a basic Lie superalgebra, unlike the Lie algebraic case, there exist in general

many inequivalent simple root systems (i.e. that are not related by a usual Weyl transformation),

and hence many inequivalent Dynkin diagrams. This situation occurs when a simple root system

contains at least one isotropic fermionic root. For each basic Lie superalgebra, there is a particular

Dynkin diagram which can be considered as canonical: it contains exactly one fermionic root. Such

a Dynkin diagram is called distinguished. In the case of sl(M|N ), it has the following form:

︸ ︷︷ ︸
N−1

︸ ︷︷ ︸
M−1

In the case of sl(M|2n) superalgebras, there exists a symmetric Dynkin diagram with two isotropic

fermionic simple roots in positions n and M + n:

︸ ︷︷ ︸
n−1

︸ ︷︷ ︸
M−1

︸ ︷︷ ︸
n−1
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The generalization of the Weyl group for a basic Lie superalgebra gives a method for constructing

all the inequivalent simple root systems and hence all the inequivalent Dynkin diagrams. For more

details, see [42–45].

(i) Distinguished Dynkin diagram basis

In this case, we consider that the sl(M) part occupies the ‘upper’ part of the matrices and

corresponds to bosonic degrees of freedom, whereas the sl(N ) part occupies the ‘lower’ part

and corresponds to fermionic degrees. More precisely, the gradation takes the form:

(−1)[i] =

{
1 for 1 ≤ i ≤ M

−1 for M + 1 ≤ i ≤ M + N ,
(5.5)

and the matrix V reads

V =

(
VM 0
0 VN

)
. (5.6)

In the above formula, VM (resp. VN ) is the M×M (resp. N ×N ) matrix given in (1.3) for

θ0 = +1.

(ii) Symmetric Dynkin diagram basis

As in the sl(N ) case, one has to take M or N even. Note that for the odd–odd case no

symmetric Dynkin diagram exists and consequently no twisted super-Yangian [46]. Here, we

choose N to be even: N = 2n. The sl(M) part lies in the ‘middle’ part of the matrices and

corresponds to fermionic degrees of freedom, whereas the sl(N ) part occupies the ‘upper’ and

‘lower’ part and is associated to bosonic degrees of freedom. Correlatively, θ0 = −1 in this

case. The gradation is given by

(−1)[i] =

{
1 for 1 ≤ i ≤ n and M + n + 1 ≤ i ≤ M + N

−1 for n + 1 ≤ i ≤ M + n ,
(5.7)

while

V = antidiag
(

1, . . . , 1︸ ︷︷ ︸
n+M

, −1, . . . ,−1︸ ︷︷ ︸
n

)
. (5.8)

We will mostly use the distinguished Dynkin diagram basis in the soliton preserving case, and the

symmetric one in the soliton non-preserving case. In both cases, the R-matrix obeys the properties

stated in section 1.1, with R̄12(λ) = Rt1
12(−λ − iρ) and 2ρ = θ0(M−N ). The K-matrices will obey

the defining relations stated in section 1.2, and the properties of the transfer matrix (section 2) also

hold; the tensor product is now Z2-graded.

5.2 Classification of reflection matrices for Y(M|N )

This section is devoted to the classification of reflection matrices for the super-Yangian Y(M|N )

based on sl(M|N ), both for soliton preserving (prop. 5.1 and 5.2) and for soliton non-preserving

boundary conditions (prop. 5.3 and 5.4).
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5.2.1 Soliton preserving reflection

Proposition 5.1 Any bosonic invertible solution of the soliton preserving reflection equation (RE)

R12(λ1 − λ2)K1(λ1)R12(λ1 + λ2)K2(λ2) = K2(λ2)R12(λ1 + λ2)K1(λ1)R12(λ1 − λ2)

where R12(λ) = λ I + i P12 is the super-Yangian R-matrix, takes the form K(λ) = U (iξ I + λ E) U−1

where either

(i) E is diagonal and E2 = I (diagonalisable solutions)

(ii) E is strictly triangular and E
2 = 0 (non-diagonalisable solutions)

and U is an element of the group GL(M) × GL(N ). The classification is done up to multiplication

by a function of the spectral parameter.

Proof : Firstly it is obvious that for any solution K(λ) to the RE, and for any function f(λ),

the product f(λ)K(λ) is also a solution to the RE, so that the classification will be done up to

multiplication by a function of λ.

Expanding the reflection equation, one rewrites it as:

[K2(λ1), K2(λ2)] = i(λ1 + λ2) (K2(λ1) K1(λ2) − K2(λ2) K1(λ1))

+i(λ1 − λ2) (K1(λ1) K1(λ2) − K2(λ2) K2(λ1)) (5.9)

One then considers the RE with λ1 and λ2 exchanged, and sums these two. After multiplication by

P12, one gets (for λ1 6= λ2):

[K1(λ1), K1(λ2)] = −[K2(λ1), K2(λ2)] (5.10)

the only solution of which is [K(λ1), K(λ2)] = 0. In other words, the matrices K(λ) at different

values of λ’s are diagonalisable (or triangularisable) in the same basis and must satisfy

(λ1 + λ2) (K2(λ1) K1(λ2) − K2(λ2) K1(λ1)) + (λ1 − λ2) (K1(λ1) K1(λ2) − K2(λ2) K2(λ1)) = 0 (5.11)

By setting λ2 = −λ1, we get K(λ)K(−λ) = k(λ) I for some function k(λ). If one now considers the

case of invertible matrices, and since we are looking for solutions up to a multiplicative function, we

can take K(λ)K(−λ) = I, a condition which is generally assumed for reflection matrices.

