
HAL Id: hal-00001661
https://hal.science/hal-00001661

Submitted on 4 Jun 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

iRBP, A Fault Tolerant Total Order Broadcast for Large
Scale Systems

Luiz Angelo Barchet-Estefanel

To cite this version:
Luiz Angelo Barchet-Estefanel. iRBP, A Fault Tolerant Total Order Broadcast for Large Scale Sys-
tems. Euro-Par, 2003, Klagenfurt, Austria. pp.632-639. �hal-00001661�

https://hal.science/hal-00001661
https://hal.archives-ouvertes.fr

cc
sd

-0
00

01
66

1,
 v

er
si

on
 1

 -
 4

 J
un

 2
00

4

D
R

A
FT

iRBP - a Fault Tolerant Total Order Broadcast

for Large Scale Systems

Luiz Angelo Barchet-Estefanel⋆

Laboratoire ID - IMAG
51, Avenue Jean Kuntzmann

38330 Montbonnot St. Martin, France
Luiz-Angelo.Estefanel@imag.fr

Abstract Fault tolerance is a key aspect on the development of dis-
tributed systems, but it is barely supported on large-scale systems due
to the cost of traditional techniques. This paper revisits RBP, a Total
Order Broadcast protocol known by its efficiency that presents some
very interesting characteristics for scalable systems. However, we found
a membership flaw on RBP that can lead to inconsistencies among cor-
rect processes. Hence, we propose iRBP, an improvement to the RBP
algorithm that not only circumvents the membership weaknesses using
recent membership techniques, but also improves its scalability aspects.

1 Introduction

Fault tolerance is a key aspect on the development of distributed systems, but
it is barely supported on large-scale systems like GRIDs due to the cost of
traditional techniques. A good alternative would be RBP (Reliable Broadcast
Protocol), a well-known protocol for Total Order Broadcast [3,5]. Its structure
around a logical ring allows the protocol to efficiently reduce the number of
exchanged messages [11], which is very interesting in large-scale systems.

However, we observed that RBP is still vulnerable to some failure patterns.
Correct processes may leave and rejoin the group due to incorrect suspicions,
but nothing ensures that such processes will be kept consistent with the rest of
the group members. This problem, known as time-bounded buffering problem, is
not easy to solve (or has a high cost).

We propose iRBP [1], an improvement to the RBP protocol that integrates
new membership and failure detection techniques to solve the time-bounded
buffering problem. We also tried to improve its performance when the num-
ber of processes grows up. Based on the membership techniques implemented on
iRBP, we propose a simple but efficient strategy to bound the latency levels of
the protocol, an important scalability concern.

Our observations candidate iRBP as a good and efficient alternative to Total
Order Broadcast protocols like Atomic Broadcast based on Consensus [2], that
have scalability limitations due to the number of messages they exchange.

⋆ Supported by grant BEX 1364/00-6 from CAPES - Brazil

D
R

A
FT

This paper is organized as follows. Section 2 defines the system model and
properties considered through this paper. Section 3 presents RBP and how its
membership flaws may lead to system inconsistency. Section 4 presents the tech-
niques we used to solve the time-bounded buffering problem, and how they were
integrated with iRBP internal structure. Section 5 analyses the iRBP perfor-
mance through the number of exchanged messages and the delivery latency.
Finally, Section 6 concludes the paper.

2 System Model and Definitions

We consider an asynchronous distributed system where a set of processes π(t)
= {p1;p2;...;pn} interacts by exchanging point-to-point messages through unre-
liable (fair-lossy1) communication channels. For simplicity, multicast primi-
tives (including broadcast) are constructed by sending several point-to-
point messages.

Processes are only subjected to crash failures without recovery. A process
that does not crash during all the execution is called “correct”. Eventually strong
(♦S) failure detectors, as defined by Chandra and Toueg [2], are used to suspect
failed processes.

