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GEOMETRIC PRESENTATIONS FOR THOMPSON’S GROUPS AND
MULTISCALED BRAIDS

PATRICK DEHORNOY

Abstract. This paper deals with Thompson’s groups F and V , and two related groups,
namely a subgroup V ′ of V and an extension FB∞ of V ′ connected with the latter as Artin’s
braid group B∞ is connected with the symmetric group S∞. The latter group also appears

(under the name B̂V ) in the independent work [2]. Our aim in this text is to investigate these
groups from a geometric point of view relying on their connection with the associativity and
commutativity laws. This approach leads in particular to new presentations. Using word
reversing, a specific combinatorial method, we can derive a number of algebraic properties
from the presentations. We prove that the group FB∞ is torsion-free and even orderable,
that it includes (and is generated by) both Thompson’s group F and Artin’s braid group B∞
(whence our notation). Also it can be interpreted as a group of braids involving a fractal
sequence of strands, and it is connected with a twisted version of commutativity and the
self-distributivity law.

The current paper contents two parts. In Part 1, we investigate the so-called geometry
groups corresponding to the associativity and the commutativity laws—these groups turn out
to be Thompson’s group F and V —and deduce from this approach new presentations. The
presentation of V so obtained directly leads to introducing a new group here denoted FB∞,
and the specific study of the latter group is the subject of Part 2.

Applying a given algebraic law to a formal expression—or, equivalently, to a decorated tree—
can be seen as applying a (partial) operator. In this way, one associates with every algebraic law
or, more generally, family of laws, a monoid of partial operators that captures specific geomet-
rical features of these laws. This monoid will be called the geometry monoid of the considered
laws. In good cases, in particular when the laws involve sufficiently simple expressions, the
geometry monoid is closely related with some group, naturally called the geometry group of the
considered algebraic laws.

In the case of the associativity law x(yz) = (xy)z, the geometry group turns out to be Richard
Thompson’s group F [34, 5]: this is just one way of formalizing the well-known connection
between F and associativity. Other laws lead to quite different groups: for instance, the self-
distributivity law x(yz) = (xy)(xz) leads to a geometry group which is an extension of Artin’s
braid group B∞, and studying the latter group has led to unexpected results for B∞ [12].
Although no general theory exists so far, the geometry groups or monoids seem to be promising
objects in general—see, e.g., [13] for the case of an exotic law. In this paper, we shall be
concerned with the specific cases of associativity, commutativity, and a variant of the latter
called semi-commutativity. We shall in particular address the question of finding presentations
of the geometry groups, and develop a uniform approach.

The main results of Part 1 are as follows.
First, we show that the geometry group of associativity is Thompson’s group F , and that

this group admits a presentation consisting of more or less trivial geometric relations, plus the
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so-called MacLane–Stasheff pentagon relations. This warm-up result—certainly not a surprise—
illustrates a general method for recognizing a presentation of a group. A disadvantage of the
presentation of F so obtained is that it is infinite, an advantage is that it enables one to
express F as the group of fractions of an interesting monoid, and provides a double lattice
structure on F connected with the lattice structure of the associahedra, as well as a quadratic
isoperimetric inequality in terms of the considered (infinite) family of generators.

Then, we prove that the geometry group of associativity together with commutativity, i.e.,
the algebraic law xy = yx, is Thompson’s group V . Once again, the connection belongs more
or less to folklore, but the way to state it is perhaps new. At the least, it leads to a new
presentation of V , in which, in addition to the geometric and pentagon relations, the only
relations are the MacLane–Stasheff hexagon relations, plus the torsion relations expressing that
applying commutativity is an involutive operation.

Next, we show that the geometry group of associativity together with a weak form of com-
mutativity, namely the semi-commutativity law x(yz) = y(xz), is some explicitly described
subgroup V ′ of V . The interest of isolating V ′ inside V is that V ′ is not really smaller than V ,
but it is more manageable from a technical point of view, and, in particular, it naturally appears
as an extension of the infinite symmetric group S∞.

In Part 2, we start from the above mentioned geometric presentation of the group V ′, and
investigate the group FB∞ obtained by removing the torsion relations σ2

i = 1. So the connection
between FB∞ and V ′ is exactly similar to the connection between Artin’s braid group B∞ and
the symmetric group S∞. The group FB∞ seems to be an interesting object, and, in particular,
the deep connection existing between B∞ and the self-distributivity law x(yz) = (xy)(xz)
extends to FB∞. The main results we prove in this part are as follows.

First, we establish that FB∞ is a group of left fractions for some monoid FB+
∞ that shares

a number of properties with Garside’s monoid B+
∞, and we deduce in particular that FB∞

includes a copy of Thompson’s group F and of Artin’s braid group B∞, and that it is generated
by these subgroups. Also we show how to extend to FB∞ the canonical linear ordering of B∞,
as well as the acyclic left self-distributive operation that lives on B∞.

Then we describe several geometric realisations of the group FB∞. The first one involves
multiscaled braid diagrams in which the strands are numbered by finite sequences of integers,
instead of by integers as in the case of ordinary braids and B∞. By considering the natural
isotopy notion and adding to the ordinary crossings new elementary diagrams corresponding to
rescaling, one obtains a diagrammatic interpretation of FB∞.

Then, we come back to the geometry group approach of Part 1, and consider the case of
associativity together with some twisted version of (semi)-commutativity, namely that obtained
by weakening the ordinary semi-commutativity transformation x(yz) �→ y(xz) into x(yz) �→
x[y](xz), where the bracket denotes some left self-distributive binary operation. In this way,
we go beyond the framework of algebraic laws, but a geometric group still exists, and we show
that this geometry group is the group FB∞.

Still another realisation of FB∞ comes when we consider the well-known realisation of Artin’s
braid group Bn as the mapping class group of a disk with n punctures. We show that, similarily,
FB∞ can be realized as a subgroup of the mapping class group of a 2-sphere with a Cantor set
of punctures, and, as a consequence, we obtain an explicit realization of FB∞ as a subgroup of
the group of automorphisms of free group of infinite rank.