We first consider the case where these matrices can be diagonalised: K(λ) = U D(λ) U−1, where

U is a group element of GL(m)×GL(n). Projecting the RE on the basis element Eii ⊗Ejj, one gets

(λ1 + λ2)
(
dj(λ1) di(λ2) − dj(λ2) di(λ1)

)
= (λ1 − λ2)

(
dj(λ2) dj(λ1) − di(λ1) di(λ2)

)
(5.12)

where D(λ) = diag(d1(λ), d2(λ), . . . , dm+n(λ)). Since K(λ) is supposed invertible, all the dj’s are not

zero, and we consider

qij(λ) =
di(λ)

dj(λ)
(5.13)
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which obeys

(x + y)
(
q(y) − q(x)

)
+ (x − y)

(
q(x)q(y) − 1

)
= 0 . (5.14)

The solution to this equation is q(x) = −x+iξ
x−iξ

where ξ is some complex parameter (including ξ = ∞),

so that, considering qj1(λ), we get

dj(λ) = −
λ + iξj

λ − iξj
d1(λ) , ∀ j (5.15)

Requiring qij(λ) to obey the equation (5.14) shows that one must have

dj(λ) = ǫjλ + iξ with ǫj = ±1, ∀j (5.16)

where we have used the invariance under multiplication by a function. This yields the form (i), with

E = diag(ǫ1, . . . , ǫm+n).

We now turn to the case K(λ) = U T (λ) U−1 where T (λ) is triangular. The projection of the RE

on Eii ⊗ Ejj shows that the diagonal part of T (λ) is still of the form (i). We distinguish two cases:

E has two different eigenvalues (which are ±1), or E is proportional to I (and then the diagonal of

T (λ) is also proportional to I).

If E has two eigenvalues, we project, in the first auxiliary space, on two diagonal elements Ejj

and Ekk associated to these eigenvalues:

(λ1 + λ2)
(
(iξ ± λ2)T (λ1) − (iξ ± λ1)T (λ2)

)
= (λ1 − λ2)

(
T (λ1)T (λ2) − (iξ ± λ1)(iξ ± λ2)

)
(5.17)

The difference and the sum of these equations read:

λ2 T (λ1) − λ1 T (λ2) = λ2 − λ1 , λ1 + λ2 6= 0 (5.18)

iξ(λ1 + λ2)
(
T (λ1) − T (λ2)

)
= (λ1 − λ2)

(
T (λ1)T (λ2) + ξ2 − λ1λ2

)
(5.19)

From equation (5.18), one gets

T (λ1) − I

λ1
=

T (λ2) − I

λ2
= T0 , i.e. T (λ) = I + λ T0 (5.20)

where T0 is a triangular matrix. Plugging this solution in equation (5.19), we obtain

(iξ − 1)(λ1 + λ2) T0 = λ1λ2(T
2
0 − I) + (ξ2 + 1) I, ∀λ1, λ2 (5.21)

whose only (constant) solution is of the form (i) with iξ = 1.

We are thus left with the case where the diagonal of T (λ) is proportional to the identity matrix:

T (λ) = I + S(λ) with S(λ) strictly triangular. Projecting once more on a diagonal element in the

first auxiliary space, we obtain

2
(
λ2 S(λ1) − λ1 S(λ2)

)
= (λ1 − λ2)S(λ1)S(λ2) (5.22)

⇔
S(λ1)

λ1(2 I + S(λ1))
=

S(λ2)

λ2(2 I + S(λ2))
= σ (5.23)
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where σ is strictly triangular. We therefore have T (λ) = I + 2λ σ(I − λσ)−1. With this form for

T (λ), the RE rewrites (σ1 −σ2)σ1σ2 = 0, whose solution (for strictly triangular matrices) is given by

σ2 = 0. Using this property, we get the solution (ii).

Note that the solutions given in this proposition are all of the form K(λ) = iξ I+λ E with E2 = I

or E2 = 0 (taking E = UEU−1).

Proposition 5.2 Given a solution K(λ) = iξ I + λ E to the soliton preserving RE

R12(λ1 − λ2) K1(λ1) R21(λ1 + λ2) K2(λ2) = K2(λ2) R12(λ1 + λ2) K1(λ1) R21(λ1 − λ2) , (5.24)

and a solution K̄(λ) = iξ′ I + λ E ′ to the anti-soliton preserving RE identical to (5.24), the compati-

bility condition

R̄12(λ1 − λ2) K1̄(λ1) R̄21(λ1 + λ2) K2(λ2) = K2(λ2) R̄12(λ1 + λ2) K1̄(λ1) R̄21(λ1 − λ2) (5.25)

is solved by E ′ = E t and ξ + ξ′ = θ0
M−N

2
Str E .

Proof: Straightforwardly, equation (5.25) is equivalent to

E ′
t
2Q12E2 = E2Q12E

′t
2 (5.26)

2(ξ + ξ′)[E2, Q12] = [E2, Q12E2Q12] (5.27)

The first equation yields E ′ = E t. Using Q12E2Q12 = θ0
M−N

2
Q12 Str E one gets the relation between

ξ and ξ′.