The Total Order Broadcast (Multicast) problem may be informally explained
as how to ensure that remote processes deliver messages in the same order, while
keeping a system consistent even if there are process failures. It is defined through
four properties [6]:

– VALIDITY - If a correct process broadcasts a message m to Dest(m), then
some correct process in Dest(m) eventually delivers m.

– AGREEMENT - If a correct process in Dest(m) delivers a message m,
then all correct processes in Dest(m) eventually deliver m.

– INTEGRITY - For any message m, every correct process p delivers m at
most once, and only if (1) m was previously broadcast by sender(m), and
(2) p is a process in Dest(m).

– TOTAL ORDER - If correct processes p and q both deliver messages m
and m’, then p delivers m before m’ if and only if q delivers m before m’.

3 Revisiting RBP

RBP (Reliable Broadcast Protocol) is a well-known Total Order Broadcast [3,5].
It uses the moving sequencer strategy [6] to agree with the Total Order property:
only one single process can define the delivery order, while the role of sequencer
moves around the processes. It can be easily implemented using token passing:
the process that holds the token is the only one that can assign sequence numbers
to the messages. Once it has sequenced a message (or a group of messages, if

1 Fair-lossy channel - if p send a message m to q an infinite number of times and q

is correct, then q receives m from p an infinite number of times.

D
R

A
FT

there are many in the buffer [11]), the token is passed to the next process in the
ring using unreliable communication primitives.

When a process receives the token (i.e., it was indicated to be the next
sequencer), it accepts the token if and only if it has all data messages previously
sequenced. If the process has already all previous messages, it simply assigns a
sequence number to a new message (this message acts as an acknowledgement
to the previous sequencer). However, if a process detects that it has lost some
messages, it uses negative acknowledgements to explicitly request retransmission.
In fact, if channels “behave well”, i.e., they do not lose many messages, the
protocol can efficiently deliver messages with a minimum of message exchange
[11].

However, the use of fair-lossy channels has a drawback: processes are not
allowed to deliver messages immediately because a simple crash may violate the
Agreement property. Instead, messages should be delivered only after the token
was passed among an arbitrary number of processes, what is called k -resiliency.
Actually, RBP proposes the use of n-resiliency, where the token must pass among
all processes (sometimes called “ total resiliency”).

3.1 Fault Tolerance, Membership and RBP Limitations

Fault tolerance is essential on RBP, because a single failure may prevent the
token passing, blocking the protocol. Thus, at the occurrence of a simple fail-
ure, the token list should be reconstructed, removing suspect processes, in a
procedure called “Reformation Phase” [3].

During the Reformation Phase, each process that detects a failure (which is
called “originator”) contacts the other processes to start a new token list. The
originator proposes a new token list composed by all processes that acknowledged
its call. A three-phase commit (3PC) protocol coordinated by the originator [8]
conducts the commitment of the new token list, which should be composed by
a majority of processes.

However, as detection is not simultaneous to all processes, multiple processes
can invoke the reformation concurrently, and a correct non-suspected process
may be excluded from the token list just because it was the originator of a
concurrent token list. In [3] it is assumed that such excluded processes may rejoin
the token list in a later Reformation, and eventually the token list will contain all
correct processes. We observed that this assumption is not enough to guarantee
the Agreement property, leading to inconsistencies among the processes. In fact,
such assumption induces the time-bounded buffering problem [4], where a
process p cannot safely remove the message m unless if it knows that all processes
in Dest(m) have either received m or crashed.

4 iRBP, an improved RBP Protocol

4.1 Solving the time-bounded buffering problem

The time-bounded buffering problem represents a serious flaw on RBP. Hopefully,
this problem was already studied in the context of the Primary-Backup replica-

D
R

A
FT

tion model with View Synchronous Communication (VSC) [5]. Two techniques
to solve the time-bounded buffering problem revealed to be highly adapted to
the RBP structure. These techniques, presented below, were integrated on the
protocol that we called iRBP, for improved RBP.