The current approach is not the first attempt to marry Thompson’s group F with Artin’s
group B∞: see [23, 20, 24], and, specially, [2]. The group here denoted FB∞ turns out to be one
of the groups considered by M. Brin in [2], namely the group denoted B̂V there. However, the
approaches leading to that group, the technical treatments, as well as the results obtained and
the geometric interpretations are mostly disjoint. In [2], the group FB∞ (or B̂V ) is introduced
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in a context of categories, while the current paper involves a context of geometry groups.
Of course, common geometrical features underly both approaches, but they lead to different
developments, and, in particular, the geometry group approach seems specially suitable for
providing explicit presentations. Similarly, the main algebraic tool used in [2] to study the
algebraic structure of FB∞ is the notion of Szep product of two monoids or groups, while
we mostly appeal to word reversing, a combinatorial tool relevant for groups of fractions, and
self-distributive operations, which should be seen here as extensions of group conjugacy. These
tools, which had been developed for the study of self-distributivity and braids in [12], prove
to be specially suitable here, and they lead to arguments that are conceptually simple and
natural. To summarize, we can say that [2] mostly investigates the group FB∞ as an extended
Thompson’s group, while our approach considers it as an extended braid group and investigates
it accordingly.

Remark on notation. Here we work both with Thompson’s group F and with Artin’s braid
group B∞. It turns out that different notational conventions are frequently used for these
groups: in the case of F , it is customary to think of its elements as acting on the left (thus
xy means “y then x”), while, in the case of B∞, the opposite convention is used (xy means “x
then y”). We found it necessary to choose a unique convention, and, for the reasons listed in [3],
we choosed the second one. Also, there is a tradition to number the strands of a braid, and,
therefore the standard generators σi of B∞, starting from 1, while it is customary to number
the standard generators xi of F starting from 0. Once again, we choose the braid convention
here, and to avoid confusion, we use a specific notation, namely ai, for the generators of F .
Thus the correspondence is that our generator ai corresponds to the standard generator x−1

i−1

of F .

The author thanks Sean Cleary for drawing his attention to M. Brin’s preprint [2] after a
first version of this text was written, as well as Matthew Brin and Mark Lawson for helpful
comments and suggestions.
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Part 1. The geometry group of associativity and other algebraic laws

1. A method for finding presentations

Throughout the paper, N denotes the set of all positive integers (0 excluded), R denotes the
set of all real numbers, and C denotes the set of all complex numbers.

In the sequel, we address the problem of finding a presentation of a group or a monoid several
times, and, at each time, we solve it using the same method. So it makes sense to describe this
common method first. Although seemingly never described explicitly, the method was already
used in [8], and it proved to be relevant in several similar situations [12, 13].
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1.1. Partial group actions. The situation we investigate is essentially that of a group action.
However, the framework we consider is both weaker and stronger than the standard one. The
weakening is that the actions we consider are partial in the sense that every element of the
group need not necessarily act on every element; the strengthening is that our actions satisfy a
very strong freeness hypothesis, namely that, if two elements of the group act in the same way
on one element, then they act in the same way on each element on which both of them act.

Several weak forms of the standard notion of an action may be thought of. The one convenient
here is as follows. As pointed out by M. Lawson, it is essentially equivalent to the notion
investigated in [25] (in the case of groups)—see also [27]—and in [29] (in the case of monoids).

Definition. Let G be a monoid. We define a partial (right) action of G on a set S to be a
mapping φ of G into the partial injections of S into itself such that, writing s • g for the image
of s under φ(g), the following conditions are satisfied:

(PA1) For every s in S, we have s • 1 = s, i.e., φ(1) is the identity mapping;
(PA2) For all g, h in G and s in S, if s • g is defined, then (s • g) • h is defined if and only if

s • gh is, and, in this case, they are equal;
(PA3) For each finite family g1, . . . , gn in G, there exists at least one element s in S such

that s • g1, . . . , s • gn are defined.
We say that a subset S0 of S is separating for φ if, in (PA3), we can require that s belongs
to S0 • G, i.e., the restriction of φ is a partial action of G on S0 • G, and, moreover, g = g′ holds
whenever s0 • g = s0 • g′ holds for at least one element s0 of S0.

Note that, in general, s • gh being defined does not guarantee that s • g is. In the context of
a group, we have the following straightforward facts:

Lemma 1.1. Assume that φ is a partial action of a group G on a set S. Then
(i) The relations s′ = s • g and s = s′ • g−1 are equivalent;
(ii) The relation (∃g ∈ G)(s′ = s • g) is an equivalence relation on S.

Proof. As gg−1 is 1, Condition (PA2) asserts that, if s • g is defined, then (s • g) • g−1 is defined
if and only if s •1 is, and the latter is always true by (PA1). Then we find (s •g) •g−1 = s •1 = s.
This implies that the relation of (ii) is symmetric; (PA1) implies that it is reflexive, and (PA2)
that it is transitive.

Thus a partial action of a group on a set S defines a partition of S into well-defined disjoint
orbits. This need not be true in the case of a monoid action—but we still say that s′ lies in the
orbit of s if s′ = s • g holds for some element g.

1.2. Presentations. As for monoid and group presentations, we use the following parallel
notation throughout the paper.

Definition. (i) For x a set, we denote by W+(x) the monoid of all words on x, i.e., of all finite
sequences of elements of x. We use ε for the empty word. If r is a family of monoid relations
u = v with u, v in W+(x), we denote by ≡+

r the congruence on W+(x) generated by r, and by
〈x ; r〉+ the monoid W+(x)/≡+

r .
(ii) For x a set, we denote by W (x) the monoid of all words constructed from x ∪ x−1,

where x−1 consists of one symbol x−1 for each x in x. If r is a family of group relations u = v
with u, v in W (x), we denote by ≡r the congruence on W (x) generated by r together with all
relations xx−1 = x−1x = ε with x ∈ x, and by 〈x ; r〉 the group W (x)/≡r.

If x is a subset of a group (resp. monoid) G and w is a word in W (x) (resp. in W+(x)), we
usually denote by w the evaluation of w in G, and then say that w is an expression of w. In
the case of a partial action on a set S, it will be convenient to extend the action to expressions
of the elements of the monoid as follows:
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Definition. Assume that φ is a partial action of a group (resp. monoid) G on a set S, and x
is a subset of G. For s in S and w in W (x) (resp. W+(x)), we define s • w to be s • w if the
latter exists and so does s • v for each prefix v of w.