5.2.2 Soliton non-preserving reflection

Proposition 5.3 Any bosonic invertible solution of the soliton non-preserving RE

R12(λ1 − λ2) K̃1(λ1) R̄21(λ1 + λ2) K̃2(λ2) = K̃2(λ2) R̄12(λ1 + λ2) K̃1(λ1) R21(λ1 − λ2) (5.28)

where R12(λ) = λ I + i P12 is the super-Yangian R-matrix, is a constant (up to a multiplication by a

scalar function) matrix such that K̃t = ±K̃.

Proof : Writing the R and R̄ matrices in terms of I, P12 and Q12, and taking the part of (5.28) which

is symmetric in the exchange of λ1 and λ2, yields the following equation

K̃1(λ1)Q12K̃1(λ2) + K̃1(λ2)Q12K̃1(λ1) = K̃2(λ1)Q12K2(λ2) + K̃2(λ2)Q12K̃2(λ1) (5.29)

In the same way, exchanging the role of spaces 1 and 2 from the original equation, one gets

K̃1(λ1)Q12K̃2(λ2) + K̃2(λ1)Q12K̃1(λ2) = K̃2(λ2)Q12K̃1(λ1) + K̃1(λ2)Q12K̃2(λ1) (5.30)

Transposing both equations (5.29) and (5.30) in space 1 and eliminating P12, one gets after some

algebra

K̃t(λ2) = f(λ1, λ2)K̃(λ1) ∀ λ1, λ2 (5.31)

from which the final result follows.
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Proposition 5.4 Given a solution K̃1 to the soliton non-preserving RE

R12(λ1 − λ2) K̃1(λ1) R̄21(λ1 + λ2) K̃2(λ2) = K̃2(λ2) R̄12(λ1 + λ2) K̃1(λ1) R21(λ1 − λ2) , (5.32)

and a solution K̃1̄ to the CP-conjugate RE identical to (5.32), the compatibility condition

R̄12(λ1 − λ2) K̃1̄(λ1) R21(λ1 + λ2) K̃2(λ2) = K̃2(λ2) R12(λ1 + λ2) K̃1̄(λ1) R̄21(λ1 − λ2) (5.33)

is solved by K̃1̄ ∝
(
K̃1

)−1

.

Proof: Straightforward.

5.3 Pseudo-vacuum and its dressing

We can determine explicitly the eigenvalue Λ0(λ) of the transfer matrix (defined as in section 2)

acting on the pseudo-vacuum |ω+〉 (which is always bosonic in our conventions). We take here

K± = I (resp. K̃± = I), whilst cases with non trivial K± (resp. K̃±) are studied in section 5.4.4

(resp. 5.5.3). Λ0(λ) is given by the following expression

Λ0(λ) = α(λ)Lg0(λ) + β(λ)L
M+N−2∑

l=1

(−1)[l+1]gl(λ) + γ(λ)L(−1)[M+N ]gM+N−1(λ) (5.34)

where for (using the notation given in (4.9)):

(i) Soliton preserving boundary conditions with L sites (distinguished Dynkin diagram)

α(λ) = a2(λ), β(λ) = γ(λ) = b2(λ) (5.35)

and

gl(λ) =
λ(λ + i(M−N )

2
)

(λ + il
2
)(λ + i(l+1)

2
)

, l = 0, . . . ,M− 1

gl(λ) =
λ(λ + i(M−N )

2
)

(λ + i(2M−l−1)
2

)(λ + i(2M−l)
2

)
, l = M, . . . ,M + N − 1 (5.36)

(ii) Soliton non–preserving boundary conditions with 2L sites (symmetric Dynkin diagram)

α(λ) =
(
a(λ)b̄(λ)

)2

, β(λ) =
(
b(λ)b̄(λ)

)2

, γ(λ) =
(
ā(λ)b(λ)

)2

(5.37)

and

gl(λ) =
λ + i

2
(ρ + 1)

λ + iρ
2

, 0 ≤ l <
M + N − 1

2

gM+N−1
2

(λ) = 1, if M + N odd

gl(λ) = gN+M−l−1(−λ − iρ). (5.38)

We remind that θ0 = −1 in that case.
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From the exact expression for the pseudo-vacuum eigenvalue, we introduce the following assumption

for the structure of the general eigenvalues:

Λ(λ) = α(λ)Lg0(λ)A0(λ) + β(λ)L
M+N−2∑

l=1

(−1)[l+1]gl(λ)Al(λ)

+ γ(λ)L(−1)[M+N−1]gM+N−1(λ)AM+N−1(λ) (5.39)

where the dressing functions Ai(λ) need to be determined. The basic constraints that they have to

satisfy are the fusion and crossing equations as well as analyticity requirements.

5.4 sl(M|N ) with soliton preserving boundary conditions

From the analyticity of Λ(λ), one gets

Al(−
il

2
) = Al−1(−

il

2
), l = 1, . . . ,M− 1,

A2M−l(−
il

2
) = A2M−l−1(−

il

2
), l = M−N + 1, . . . ,M− 1 (5.40)

Gathering the constraints (2.12), (A.10) and (5.40), one can determine the dressing functions, i.e.