Program-Controlled Crash In [4] it was claimed that no implementation
of Reliable Broadcast (a problem weaker than Total Order Broadcast, see [7])
over fair-lossy links cold solve the time-bounded buffering problem unless it uses a
Perfect failure detector (P) [2]. As P failure detectors are impossible to be imple-
mented in asynchronous systems, a practical solution is to use program-controlled
crash. Program-controlled crash gives the ability to kill other processes or to sui-
cide, ensuring time-bounded buffering (if all suspect processes will “crash”, then
message m can be safely discarded from the buffers).

The use of program-controlled crash together with membership control is not
a new technique (it was already employed on the ISIS system [5]), but it is not
very popular due to its non-negligible cost. Every time a process q is forced to
crash due to an incorrect suspicion, a membership change is executed to update
the view. Hence, is common to rely on failure detectors with conservative timeout
values, which can blocks the system for a long period.

Two views In typical group membership architectures, solving efficiently both
problems of time-bounded buffering and blocking prevention at the same time
is not possible, because they are linked to the same failure detection scheme. In
order to better explore both issues, Charron-Bost [4] proposed the use of two
levels of Group Membership Service (GMS).

There, membership views (or simply views) are identical to the views of View
Synchronous Communication, while ranking views (or rk-views) are installed
between membership views. If membership views are denoted by v0, v1, ..., the

rk -views between vi and vi+1
are denoted as vi

0, vi
1, ..., vi

last. The membership

of all ranking views vi
0,... , vi

last−1 is the same as the membership of vi, differing
only in the order that processes are listed in the view. For example, vi = vi

0

= {p,q,r}, vi
1 = {q,r,p}, etc. As rk -views are composed by the same set of

processes, they do not require program-controlled crash.
This model in two layers allows us to solve the dilemma between fail over

time and program-controlled crash. Membership views are generated by sus-
picions resulting from conservative timeouts, while rk -views are generated by
suspicions resulting from aggressive timeouts. This way, rk -views contribute to
avoid blocking situations, while membership views ensure time-bounded buffer-
ing of messages.

4.2 iRBP Membership

To solve the membership problems from RBP, we constructed a Two-Level View-
Synchronous membership algorithm to replace the Reformation Phase. We did

D
R

A
FT

Algorithm 1. Membership View Change with program-controlled crash
Upon suspicion of some process in TLi by a conservative Failure Detector
RBroadcast (reformation, i)
Upon R-Deliver (reformation, i) by pk for the first time
1. send seqQk to all /* sends the ”unstable” list of messages */
2. ∀ pi, wait until receive seqQi from pi or pi suspected
3. let initialk be the tuple (TL, Msgsk) s.t.
- TL means {(corek),()}, and corek contains all processes that sent their seqQ
- Msgsk is the union of the seqQ sets received
4. execute Consensus among TLi processes, with initialk as the initial value
5. let (TL, Msg) be the consensus decision
6. stableQ ← Msg, seqQ ← {} /* the set Msg becomes stable */
7. if pk ∈ TL, then ”install” TL as the next view TLi+1

else suicide

not rely on the model suggested by Charron-Bost [4] to represent the views and
ranking views (“move the suspect coordinator to the end of the list”) because
it was not suitable for our ring-based protocol. Instead, we suggest a different
approach to implement rk -views, where a view is composed by two subsets of
processes:

{(”core group”),(”external group”)}

Broadcasts are sent to the whole group, but the token is passed only among the
“core group”. Once a process is suspected, an rk-view change moves it from the
core group to a contiguous set, called “external group”. As a suspected process
does not participate in the sequencing process (it is not in the token ring), it
does not block the token passing. As it still belongs to the view, it receives all
broadcasts, can send messages to the group and request retransmissions.