Our criterion for recognizing a presentation may be used when we have a (partial) action of
a group or a monoid G on a set S, and there is a way to define inside G a copy of the set S in
such a way that the counterpart to the action of G is a multiplication. We first state the result
for a group.

Proposition 1.2. (i) Assume that G is a group partially acting on a set S, that x is a subset
of G, that a word us in W (x) is chosen for each s in S, and

x generates G,(1.1)

for all s, s′ in S and x in x satisfying s′ = s • x, we have us′ = us · x.(1.2)

Then a necessary and sufficient condition for a family of relations r satisfied by the elements
of x in G to make a presentation of G is that

for all s, s′ in S and x in x satisfying s′ = s • x, we have us′ ≡r us · x.(1.3)

(ii) Assume in addition that some subset S0 of S is separating for the partial action of G.
Then a sufficient condition for (1.1) and (1.2) to hold is that

for all s0 in S0 and each s in the orbit of s0, we have s0 • us = s.(1.4)

Proof. (i) That (1.3) is a necessary condition is clear: if (x; r) is a presentation of G, the
hypothesis that the words us′ and us · x represent the same element of G implies that these
words are r-equivalent.

Conversely, assume (1.3). We claim that

for all s, s′ in S and w in W (x) satisfying s′ = s • w, we have us′ ≡r us · w.(1.5)

We prove the claim using induction on the length of w. If w has length 1, then either w is
a single letter x of x, and then us′ ≡r us · x is true by hypothesis, or w has the form x−1

for some x in x. Then, by Lemma 1.1, s′ = s • x−1 implies s = s′ • x, hence, by hypothesis,
us ≡r us′ · x, and, therefore, us′ ≡r us · x−1. Assume now that w has length 2 at least. Write
w = uv with u, v nonempty. By definition, the hypothesis that s •w is defined implies that both
s • u and (s • u) • v are defined. Applying the induction hypothesis and (PA2), we obtain

us•w = u(s•u)•v ≡r us•u · v ≡r us · u · v = us · w.

Now assume that w and w′ represent the same element of G, i.e., w = w′ holds. Condition (PA3)
implies that there exists an element s of S such that both s • w and s • w′ are defined. Then
applying (1.5) we find

us · w ≡r us•w = us•w′ ≡r us · w′,
and we deduce w ≡r w′ by cancelling us on the left. So w = w′ implies w ≡r w′, which means
that (x; r) is a presentation of G.

(ii) Let g be an arbitrary element of G. By (PA3), there exists an element s of S such that
s • g exists. Moreover, as S0 is an separating subset of S, we can assume that s belongs to the
orbit of some element s0 of S0. Then, by (1.5), we have s = s0 • us, and, similarly, s′ = s0 • us′

for s′ = s • g, hence

s0 • us′ = s′ = s • g = (s0 • us) • g = s0 • (us · g),(1.6)

and, using the hypothesis that S0 is essential, we deduce us′ = us ·g. For g in x, we obtain (1.2).
On the other hand, (1.6) implies g = us

−1ux•g. By construction, all elements of the form us

belong to the subgroup of G generated by x, so g itself must belong to this subgroup. Hence x
generates G.
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The criterion of Proposition 1.2 is in particular valid in the case of a (total) group action, in
which case the proof is straightforward.

When we consider a monoid action, the statement has to be changed a little:

Proposition 1.3. (i) Assume that G is a left cancellative monoid partially acting on a set S,
that x is a subset of G, that a word us in W+(x) is chosen for each s in S, and

x generates G,(1.7)

for all s, s′ in S and g in G satisfying s′ = s • g, we have us′ = us · g.(1.8)

Then a necessary and sufficient condition for a family of relations r satisfied in G by the
elements of x to make a presentation of Gis that

the monoid 〈x ; r〉+ admits left cancellation,(1.9)

for all s, s′ in S and x in x satisfying s′ = s • x, we have us′ ≡+
r us · x.(1.10)

(ii) Assume in addition that some subset S0 of S is separating for the partial action of G.
Then a sufficient condition for (1.8) to hold is:

for all s0 in S0 and s in the orbit of s0, we have s0 • us = s.(1.11)

Proof. The argument is the same as in the case of a group. Apart from replacing W (x)
with W+(x) everywhere, the only changes are that we cannot deduce that x generates G
from (1.8) as us need not have an inverse in G, and that, in order to deduce w ≡+

r w′ from
us · w ≡+

r us · w′, we have to explicitly assume that the monoid 〈x ; r〉+ admits left cancella-
tion.

2. Thompson’s group F as the geometry group of associativity

We describe now a realization of Thompson’s group F as the group canonically associated
with a monoid of partial associativity operators. This is one way of formalizing the well-
known connection between F and the associativity law. This approach naturally leads to a
presentation of F in terms of a family of generators indexed by binary addresses. Apart from
more or less trivial geometric relations, the only relations of this presentation correspond to the
MacLane–Stasheff pentagon relations.

2.1. Trees and associativity. In the sequel, we consider finite, rooted binary trees—simply
called trees here. The number of leaves in a tree is called its size. We denote by ◦ the tree
consisting of a single vertex and by t1

∧t2 the tree with left subtree t1 and right subtree t2.
Every tree has a unique decomposition in terms of ◦ and the operation ∧.

◦ ◦∧◦ (◦∧◦)∧◦ ◦∧(◦∧◦) ◦∧((◦∧◦)∧◦)

Figure 1. Typical trees with their decomposition in terms of ◦ and ∧

We shall also consider decorated trees, defined as trees in which the leaves wear labels. We
write ◦� for the decorated tree consisting of a single vertex labelled �, and, for S a nonempty
set, we use TS to denote the set of of all S-decorated trees, i.e., all decorated trees with labels
in S. We shall occasionally denote by T∅ the family of all undecorated trees. Note that TS
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equipped with the binary operation ∧ is an absolutely free algebra (or free magma) generated
by S, or, more exactly, by the elements ◦� with � in S.

The associativity law

x(yz) = (xy)z(A)

gives rise to an equivalence relation on (decorated) trees: two trees t, t′ are equivalent up to asso-
ciativity if we can transform t into t′ by iteratively replacing one subtree of the form t1

∧(t2∧t3)
with the corresponding tree (t1∧t2)∧t3, or vice versa (Figure 2).

t3

t1

t2t1 t2

t3

Figure 2. Applying the associativity law

In order to describe this action of associativity, we need an indexation for the subtrees of a
tree. One solution is to start from the root of the tree and to describe the path down to the
root of the considered subtree using for instance 0 for “forking to the left” and 1 for “forking
to the right”.