A0(λ) =
M (1)∏

j=1

λ + λ
(1)
j − i

2

λ + λ
(1)
j + i

2

λ − λ
(1)
j − i

2

λ − λ
(1)
j + i

2

Al(λ) =

M (l)∏

j=1

λ + λ
(l)
j + il

2
+ i

λ + λ
(l)
j + il

2

λ − λ
(l)
j + il

2
+ i

λ − λ
(l)
j + il

2

×
M (l+1)∏

j=1

λ + λ
(l+1)
j + il

2
− i

2

λ + λ
(l+1)
j + il

2
+ i

2

λ − λ
(l+1)
j + il

2
− i

2

λ − λ
(l+1)
j + il

2
+ i

2

l = 1, . . . ,M− 1

Al(λ) =
M (l)∏

j=1

λ + λ
(l)
j + iM− il

2
− i

λ + λ
(l)
j + iM− il

2

λ − λ
(l)
j + iM− il

2
− i

λ − λ
(l)
j + iM− il

2

×
M (l+1)∏

j=1

λ + λ
(l+1)
j + iM− il

2
+ i

2

λ + λ
(l+1)
j + iM− il

2
− i

2

λ − λ
(l+1)
j + iM− il

2
+ i

2

λ − λ
(l+1)
j + iM− il

2
− i

2

l = M, . . . ,M + N − 1 (5.41)
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5.4.1 Bethe Ansatz equations for the distinguished Dynkin diagram

From analyticity requirements one obtains the Bethe Ansatz equations,

e1(λ
(1)
i )2L = −

M (1)∏

j=1

e2(λ
(1)
i − λ

(1)
j ) e2(λ

(1)
i + λ

(1)
j )

M (2)∏

j=1

e−1(λ
(1)
i − λ

(2)
j ) e−1(λ

(1)
i + λ

(2)
j ) ,

1 = −
M (l)∏

j=1

e2(λ
(l)
i − λ

(l)
j ) e2(λ

(l)
i + λ

(l)
j )

∏

τ=±1

M (l+τ)∏

j=1

e−1(λ
(l)
i − λ

(l+τ)
j ) e−1(λ

(l)
i + λ

(l+τ)
j )

l = 2, . . . ,M− 1,M + 1, . . . ,M + N − 2

1 =

M (M−1)∏

j=1

e−1(λ
(M)
i − λ

(M−1)
j ) e−1(λ

(M)
i + λ

(M−1)
j )

×
M (M+1)∏

j=1

e1(λ
(M)
i − λ

(M+1)
j ) e1(λ

(M)
i + λ

(M+1)
j )

1 = −
M (M+N−2)∏

j=1

e−1(λ
(M+N−1)
i − λ

(M+N−2)
j ) e−1(λ

(M+N−1)
i + λ

(M+N−2)
j )

×
M (M+N−1)∏

j=1

e2(λ
(M+N−1)
i − λ

(M+N−1)
j ) e2(λ

(M+N−1)
i + λ

(M+N−1)
j ) (5.42)

We recover here for M = 2 and N = 1 the Bethe Ansatz equation of the supersymmetric t − J

model which corresponds to the sl(2|1) case [47].

5.4.2 Bethe Ansatz equations for arbitrary Dynkin diagrams

We wrote above only the dressing functions that correspond to the distinguished Dynkin diagram. It

is however possible to construct the g and dressing functions for all the inequivalent Dynkin diagrams

of sl(M|N ).

The inequivalent Dynkin diagrams of the sl(M|N ) superalgebras contain only bosonic root of

same square length (”white dots”), usually normalized to 2, and isotropic fermionic roots (”grey

dots”). A given diagram is completely characterized by the p-uple of integers 0 < n1 < . . . < np <

M + N labelling the positions of the grey dots of the diagram. Formally, we define n0 = 0 and

np+1 = M+N although there is actually no root at these positions. Such a diagram defined by the

p-uple (ni)i=1...p corresponds to the superalgebra sl(M|N ) with

M =
∑

i odd
i≤p+1

ni −
∑

i even
i<p+1

ni and N =
∑

i even
i≤p+1

ni −
∑

i odd
i<p+1

ni . (5.43)

The g functions have a form similar to (5.36), with a change of increasing or decreasing behaviour

of the poles each time a grey (fermionic) root is met. Indeed

gl(λ) =
λ
(
λ + i(M−N )

2

)

(
λ + i

2
δl

) (
λ + i

2
(δl + 1)

) , l = 0, . . . ,M + N − 1 (5.44)
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where δ0 = 0 whilst the δl for l = 1, . . . ,M + N − 1 are obtained by iteration

δl =





δl−1 if l = ni for some i

δl−1 + 1 if n2i < l < n2i+1 for some i

δl−1 − 1 if n2i−1 < l < n2i for some i

(5.45)

The Bethe Ansatz equations read, for ℓ = 1, . . . ,M + N − 1 and i = 1, . . . , M (ℓ)

(1 − 〈αℓ, αℓ〉)
M+N−1∏

k=1

M (k)∏

j=1

e〈αℓ,αk〉(λ
(ℓ)
i − λ

(k)
j ) e〈αℓ,αk〉(λ

(ℓ)
i + λ

(k)
j ) =





e1(λ
(1)
i )2L ℓ = 1

1 ℓ 6= 1
(5.46)

where 〈αℓ, αk〉 is the scalar product of the simple roots associated to the chosen Dynkin diagram.