While algorithm for Membership View Change is only a modified version of
the traditional View Synchronous Membership that includes program-controlled
crash (Algorithm 1), the rk -view change was optimized, as an rk-view change
does not need to exchange information about delivered messages (processes just
need to know who is active), and no program-controlled crash is required. Con-
sequently, Algorithm 2 presents an optimized version of the View Change algo-
rithm, adapted to rk -view changes.

4.3 Resiliency Levels

As commented on Section 3, RBP [3] suggests the use of total resiliency, which
guarantees the maximum level of fault tolerance. However, total resiliency in-
duces a high latency, representing a time cost that should be reduced whenever it
is possible. On iRBP, the resiliency level on depends on the number of processes
in the core group, and consequently, to control the number of core processes is
a simple technique to efficiently bounds the latency of the protocol.

In the next Section we evaluate how different resiliency levels influence the
delivery latency from iRBP.

D
R

A
FT

Algorithm 2. Optimised rk -view change

Upon suspicion of some process in TLi
j by an aggressive Failure Detector

RBroadcast (rk-view, j)
Upon R-Deliver (rk-view, j) by pk for the first time
1. send ack to all
2. ∀ pi, wait until receive ack from pi or pi suspected
3. let initialk contain {(corek),(externalk)} s.t.
- corek is the list of all processes that sent ack
- externalk is the list of all processes that does not sent ack

4. execute Consensus among TLi
j processes, with initialk as the initial value

5. let (TL) be the consensus decision

6. if pk ∈ TL, then ”install” TL as the next rk-view TLi
j+1

5 Performance Analysis

5.1 Number of Messages

Due to the ability of RBP to piggyback acknowledgements and token passing in a
single message, iRBP uses very efficiently the network resources. If no message is
lost, iRBP needs only two broadcasts: the first one, sent by the message source,
submits the message; the second one comes from the sequencer, which assigns a
sequence number to that messages, at the same time that passes the token to the
next sequencer. Thus, if no messages are losts, the protocol requires only 2(n-1)
messages (assuming that broadcasts transmit n-1 point-to-point messages) for
each message to be delivered.

Comparatively, the Atomic Broadcast based on the Consensus [2] may ex-
changes up to (4+2n)(n-1) messages in a single execution step. There are other
consensus algorithms than Chandra and Toueg Consensus, as for example the
Early Consensus [9], but they mainly focus on the reduction of communication
steps, while the number of exchanged messages remains high (still generating

O(n2) messages, against O(n) from iRBP).

5.2 Latency, Core-resiliency and Scalability

One important element on iRBP performance analysis is its latency. We consider
latency as the time elapsed between the broadcast of a message m by the source
process and the first time it is delivered to the application, i.e., the delivery
latency. On iRBP, latency depends on the resiliency level, because a message is
only delivered after this resiliency level is achieved. If the number of processes
grows up, the latency may reach undesirable levels.

To prevent such effects, we use the own structure of the Two-levels member-
ship from iRBP to bound the latency. By controlling the number of processes in
the core group, it is possible to limit the latency levels even if the system scales
up.

D
R

A
FT

We implemented iRBP in Java using the Neko framework [10]. The experi-
ments were conducted on the ID/HP i-cluster from the ID laboratory Cluster
Computing Center2, where machines are interconnected by a switched Ethernet
100 Mbps network. The tests were executed with 4, 8, 16, 32 and 64 machines
(one process/machine), and we compared RPB’s performance against iRBP with
different core-resiliency levels. Figure 1 presents our results when messages arrive
according to a Poisson process of rate 10 messages per second.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 0 10 20 30 40 50 60 70

D
el

iv
er

y
La

te
nc

y
(m

s)

Machines

RBP
core = 4
core = 8

core = 16
core = 32

Figure1. Comparison between RBP and iRBP delivery latencies

We can observe that in the RBP model, the latency increases almost linearly
with the number of processes in the token list. By fixing the number of elements
in the core group, we obtain latency levels smaller than those from RBP. This
experiment shows that bounded delivery latency is possible with the use of simple
techniques like the core-resiliency.