Definition. A finite sequence of 0’s and 1’s is called an address; the empty address is denoted
by φ. For t a (decorated) tree and α a short enough address, the αth subtree t/α

of t consists of
the part of t that lies below α. Formally, it is defined by the inductive rules: (i) The tree t/φ is
defined for every t, and it equals t; (ii) For α = 0β (resp. 1β), the tree t/α

exists only if t has
the form t′∧t′′ and t′/β

(resp. t′′/β
) is defined, and, then, we have t/α

= t′/β
(resp. t′′/β

). The set
of all α’s for which t/α

exists is called the skeleton of t.

Example 2.1. Let t = ◦∧((◦∧◦)∧◦) (the rightmost example in Figure 1). The subtree t/10 is
◦∧◦, while t/01 and t/111 are undefined. The skeleton of t consists of φ, 0, 1, 10, 100, 101, 11.

In this framework, applying associativity to a tree t consists in choosing an address α in the
skeleton of t and either replacing the αth subtree of t, supposed to have the form t1

∧(t2∧t3),
with the corresponding tree (t1∧t2)∧t3, or performing the inverse substitution. We can see this
as applying a (partial) operator on trees.

Definition. (i) We denote by A the (partial) operator that maps every tree of the form
t1

∧(t2∧t3) to the corresponding tree (t1∧t2)∧t3.
(ii) For α an address and f a partial mapping on trees, we define the α-shift ∂αf of f to

be the partial mapping consisting in applying f to the αth subtree of its argument (when the
latter exists). We write ∂ for ∂1.

(iii) For α an address, we put Aα = ∂αA. We define G(A) to be the monoid generated by
all Aα’s and their inverses using reversed composition.

Example 2.2. (Figure 3) Let t = ◦∧(((◦∧◦)∧◦)∧(◦∧◦)). Then t lies in the domain of A, as t/φ ,
i.e., t itself, can be written as t1

∧(t2∧t3), with t1 = ◦, t2 = (◦∧◦)∧◦, and t3◦∧◦. Then the image
of t under A is (t1∧t2)∧t3, i.e., (◦∧((◦∧◦)∧◦))∧(◦∧◦). Similarly, t lies in the domain of A1, and
in the images of A1 and of A10, hence in the domains of A−1

1 and A−1
10 . These are the only

operators A±1
α applying to t.
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A−1
10

A−1
1

A1

Aφ
1

10

Figure 3. Two operators Aα and two operators A−1
α apply to the tree ◦∧(((◦∧◦)∧◦)∧(◦∧◦))

By construction, there exists a partial action of the monoid G(A) on trees; for f in G(A),
we write t • f for the possible image of t under f . We use reversed composition in G(A) so as
to make the monoid structure compatible with an action on the right.

By construction, two trees t, t′ are equivalent up to associativity if and only if some element
of G(A) maps t to t′. Thus the orbits with respect to the partial action of the monoid G(A)
are the equivalence classes with respect to associativity: there is exactly one orbit for each size,
and the number of trees in the orbit of a size n tree is the nth Catalan number.

2.2. Making G(A) into a group. Except the identity mapping, the elements of G(A) are
partial mappings, and the monoid G(A) is not a group, but only an inverse monoid, i.e., a
monoid in which, for each elementg, there exists and element g−1 satisfying gg−1g = g and
g−1gg−1 = g−1. Indeed, the product of A and A−1 is the identity of its domain, but the latter
does not contain the tree ◦ for instance.

However, it is easy to quotient G(A) into a group by identifying all partial identity mappings.
The construction will be used several times in the sequel, so we first state a general principle.

Definition. We say that two partial mappings g, g′ are near-equal, denoted g ≈ g′, if there
exists at least one element s such that s • g and s • g′ are defined, and s • g = s • g′ holds for
every such s.

Lemma 2.3. Assume that G is a monoid consisting of partial injections of a set S into itself
that is closed under inverse, and there exists a nonempty subset S0 of S such that, for all
g1, . . . , gn, g, g′ in G,

Dom(g1) ∩ . . . ∩ Dom(gn) contains at least one element of S0 • G,(2.1)

g ≈ g′ is true whenever x • g = x • g′ holds for some x in S0 • G.(2.2)

Then near-equality is a congruence on G, the quotient-monoid is a group, the mappings of G
induce a partial action of this group on S, and the set S0 is separating for this partial action.

Proof. Assume g′ ≈ g′′ ≈ g′′′. By (2.1), there exists s in S0 • G such that s • g′, s • g′′, and
s • g′′′ are defined. Then one necessarily has s • g′ = s • g′′′, hence g′ ≈ g′′′ by (2.2), and ≈ is an
equivalence relation. Next, g′ ≈ g′′ implies gg′ ≈ gg′′ and g′g ≈ g′′g for every g, because (2.1)
guarantees that there exists s in S0 • G for which s • gg′, s • gg′′, s • g′g, and s • g′′g are defined,
and, moreover, s•g belongs to S0 •G. So ≈ is a congruence on G, and the quotient-monoid G/≈,
henceforth denoted G, is well-defined. For each g in G, we have gg−1 ≈ id because the domain
of g is nonempty, so G is a group.

For g in G, let us denote by g the class of g in G. For s in S, and a in G, we define s • a to
be s′ if s • g = s′ holds for some element g of G satisfying g = a, if such an element exists. Then
s •a is well-defined by definition of ≈, and we claim that one obtains in this way a partial action
of G on S. Indeed, Condidtion (PA1) is trivial. As for (PA2), assume that s • a and (s • a) • b
are defined. This means that there exist g, h with a = g and b = h such that s • g and (s • g) • h
are defined. But, then, s • gh is defined, and, by construction, we have gh = g h. Conversely,
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assume that s • a and s • ab are defined, say s • a = s′ and s • ab = z. This means that there
exist f, g in G satisfying s • g = s′, s • f = z, with g = a and f = ab. Let h = g−1f . Then h
belongs to G, we have h = a−1ab = b, and s′ • h = z. This shows that (s • a) • b is defined, and
equal to z. So Condition (PA2) is satisfied.