5.4.3 Bethe Ansatz equations for the symmetric Dynkin diagram

We give the useful example of the symmetric Dynkin diagram for which N is even, with the indices

ordered as in (5.7). The g functions are in this case

gl(λ) =
λ(λ + i(M−N )

2
)

(λ + il
2
)(λ + i(l+1)

2
)

, l = 0, . . . ,N /2− 1

gl(λ) =
λ(λ + i(M−N )

2
)

(λ + i(N−l−1)
2

)(λ + i(N−l)
2

)
, l = N /2, . . . ,M + N /2 − 1

gl(λ) =
λ(λ + i(M−N )

2
)

(λ + i(l−2M)
2

)(λ + i(l−2M+1)
2

)
, l = M + N /2, . . . ,M + N − 1 (5.47)

and it is straightforward to get the Ai’s. The Bethe Ansatz equations take the form:

e1(λ
(1)
i )2L = −

M (1)∏

j=1

e2(λ
(1)
i − λ

(1)
j ) e2(λ

(1)
i + λ

(1)
j )

M (2)∏

j=1

e−1(λ
(1)
i − λ

(2)
j ) e−1(λ

(1)
i + λ

(2)
j ) ,

1 = −
M (l)∏

j=1

e2(λ
(l)
i − λ

(l)
j ) e2(λ

(l)
i + λ

(l)
j )

∏

τ=±1

M (l+τ)∏

j=1

e−1(λ
(l)
i − λ

(l+τ)
j ) e−1(λ

(l)
i + λ

(l+τ)
j )

l = 2, . . . ,M + N − 2, l 6=
N

2
,
N

2
+ M

1 =
M (l+1)∏

j=1

e1(λ
(l)
i − λ

(l+1)
j ) e1(λ

(l)
i + λ

(l+1)
j )

M (l−1)∏

j=1

e−1(λ
(l)
i − λ

(l−1)
j ) e−1(λ

(l)
i + λ

(l−1)
j )

l =
N

2
,
N

2
+ M

1 = −
M (M+N−2)∏

j=1

e−1(λ
(M+N−1)
i − λ

(M+N−2)
j ) e−1(λ

(M+N−1)
i + λ

(M+N−2)
j )

×
M (M+N−1)∏

j=1

e2(λ
(M+N−1)
i − λ

(M+N−1)
j ) e2(λ

(M+N−1)
i + λ

(M+N−1)
j ) (5.48)
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The indices of the e’s in the products are the entries of the Cartan matrix corresponding to the

chosen Dynkin diagram, in accordance with the results obtained in the closed chain case [20,27,48].

5.4.4 Non trivial soliton preserving boundary conditions

We come back to the distinguished Dynkin diagram basis and implement non trivial soliton preserving

boundary conditions. From the classification given in section 5.2.2, we know that K−(λ) is always

conjugated (by a constant matrix U) to a diagonal matrix of the form

K(λ) = diag(α, . . . , α︸ ︷︷ ︸
m1

, β, . . . , β︸ ︷︷ ︸
m2

, β, . . . , β︸ ︷︷ ︸
n2

, α, . . . , α︸ ︷︷ ︸
n1

) (5.49)

As in the section 4.1, it is easy to see that the spectrum and the symmetry of the model depend

only on the diagonal (5.49), and not on U . Indeed, when considering two reflection matrices related

by a constant conjugation, the corresponding transfer matrices are also conjugated. Thus, property

5.1 ensures that it is enough to consider diagonal K(λ) matrices to get the general case. Such a

property, which relies on the form of the R-matrix, is a priori valid only in the rational sl(N ) and

sl(M|N ) cases.

For a diagonal solution (5.49) with m1 +m2 = M, n1 +n2 = N , α(λ) = −λ+ iξ, β(λ) = λ+ iξ, and

the free boundary parameter ξ, one can compute the new form g̃l(λ) of the g-functions entering the

expression of Λ̃0(λ), the new pseudo-vacuum eigenvalue. They take the form:

g̃l(λ) = (−λ + iξ) gl(λ), l = 0, . . . , m1 − 1

g̃l(λ) = (λ + iξ + im1) gl(λ), l = m1, . . . ,M + n2 − 1

g̃l(λ) = (−λ + iξ − im2 + in2) gl(λ), l = M + n2, . . . ,M + N − 1 (5.50)

where gl(λ) are given by (5.36). The dressing functions (5.41) keep the same form, but the Bethe

Ansatz equations (5.42) are modified (by K−(λ)), so that the value of the eigenvalues Λ(λ) are

different from the ones obtained when K(λ) = I.

The modifications induced on Bethe Ansatz equations (5.42) are the following:

– The factor −e−1
2ξ+m1

(λ) appears in the LHS of the m1
th Bethe equation.

– The factor −e−1
2ξ+m1−m2−n2

(λ) appears in the LHS of the (M + n2)
th Bethe equation.

5.5 sl(M|N ) with soliton non-preserving boundary conditions

From equations of the type (B.13) for the supersymmetric case relations between the dressing func-

tions are entailed for both soliton preserving and soliton non-preserving boundary conditions. In

particular, for the case that corresponds to the symmetric Dynkin diagram one obtains (N = 2n,

while M can be even or odd),

n−1∏

l=0

Al(λ − il)
n−1∏

l=0

AM+n+l(λ + iM− i(n − 1) + il) =
M−1∏

l=0

An+l(λ − i(n − 1) + il). (5.51)

In fact the latter equation is only necessary for the soliton non-preserving boundary conditions.
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5.5.1 Dressing functions

As already mentioned we consider here the R matrix, that corresponds to the symmetric Dynkin

diagram. Note that the sl(2n|M) case is isomorphic to sl(M|2n) and entails the same dressing

functions and BAE.