The choice of a small core-group allows the protocol to deliver messages
with latency levels similar to conventional techniques (we should not forget that
the Atomic Broadcast based on the Consensus requires from 6 to 8 communi-
cation steps), while the number of exchanged messages is far reduced. In addi-
tion, future implementations may take advantage of network low-level primitives,
like Ethernet-Broadcast or IP-Multicast, optimizing all iRBP communications,
which is not the case with the Atomic Broadcast based on the Consensus.

6 Conclusions

In the first part of this paper, we demonstrate that RBP, a well-known Total
Order Broadcast protocol, allows some situations that can violate the consistency
of processes. It is an interesting observation, because there are several works that

2 http://www-id.imag.fr/grappes.html

D
R

A
FT

explore RBP efficiency, but to our knowledge, none has examined the consistency
problem as we did.

We looked for feasible solutions that could be applied to our “improved RBP”
protocol, that we called iRBP. Specially, we identified the origins of the incon-
sistencies as the time-bounded buffering problem, and we focused on solving effi-
ciently this problem. We replaced the original RBP membership control, allowing
our protocol to deal with the time-bounded buffering problem while reducing the
cost involved in the use of program-controlled crash.

In the second part of this paper, we focused on the performance of iRBP.
The results from our practical experiments demonstrate that iRBP is a good
candidate to large-scale distributed computing, like GRID environments, where
fault tolerance is a major concern. iRBP is an efficient protocol for Total Order
Broadcast, and can be used as a building block to provide fault-tolerant support
on large scale systems.

References

1. Barchet-Estefanel, L. A.: Analysing RBP, a Total Order Broadcast Protocol for
Unreliable Networks. Technical Report, IC-EPFL - Switzerland. (2002)

2. Chandra, T. D., Toueg, S.: Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2). ACM Press New York, NY, USA (1996)
225-267

3. Chang, J., Maxemchuck, N.: Reliable Broadcast Protocols. ACM Trans. on Com-
puter Systems, 2(3). ACM Press New York, NY, USA (1984) 251-273

4. Charron-Bost, B., Défago, X., Schiper, A.: Broadcasting Messages in Fault-
Tolerant Distributed Systems: the benefit of handling input-triggered and output-

triggered suspicions differently. Proceedings of the 21stInt’l Symposium on Reliable
Distributed Systems, Osaka, Japan. (2002)

5. Chockler, G., Keidar, I., Vitenberg, R.: Group Communication Specifications: a
comprehensive study. ACM Computing Surveys, 33(4). ACM Press New York,
NY, USA (2001) 427-469

6. Défago, X.: Agreement-related Problems: from semi-passive replication to totally
ordered broadcasts. PhD Thesis, EPFL - Switzerland. (2000)

7. Jalote, P.: Fault Tolerance in Distributed Systems. Prentice-Hall (1994)
8. Maxemchuck, N., Shur, D.: An Internet Multicast System for the Stock Market.

ACM Trans. on Computer Systems, 19(3). ACM Press New York, NY, USA (2001)
384-412

9. Schiper, A.: Early consensus in an asynchronous system with a weak failure detec-
tor. Distributed Computing, 10(3) Springer-Verlag, Berlin Heidelberg New York
(1997) 149-157

10. Urbán, P., Défago, X., Schiper, A.: Neko: A single environment to simulate and pro-
totype distributed algorithms. Proceedings of the 15th Int’l Conf. on Information
Networking, Beppu City, Japan (2001)

11. Whetten, B., Montgomery, T., Kaplan, S.: A High Performance Totally Ordered
Multicast Protocol. In: Birman, K. P., Mattern, F., Schiper, A. (eds.): Theory and
Practice in Distributed Systems: International Workshop. Springer-Verlag, Berlin
Heidelberg New York (1995) 33-57