Then (2.1) implies (PA3) directly, and we obtain a partial action of G on S. Finally, the
subset S0 is separating by (2.2).

In order to apply the previous construction to the monoid G(A) and its action on trees, we
describe the domain and the image of a generic element of G(A) explicitly.

Definition. (i) Let S, S′ be two sets. A mapping of S to TS′ is called a S, S′-substitution. If
t is a tree in TS and ϕ is a S, S′-substitution, we denote by tϕ the tree (in TS′) obtained by
replacing each leaf ◦s in t with the tree ϕ(s).

(ii) A decorated tree is said to be injective if the its labels are pairwise distinct.
(iii) For f a partial mapping of TS into itself, we say that a pair of N-decorated trees (t, t′)

is a seed for f if, as a set of pairs, f is the set of all (tϕ, t′ϕ) with ϕ an N, S-substitution.

The pair (◦1
∧(◦2

∧◦3), (◦1
∧◦2)∧◦3) is a seed for A: this is just saying that A consists of all

pairs of the form (t1∧(t2∧t3), (t1∧t2)∧t3). Then we have the following general result:

Lemma 2.4. Each element of G(A) admits a seed consisting of injective trees.

Proof. Let f be an element of G(A). We prove the property using induction on the (minimal)
length of a decomposition of f in terms of the operators Aα and A−1

α . If f is the identity
mapping, the pair (◦1, ◦1) is a seed for f . Otherwise, write f = f1f2. By induction hypothesis,
f1 and f2 admit seeds, say (t1, t′1) and (t2, t′2). If t′1 happens to coincide with t2, then (t1, t′2) is
a seed for f . In the general case, because t′1 and t2 are injective, there exists substitutions ϕ1

and ϕ2 such that t′1
ϕ1 and tϕ2

2 coincide, and, then, the pair (t1ϕ1 , t′2
ϕ2) is a seed for f .

The seed can be made unique by adding the requirement that the labels make an initial
segment of the positive integers—a result that we shall not use here.

Corollary 2.5. The monoid G(A) satisfies Conditions (2.1) and (2.2) of Lemma 2.3, with
respect to the subsets T and TN.

Proof. Let f1, . . . , fn be arbitrary elements of G(A), and (t1, t′1), . . . , (tn, t′n) be seeds for
them. If t is a tree whose skeleton includes the skeletons of t1, . . . , tn, then there exist substi-
tutions ϕ1, . . . , ϕn such that t = tϕi

i holds for each i, which implies that t • fi is defined for
each i. So Condition (2.1) is satisfied in G(A).

Assume that f1, f2 belong to G(A), and t •f1 = t •f2 holds for some tree t in TN. Let (t1, t′1),
(t2, t′2) be seeds for f1 and f2 respectively. As above, there exist substitutions ϕ1, ϕ2 such that
the trees tϕ1

1 and tϕ2
2 coincide, they are injective, and their common skeleton is the union of

the skeletons of t1 and t2. Then the hypothesis that t • f1 and t • f2 are defined implies that
the skeleton of t includes those of t1 and t2, hence their union. So there exists a substitution ψ
satisfying t = (tϕ1

1 )ψ = (tϕ2
2 )ψ. Now the hypothesis that t • f1 and t • f2 are equal gives

(t′1
ϕ1)ψ = t • f1 = t • f2 = (t′2

ϕ2)ψ.

This implies that the skeletons of the terms t′1
ϕ1 and t′2

ϕ2 coincide. Moreover, the hypothesis
that the trees t1

ϕ1 and t2
ϕ2 are equal implies that the sequence of labels in t1

ϕ1 and t2
ϕ2 are

the same. Now, associativity does not change the order of the labels, so we deduce that the
trees t′1

ϕ1 and t′2
ϕ2 must coincide. This means that f1 and f2 must agree on every tree whose

skeleton includes that of t1
ϕ1 , i.e., on every tree in the intersection of the domains of f1 and f2.

In other words, f1 ≈ f2 holds, and Condition (2.2) is satisfied.

By applying Lemma 2.3, we obtain:
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Proposition 2.6. Near-equality is a congruence on the monoid G(A), and the quotient-monoid
is a group. For each set S (possibly S = ∅), the operators A±1

α induce a partial action of this
group on TS, and every subset of TS containing trees of unbounded sizes is separating for this
partial action.

Definition. The quotient-monoid G(A)/ ≈ is called the geometry group of associativity. We
denote it G(A).

In the sequel, we still use Aα for the class of Aα in F . For t a tree, and a an element of F ,
we denote by t • a the result of letting a act on t, when it is defined; in this case, we simply say
that a maps t to t • a. It should be observed that there is a difference between the action of
words in W (A) and the action of the elements of F they represent: for instance, (◦∧◦) • AA−1

is not defined—since (◦∧◦) • A is not— while (◦∧◦) • AA−1 is—since it is the action under 1.
It is straightforward to connect the group G(A) with Thompson’s group F :

Proposition 2.7. The group G(A) is isomorphic to Thompson’s group F .

Proof. Let us start with the definition of F as a group of diffeomorphisms of the unit interval,
cf. [5]. Let f be an arbitrary element in G(A). We map f to a homeomorphism of [0, 1] as follows:
let (t, t′) be a seed pair for f ; we associate with t a dyadic decomposition 0 = x0 < x1 < . . . <
xn = 1 of [0, 1], and, similarly, let 0 = x′

0 < x′
1 < . . . < x′

n = 1 be the dyadic decomposition
associated with t′; then we map f to the unique piecewise linear homeomorphism that maps xi

to x′
i and interpolates the values. One obtains in this way a morphism π of G(A) to F . The

homeomorphisms associated with (t, t′) and (tϕ, t′ϕ) coincide, and this implies that π factors
through ≈. The injectivity of the resulting morphism follows from the fact that each element
of F is determined by its values on a finite dyadic partition; its surjectivity follows from the
fact that the images of A and A1 generate F .

A

A1

Figure 4. From G(A) to F : the action of A and A1

From now on, we identify F with G(A).

2.3. Guessing relations in G(A). We show now how considering the group F as the ge-
ometry group of associativity naturally leads to a presentation of this group in terms of the
generators Aα. We proceed in two steps: in a first step, we use the geometric definition of the
operator Aα to guess a list of relations; then, in a second step, we prove that these relations
actually make a presentation using the method sketched in Section 1.