From the constraints (4.12), (4.14), (5.51), we conclude that the dressing functions take the form:

A0(λ) =
M (1)∏

j=1

λ + λ
(1)
j − i

2

λ + λ
(1)
j + i

2

λ − λ
(1)
j − i

2

λ − λ
(1)
j + i

2

,

Al(λ) =
M (l)∏

j=1

λ + λ
(l)
j + il

2
+ i

λ + λ
(l)
j + il

2

λ − λ
(l)
j + il

2
+ i

λ − λ
(l)
j + il

2

×
M (l+1)∏

j=1

λ + λ
(l+1)
j + il

2
− i

2

λ + λ
(l+1)
j + il

2
+ i

2

λ − λ
(l+1)
j + il

2
− i

2

λ − λ
(l+1)
j + il

2
+ i

2

, l = 1, . . . , n − 1 (5.52)

Al(λ) =
M (l)∏

j=1

λ + λ
(l)
j + in − il

2
− i

λ + λ
(l)
j + in − il

2

λ − λ
(l)
j + in − il

2
− i

λ − λ
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j + in − il

2

×
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λ + λ
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j + in − il

2
+ i

2

λ + λ
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j + in − il

2
− i

2

λ − λ
(l+1)
j + in − il

2
+ i

2

λ − λ
(l+1)
j + in − il

2
− i

2

, n ≤ l < n +
M− 1

2

and Al(λ) = AM+2n−1−l(−λ − iρ), and for M = 2m + 1

Ak(λ) =
M (k)∏

j=1

λ + λ
(k)
j + in − ik

2
− i

λ + λ
(k)
j + in − ik

2

λ − λ
(k)
j + in − ik

2
− i

λ − λ
(k)
j + in − ik

2

×
λ + λ

(k)
j + in − ik

2
+ i

2

λ + λ
(k)
j + in − ik

2
− i

2

λ − λ
(k)
j + in − ik

2
+ i

2

λ − λ
(k)
j + in − ik

2
− i

2

, k = m + n (5.53)

Recall that the sl(2m + 1|2n + 1) case is not examined because there is no symmetric Dynkin

diagram and consequently the ‘folding’ of the algebra can not be implemented. In any case it is

known [46] that the twisted super-Yangian does not exist for sl(2m + 1|2n + 1).

5.5.2 Bethe Ansatz equations

From the analyticity requirements one obtains the Bethe Ansatz equations which read as:
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A. sl(2m + 1|2n) superalgebra
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∏

τ=±1

M (l+τ)∏

j=1

e−1(λ
(l)
i − λ

(l+τ)
j ) e−1(λ

(l)
i + λ

(l+τ)
j )

l = 2, . . . , n + m − 1, l 6= n

1 =
M (n+1)∏

j=1

e1(λ
(n)
i − λ

(n+1)
j ) e1(λ

(n)
i + λ

(n+1)
j )

M (n−1)∏

j=1

e−1(λ
(n)
i − λ

(n−1)
j ) e−1(λ

(n)
i + λ

(n−1)
j )

e− 1
2
(λ

(k)
i ) = −

M (k)∏

j=1

e2(λ
(k)
i − λ

(k)
j ) e2(λ

(k)
i + λ

(k)
j ) e−1(λ

(k)
i − λ

(k)
j ) e−1(λ

(k)
i + λ

(k)
j )

×
M (k−1)∏

j=1

e−1(λ
(k)
i − λ

(k−1)
j ) e−1(λ

(k)
i + λ

(k−1)
j ) , k = m + n (5.54)

Note that the equations (5.54) are the Bethe Ansatz equations of the osp(2m + 1|2n) case (see

e.g. [19]) apart from the last equation.

B. sl(2m|2n) superalgebra

The first n + m − 1 equations are the same as in the previous case see equation (4.20), but the last

equation is modified, with again k = m + n, to

e1(λ
(k)
i ) = −

M (k)∏

j=1

e2(λ
(k)
i − λ

(k)
j ) e2(λ

(k)
i + λ

(k)
j )

M (k−1)∏

j=1

e2
−1(λ

(k)
i − λ

(k−1)
j ) e2

−1(λ
(k)
i + λ

(k−1)
j ) . (5.55)

Notice that the Bethe Ansatz equations as in the non supersymmetric case, are essentially the ones

obtained from the folding of the symmetric sl(M/N ) Bethe equations (5.48) for M (l) = M (M+N−l).

This folding has algebraic origins as can be realised from the study of the underlying symmetry of the

model (see (4.18), (4.19)). Indeed only half of the sl(M|N ) generators survive after we impose the

soliton non-preserving boundary conditions, and these are exactly the generators of the osp(M|N )

algebra.

5.5.3 Non trivial soliton non-preserving boundary conditions

We generalize the above approach to the diagonal case with ε = 1 of the classification given in

proposition 5.3:

K̃−(λ) = diag(k1, . . . , kM+N ) with kM+N+1−j = kj . (5.56)

We will consider only invertible K̃− matrices, so that ki 6= 0 ∀i.
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The g-functions entering the new pseudo-vacuum eigenvalue are modified in the following way:

g̃l(λ) = kl+1 gl(λ), 0 ≤ l ≤
M + N − 1

2
(5.57)

where gl(λ) are given by (5.38). The remaining g̃ are defined by requiring the crossing relation

g̃M+N−l(−λ − iρ) = g̃l(λ) . (5.58)

The dressing functions (5.52) and (5.53) keep the same form, but the LHS of ℓth Bethe Ansatz

equation (given in (5.54) and (5.55)) is multiplied by kℓ/kℓ+1.

Acknowledgements: This work is supported by the TMR Network ‘EUCLID. Integrable models

and applications: from strings to condensed matter’, contract number HPRN-CT-2002-00325.

A Survey of fusion

We present here a brief review on fusion for systems with boundaries [49]. In particular we present

the fusion procedure for open systems without crossing symmetry developed in [14, 16].