So we are looking for possible relations between the operators Aα. We shall describe two types
of relations successively: the geometric relations, and the pentagon relations. The geometric
relations arise when we consider inheritance phenomena. Assume t′ = t • A, i.e., assume that
the operator A maps t to t′. Then, by definition, the 1-subtree of t′ is a copy of the 11-subtree
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of t. It follows that performing any transformation in the latter subtree and then applying A
has the same result as applying A first and performing the considered transformation in the
1-subtree of t′. Therefore, the equality

∂f · A = A · ∂2f(2.3)

holds for every (partial) mapping f defined on trees (Figure 5). In particular, when f is itself
an operator of the form Aα, we obtain the relation

A11α · A = A · A1α,(2.4)

a typical example of what we shall call a geometric relation.

t t′

f

∂2f ∂f

A

A

A

A

A11 A1

Figure 5. Geometric relations in G(A): the general scheme and one example

We can say that, under the action of A, the address 1 is the heir of the address 11, and,
more generally, that 1α is the heir of 11α. Such inheritance phenomena are quite general. If
we consider the operator Aα, we see that, for every β,

- α00β is the heir of α0β under Aα,
- α01β is the heir of α10β under Aα,
- α1β is the heir of α11β under Aα.

Furthermore, if we say that two addresses α, β are incompatible, denoted α ⊥ β, if neither is
of prefix of the other, i.e., if there exists γ such that γ0 is a prefix of α and γ1 is a prefix of β,
or vice versa, then each address β with β ⊥ α is its own heir under the action of Aα.

The argument leading to (2.3) gives the relation ∂γf ·Aα = Aα · ∂γ′f whenever γ′ is the heir
of γ under Aα. In this way, we deduce the following collection of geometric relations in G(A):

Aβ · Aα = Aα · Aβ for β ⊥ α,
Aα0β · Aα = Aα · Aα00β ,

Aα10β · Aα = Aα · Aα01β ,

Aα11β · Aα = Aα · Aα1β .

(2.5)

The geometric relations are trivial in a sense, and one may wonder whether other, non-trivial
relations hold in G(A). The answer is positive.

Lemma 2.8. For each α, the following Pentagon Relation holds in G(A):

Aα · Aα = Aα1 · Aα · Aα0.(2.6)

Relation (2.6) corresponds to the well-known MacLane–Stasheff pentagon property, and its
proof is given (for α = φ) in Figure 6, which makes its name natural. Keeping the same name
for the relations in G(A) and their counterparts in G(A)—hence in F—we can summarize the
results as follows.
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A1

A

A0

A A

Figure 6. The pentagon relation

Definition. We denote by A the family of all Aα’s, and by rA the family of all geometry
relations involving A, namely the translated copies of

A0α · A1β = A1β · A0α,(g⊥)

A11αA = AA1α, A10αA = AA01α, A0αA = AA00α;(gA)

plus the pentagon relations, i.e., the translated copies of

AA = A1AA0.(p)

Proposition 2.9. All relations of rA are satisfied by the elements Aα in the group G(A), i.e.,
in Thompson’s group F .

2.4. Constructing trees. Our next aim is to prove that the relations of Proposition 2.9 make
a presentation of the geometry group G(A), hence of F . To this end, we shall apply the method
described in Section 1, using the partial action of G(A) on trees. We saw that every family of
trees containing trees of arbitrary large sizes is separating for this action, so, according to the
criterion of Proposition 1.2(ii), two ingredients are needed, namely

- a family of trees containing on element in each orbit, and
- for every tree t, a distinguished word ut in W (A) connecting t with the distinguished

element of its orbit.
Both steps are easy: two trees are equal up to associativity if and only if they have the same

size, so each family of trees containing exactly one size n tree for each n is convenient. In the
current case, we shall use the right combs of Figure 7.

Definition. For t1, . . . , tn trees, we put

\t1, . . . , tn\ = t1
∧(t2∧ . . . ∧(tn−1

∧tn) . . . );

we define the right comb \n\ to be \◦, . . . , ◦\ with n times ◦.

︸
︷︷

︸n − 1 verticest1
t2

. . .

tn−1 tn

\t1, . . . , tn\ \n\

Figure 7. The notation \t1, . . . , tn\ and the right comb \n\

Note that, with the above notation, applying A means replacing \t1, t2, . . . \ with \t1∧t2, . . . \.
In the sequel, we shall use mixed expressions like \p, t, q, . . . \ where p, q are numbers and t is
a tree to mean \◦, . . . , ◦, t, ◦, . . . , ◦, . . . \ with p times ◦ in the first block and q times ◦ in the
second.
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If t is a size n tree, there exists a (unique) element of G(A) mapping the right comb \n\ to t:
in order to apply Proposition 1.2(ii), it suffices to select a distinguished word ut representing
that element, i.e., to describe how t can be constructed from \n\ using associativity. Several
solutions exist. We give now an inductive definition which leads to short computations, but
requires that we introduce two words ut, u

∗
t for each tree t rather than one.

Definition. (i) For w a word involving letters indexed by addresses, we denote by ∂αw the
word obtained by appending α at the beginning of each index, and we use ∂w for ∂1w.

(ii) For each tree t, we define two words ut, u
∗
t using the inductive rules:

ut = u∗
t = ε for t of size 1,

ut = u∗
t1 · ∂ut2 , u∗

t = u∗
t1 · ∂u∗

t2 · A for t = t1
∧t2.

The following characterization of the words ut and u∗
t is not needed in the sequel, but it

helps making the definition concrete. As was mentioned above, each tree t admits a unique
decomposition in terms of the basic tree ◦ and the operation ∧. Besides the algebraic notation
t1

∧t2 for the product of t1 and t2, we can also use the so-called right Polish notation in which
the product of t1 and t2 is denoted t1t2•—we resort to a new symbol to avoid ambiguity. So,
for instance, the (right) Polish decomposition of the tree (◦∧◦)∧◦ is ◦◦•◦•. In the sequel, a
length � word w is considered as a sequence of symbols indexed by {1, . . . , �}, and we use w(p)
for the pth symbol in w.