To cover both the SP and SNP cases, we define the action ∗ by:

R∗ab = Rab, R̄∗ab = R̄ab, K∗a = Ka, K∗ā = Kā, for SP b.c.

R∗ab = R̄ab, R̄∗ab = Rab, K∗a = K̃a, K∗ā = K̃ā, for SNP b.c. (A.1)

The K∗a and K∗ā matrices are solutions of the reflection (boundary Yang–Baxter) equation [3]

Rab(λa − λb) K∗a(λa) R∗ba(λa + λb) K∗b (λb) = K∗b (λb) R∗ab(λa + λb) K∗a(λa) Rba(λa − λb), (A.2)

and they are related by the constraint

R̄ab(λa − λb) K∗ā(λa) R̄∗ba(λa + λb) K∗b (λb) = K∗b (λb) R̄∗ab(λa + λb) K∗ā(λa) R̄ba(λa − λb) . (A.3)

These equations unify the equations (1.15)–(1.16) with (1.17)–(1.18).

The starting point for both cases (SP and SNP) is the observation that the R̄-matrix (1.9)

at the special value λ = −iρ yields a one-dimensional projector onto the one-dimensional sl(N )-

representation present in the decomposition N ⊗ N̄ = 1 ⊕ (N 2 − 1):

P−āb =
1

N
P ta

ab =
1

N
Qab = P−

ab̄
. (A.4)

This is related to the fact that the R̄ matrix describes the scattering between soliton and anti-

soliton. Accordingly, the (N 2 − 1)-dimensional projector is

P+
āb = 1 − P−āb. (A.5)

Note that the soliton-soliton R matrix at λ = −i provides a projector onto a N -dimensional space,

reflected in N ⊗N = N ⊕ (N 2 −N ). Thus, one needs the R̄ matrix, even in the SP case, hence the

introduction of t̄(λ) in both cases.
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We will formulate the fusion procedure for both types of boundary conditions we mentioned.

We introduce the fused R-matrices

R∗<āb>1(λ) = P+
āb R̄∗a1(λ) R∗b1(λ + iρ) P+

āb, R∗<bā>1(λ) = P+
bā R∗b1(λ) R̄∗a1(λ + iρ) P+

bā, (A.6)

and

R∗1<āb>(λ) = P+
āb R∗1b(λ − iρ) R̄∗1a(λ) P+

āb, R∗1<bā>(λ) = P+
bā R̄∗1a(λ − iρ) R∗1b(λ) P+

bā. (A.7)

They satisfy generalised Yang-Baxter equations with fused indices. Similarly, we use the reflection

equation (A.2) and its dual to obtain the fused K matrices

K∗−<āb>(λ) = P+
āb K∗−ā (λ) R∗bā(2λ + iρ) K∗−b (λ + iρ) P+

bā,

K∗+<āb>(λ) = P+
bā K∗+ā (λ) R∗bā(−2λ − 3iρ) K∗+b (λ + iρ) P+

āb. (A.8)

Both fused matrices obey generalised reflection equations of the type (1.16) and its ‘dual’ (for more

details we refer the reader to [16,49]). In an analogous way we obtain the K∗
<ab̄>

matrices by fusing

the spaces a and b̄. Now that the fused R and K∗ matrices are available, we operate the fusion of

the transfer matrix (2.8). The fused transfer matrix is defined by

tF (λ) = Trab

{
K∗+<āb>(λ) T<āb>(λ) K∗−<āb>(λ) T̂ ∗<bā>(λ + iρ)

}
, (A.9)

where the fused T matrices are obtained using (2.3) with fused R matrices (A.6) and (A.7). After

some algebra (see e.g. [49]) we end up with:

tF (λ) = ζ∗(2λ + 2iρ) t̄(λ) t(λ + iρ) − ∆[K∗+(λ)] δ[T (λ)] ∆[K∗−(λ)] δ[T̂ ∗(λ)] , (A.10)

where ζ∗ = ζ and ζ̄∗ = ζ̄ in the SP case, while ζ∗ = ζ̄ and ζ̄∗ = ζ in the SNP case. Furthermore the

‘quantum determinants’ are (when we fuse the spaces ā and b)

δ[T (λ)] = Trab

{
P−āb Tā(λ) Tb(λ + iρ)

}

δ[T̂ ∗(λ)] = Trab

{
P−āb T̂ ∗b (λ) T̂ ∗ā (λ + iρ)

}

∆[K∗−(λ)] = Trab

{
P−bā K∗−ā (λ) R∗bā(2λ + iρ) K∗−b (λ + iρ)

}

∆[K∗+(λ)] = Trab

{
P−āb K∗+b (λ + iρ) R∗āb(−2λ − 3iρ) K∗+ā (λ)

}
. (A.11)

One obtains similar relations when the spaces a and b̄ are fused. To compute the quantum determi-

nants explicitly we use the following identities which can be easily proved with the help of unitarity

(1.5) and the crossing relation (1.9)

P−āb Rām(λ) Rbm(λ + iρ) = ζ(λ + iρ) P−āb , (A.12)

P−
ab̄

Ram(λ) Rb̄m(λ + iρ) = ζ̄(λ + iρ) P−
ab̄

, m = 1, . . . , L∗ (A.13)

29



where L∗ = L in the SP case and L∗ = 2L in the SNP case. One then writes when fusing the spaces

ā and b

δ[T (λ)] = ζ(λ + iρ)L∗/2ζ∗(λ + iρ)L∗/2 , δ[T̂ ∗(λ)] = ζ∗(λ + iρ)L∗/2ζ(λ + iρ)L∗/2 (A.14)

whilst, when we fuse the spaces a and b̄,

δ[T (λ)] = ζ̄(λ + iρ)L∗/2ζ̄∗(λ + iρ)L∗/2 , δ[T̂ ∗(λ)] = ζ̄∗(λ + iρ)L∗/2ζ̄(λ + iρ)L∗/2 . (A.15)

Furthermore, the rôle of ζ and ζ̄ is interchanged in the latter equation depending whether the space

Vm belongs to the fundamental representation or to its conjugate. This statement is important if one

aims at constructing the alternating spin chain. Finally for the special case K− = 1 and K+ = 1

∆[K∗−(λ)] = q∗(2λ + iρ), ∆[K∗+(λ)] = q∗(−2λ − 3iρ) , (A.16)

where

q∗(λ) = q(λ) for SP, q∗(λ) = q̄(λ) for SNP

q(λ) = λ − iρ, q̄(λ) = λ + i. (A.17)

B Generalised fusion

We describe a generalised fusion procedure for sl(N ) open spin chains [40]. The procedure we

use follows the lines of the construction of the Sklyanin determinant for twisted Yangians [35] and

reflection algebras [38,50]. The crucial observation here is that for the general case an one dimensional

projector can be also obtained by repeating the fusion procedure N times, this is because N⊗N =

1 ⊕ ... . The procedure described in the previous section is basically consequence of the fact that

N ⊗ N̄ = 1 ⊕ (N 2 − 1).

Let us now introduce the following necessary objects for the generalised fusion procedure for open

spin chains (see also equations (2.13), (2.14) in [51]),

T<a> ≡ T<a1...aN> = Ta1(λ1) . . . TaN
(λN ), T̂ ∗<a> = T̂ ∗a1

(λ1) . . . T̂ ∗aN
(λN ) (B.1)

where λl = λ+i(l−1), l = 1, . . . ,N and R∗ defined in (A.1). For two sets {µl}l=1,...,N and {µ′l}l=1,...,N

we also define

R∗<a>({µl}, {µ
′
l}) =

−→∏

k=1,...,N−1

R∗ak+1ak
(µk − µ′k+1) . . . R∗aN ak

(µk − µ′N ) . (B.2)

In particular, R<a>({λl}, {λl}) is proportional to the antisymmetriser A, i.e. the projector onto a

one-dimensional space (A2 = A). We also use A+ = I −A and

R∗+<a>({µl}) =
←−∏

k=1,...,N−1

R∗akaN
(−µk − µN − 2iρ) . . . R∗akak+1

(−µk − µk+1 − 2iρ) (B.3)
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By multiplying the four equations

R∗+<a> ≡ R∗+<a>({λl}) = A R∗+<a>({λl}) + A+ R∗+<a>({λl}) ,

T<a> = A T<a> + A+ T<a> ,

R∗<a> ≡ R∗<a>({λl}, {−λl}) = A R∗<a>({λl}, {−λl}) + A+ R∗<a>({λl}, {−λl}) ,

T̂ ∗<a> = A T̂ ∗<a> + A+ T̂ ∗<a> (B.4)

and keeping in mind that

A R∗<a> A+ = A R∗+<a> A+ = A T<a> A+ = A T̂ ∗<a> A+ = 0 (B.5)

we get

Tr<a>(R∗+<a> T<a> R∗<a> T̂ ∗<a>) = Tr<a>(A R∗+<a> A T<a> A R∗<a> A T̂ ∗<a>)

+ Tr<a>(A+ R∗+<a> A+ T<a> A+ R∗<a> A∗ T̂ ∗<a>). (B.6)

Applying equation

Ta(λa) R∗ab(λa + λb) T̂ ∗b (λb) = T̂ ∗b (λb) R∗ab(λa + λb) Ta(λa) (B.7)

recursively we can show that

T<a> R∗<a> T̂ ∗<a> = T ∗<a> (B.8)

where

T ∗<a> =
−→∏

k=1,...,N

(
T ∗ak

(λk)
−→∏

l=k+1,...,N

R∗alak
(λl + λk)

)
. (B.9)

However, as discussed in [51] the trace of the above quantity decouples to a product of N trans-

fer matrices, and therefore the LHS of (B.6) simply becomes
∏N

l=1 t(λl). Taking into account the

property,

A O<a> A = Tr<a>(A O<a>) A, (B.10)

we can write the first term of the RHS of (B.6) as product of quantum determinants, which are

simply c numbers, i.e.

Tr<a>(A R∗+<a> A T<a> A R∗<a> A T̂ ∗<a>) = ∆{K∗+(λ)} δ{T (λ)} ∆{K∗−(λ)} δ{T̂ ∗(λ)} (B.11)

where

∆{K∗+(λ)} = Tr<a>{A R∗+<a>}, δ{T (λ)} = Tr<a>{A T<a>},

∆{K∗−(λ)} = Tr<a>{A R∗<a>}, δ{T̂ ∗(λ)} = Tr<a>{A T̂ ∗<a>}. (B.12)

Finally the second term of the RHS of (B.6) is simply the fused transfer matrix t̃(λ). Therefore,

equation (B.6) can be rewritten as

t̃(λ) =

N∏

l=1

t(λl) − ∆{K∗+(λ)} δ{T (λ)} ∆{K∗−(λ)} δ{T̂ ∗(λ)}. (B.13)
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