Proposition 2.10. For w a length � word and 0 � p � �, define the defect δw(p) of p in w by
the rules: δw(0) = 0, δw(p + 1) = δw(p)− 1 for w(p) = •, and δw(p + 1) = δw(p) + 1 otherwise.
Then, for each tree t in T , the word u∗

t is obtained from the Polish decomposition of t by deleting
the symbols ◦, and replacing each defect i symbol • with A1i . The word ut is obtained similarly,
except that the final symbols •, i.e., those followed by no ◦, do not contribute.

Proof. It is standard that a word w is the Polish decomposition of a well-formed tree if and only
if the defect of each symbol is nonnegative, and the defect of the last symbol is 0. For t a tree,
define the enhanced decomposition of t to be the Polish decomposition with the defect of each
symbol indicated in subscript. Then the enhanced decomposition of a product t1

∧t2 consists of
the enhanced decomposition of t1, followed by the enhanced decomposition of t2 with all defects
shifted by 1, followed by the symbol • with 0 defect. So the enhanced decomposition and the
word u∗

t obey parallel inductive rules. Therefore, as the correspondence of the proposition
clearly holds for the basic tree ◦, it inductively holds for every tree. A similar argument gives
the connection between u∗

t and ut.

Example 2.11. Let t = ((◦∧◦)∧(◦∧(◦∧◦)))∧((◦∧◦)∧◦). The enhanced decomposition of t is
◦0◦1•0◦1◦2◦3•2•1•0◦1◦2•1◦2•1•0, and a direct translation yields u∗

t = AA11A1AA1A1A, and
ut = AA11A1AA1 (for ut the last two symbols • in the Polish decomposition are dismissed).

Corollary 2.12. For each tree t, we have

u∗
t = ut · A1h−1 . . . A1A,(2.7)

where h is the length of the rightmost branch in t.

We are going to prove that the trees \n\ and the words ut satisfy the requirements of Propo-
sition 1.2(ii) and therefore can be used to obtain a presentation of the group G(A).

Lemma 2.13. For each size n tree t, we have

\n\ ut−−−−→ t and \n, . . . \ ut−−−−→ \t, . . . \,(2.8)

i.e., ut constructs t from \n\, and u∗
t constructs t∧t′ from \n\∧t′ for every tree t′.
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Proof. We use induction on n. For n = 1, the result is obvious. Otherwise, assume t = t1
∧t2,

and let n1 and n2 be the sizes of t1 and t2 respectively. Then we have ut = u∗
t1 · ∂u∗

t2 . By
induction hypothesis, u∗

t1 maps \n\, i.e., \n1, n2\, to t1
∧\n2\. Then, always by induction

hypothesis, ut2 maps \n2\ to t2, hence ∂u∗
t2 maps t1

∧\n1\ to t1
∧t2. So ut maps \n\ to t1

∧t2,
i.e., to t (Figure 8 top):

\n\ = \n1, n2\
u∗

t1−−−−→ \t1, n2\
∂ut2−−−−→ \t1, t2\ = t.

Similarly, we have u∗
t = u∗

t1 · ∂u∗
t2 · A. The diagram is now:

\n,..\ = \n1, n2,..\
u∗

t1−−−−→ \t1, n2,..\
∂u∗

t2−−−−→ \t1, t2,..\ A−−−−→ \t1∧t2,..\ = t∧...

Indeed, by induction hypotheses, u∗
t1 maps \n\∧t′, i.e., \n1, n2, t

′\, to t1
∧(\n2\∧t′), and u∗

t2
maps \n2\∧t′ to t2

∧t′, so ∂u∗
t2 maps t1

∧(\n2\∧t′) to t1
∧(t2∧t′). Finally, A maps t1

∧(t2∧t′) to
(t1∧t2)∧t′, i.e., to t∧t′ (Figure 8 bottom).

\n\
\n2\

t1 t1 t2

u∗
t1 ∂ut2

t′
t′

t′
t′

t1 t1
t1t2 t2

u∗
t1 ∂u∗

t2 A

Figure 8. For t a size n tree, ut describes how to construct t from \n\, and u∗
t

describes how to construct t∧t′ from \n\∧t′; the figure illustrates the inductive argu-
ment for t = t1

∧t2

So Conditions (1.5), and therefore (1.2), of Proposition 1.2(ii) are satisfied. By construction,
the family A generates the group G(A). We deduce that a family of relations involving the
generators Aα makes a presentation of G(A) if and only if it contains enough relations to make
the words ut′ and ut ·Aα equivalent whenever t′ is the image of t under Aα. We will show that
this is the case for the relations rA of Proposition 2.9. Due to our inductive construction, it
will be convenient to prove two results simultaneously, namely one for ut and one for u∗

t . Note
that the argument proving ut′ = ut · Aα when Aα maps t to t′ similarly proves u∗

t′ = u∗
t · A0α,

as both sides of the latter equality map \k\ to t′∧\k − n\ for k > n. In the sequel, we use ≡g

and ≡p to indicate that we specifically use a geometric or a pentagon relation.

Lemma 2.14. Assume t′ = t • Aα. Then we have

ut′ ≡rA
ut · Aα and u∗

t′ ≡rA
u∗

t · A0α.(2.9)

Proof. We use induction on the length of α as a sequence of 0’s and 1’s. Assume first that α is
the empty address. The hypothesis that t′ = t • A holds, i.e., that the operator A maps t to t′,
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means that there exist t1, t2, t3 such that t is t1
∧(t2∧t3) and t′ is (t1∧t2)∧t3. Then we find

ut′ = u∗
t1 · ∂u∗

t2 · A · ∂ut3 ,≡g u∗
t1 · ∂u∗

t2 · ∂2ut3 · A = ut · A,

u∗
t′ = u∗

t1 · ∂u∗
t2 · A · ∂u∗

t3 · A ≡g u∗
t1 · ∂u∗

t2 · ∂2u∗
t3 · AA ≡p u∗

t1 · ∂u∗
t2 · ∂2u∗

t3 · A1AA0 = u∗
t · A0.

Assume now α = 0β. The hypothesis that Aα maps t to t′ means that there exist t2, t2, t
′
1 such

that t is t1
∧t2, t′ is t′1

∧t2, and Aβ maps t1 to t′1. Using the induction hypothesis, we find

ut′ = u∗
t′1
· ∂ut2 ≡(IH) u∗

t1 · A0β · ∂ut2 ≡g u∗
t1 · ∂ut2 · A0β = ut · Aα,

u∗
t′ = u∗

t′1
· ∂u∗

t2 · A ≡(IH) u∗
t1 · A0β · ∂u∗

t2 · A ≡g u∗
t1 · ∂u∗

t2 · A0βA ≡g u∗
t1 · ∂u∗

t2 · AA00β = u∗
t · A0α.

Finally, assume α = 1β. With similar notation, we have t = t1
∧t2 and t′ = t1

∧t′2 with Aβ

mapping t2 to t′2. We find now

ut′ = u∗
t1 · ∂ut′2 ≡(IH) u∗

t1 · ∂ut2 · A1β = ut · Aα,

u∗
t′ = u∗

t1 · ∂u∗
t′2
· A ≡(IH) u∗

t1 · ∂u∗
t2 · A10βA ≡g u∗

t1 · ∂u∗
t2 · AA01β = u∗

t · A0α,

which completes the proof.

We are now in position for concluding:

Proposition 2.15. The relations rA , i.e., the geometric relations for A, plus the pentagon
relations, make a presentation of the group G(A), i.e., F , in terms of the generators Aα.

Proof. All requirements of Proposition 1.2 are satisfied. Indeed, for each size n tree t, we have
selected an element in the F -orbit of t, namely the right comb \n\, and a word ut in W (A) so
that t is the image of \n\ under the action of ut. So we deduce that A generates F—which is
obvious—and that a family of relations involving A makes a presentation of G(A) if and only if
it contains enough relations to guarantee the equivalence of ut ·Aα and ut′ whenever t′ = t • Aα

is satisfied: this is exactly what Lemma 2.14 asserts for the relation rA .

2.5. The standard presentation. As is well-known [5], there exists a presentation of F in
terms of an infinite sequence of generators, usually denoted xi or Xi, indexed by nonnegative
integers. We can easily establish the connection between these generators and our current
generators Aα, and, using Proposition 1.2 again, we shal re-obtain the standard presentation
of F as a direct corollary.

Definition. (i) For i � 1, we put ai = A1i−1 , and we denote by a the family of all ai’s.
(ii) We denote by ra the subfamily of rA consisting of those relations in rA that involve the

generators of a exclusively, namely the relations aiaj = aj+1ai for j > i.

Proposition 2.16. The set a generates G(A), i.e., F , and the relations ra make a presentation
of G(A) in terms of the generators ai.

Proof. By construction, the words ut belong to W (a). So the first part of Proposition 1.2 shows
that a generates F . In order to prove that ra makes a presentation, it suffices to check that the
relations of ra are sufficient to establish the equivalence of ut′ and ut · ai when ai maps t to t′.
Looking at the proof of Lemma 2.14 immediately shows that this is the case. So, Proposition 1.2
applies again, and it shows that ra makes a presentation of F in terms of the ai’s.

A consequence of the fact that the family a generates F is that each element Aα has to be
expressible in terms of the elements ai. For future use, let us mention an explicit formula:

Lemma 2.17. Assume that α is an address containing at least one 0, say α = 1p00e010e11 . . . 10eq

with p, q, e0, . . . , eq � 0. Then we have

Aα = (ae0+1
p+1 ae1+1

p+2 . . . a
eq+1
p+q+1)(ap+q+1a

−1
p+q+2)(a

e0+1
p+1 ae1+1

p+2 . . . a
eq+1
p+q+1)

−1.(2.10)

For instance, for α = 01100, we find p = 0, q = 2, e0 = e1 = 0, and e2 = 2, hence
A01100 = a1a2a

4
3a

−1
4 a−3

3 a−1
2 a−1

1 .
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2.6. Connection with associahedra. Let Kn denote the Cayley graph of the orbit of the
size n tree \n\ under the (partial) action of the group F with respect to the generators Aα.
The vertices of Kn consist of all size n trees, and there is an edge from t to t′ if and only if
t′ can be reached from t using a single transformation A±1

α : such Kn is the nth associahedron
[22].

By construction, the right combs make a separating family for the partial action of F when
n varies, and there is exactly one element of the family in each orbit. Hence the Cayley
graph of F with respect to the generators Aα is the union (or, rather, the direct limit) of the
associahedra Kn.

It follows that studying the geodesics in the above Cayley graph is the same as investi-
gating the rotation distance between binary trees—or, equivalently, the flip distance between
triangulations [32].

One point showing (if needed) that the problem is difficult is the remark that positive words,
i.e., those containing only generators Aα and no A−1

α , are not geodesic: one can show that, for
every k, the word

(A1kA1k−1 . . . A1A)(A011k−1 . . . A011A01) . . . (A(01)k−11A(01)k−1))(A(01)k),

whose length is quadratic in k, is geodesic among positive words; now this word is equivalent
to

A1k−1 . . . A1A · AA−1
0 A01A

−1
010 . . . A−1

(01)k−10
A(01)k ,

whose length is linear in k.

3. The group F as a group of fractions

One advantage of using the geometric presentation of F in terms of the generators Aα is
that it leads to an interesting submonoid F+ of F , and, from there, to a lattice structure on F .

3.1. The positive geometry monoid. By construction, our associativity operators A±1
α come

in pairs. Besides the monoid G(A) generated by all operators A±1
α , it is also natural to consider

the submonoid corresponding to selecting one of the two directions.

Definition. We denote by G+(A) the monoid generated by all operators Aα, and call it the
positive geometry monoid of associativity.

All results about the geometry monoid extend to the positive geometry monoid mutatis
mutandis, and, in particular, we have:

Proposition 3.1. Near-equality is a congruence on G+(A), and the associated quotient-monoid
is the submonoid G+(A) of G(A) generated by A.

As the geometry group G(A) has been identified with Thompson’s group F , it is natural to
give a related name to the monoid G+(A).

Definition. We denote by F+ the submonoid of F generated by A.

Our first task will be to find a presentation of the monoid F+. To this end, we shall apply
the method of Section 1 again, still using the partial action of the operators Aα on trees and,
this time, Proposition 1.3. The monoid F+ admits left cancellation since it is a submonoid of
a group. By looking at the definition, we see that the words ut and u∗

t belong to W+(A). As
the geometric and pentagon relations involve only words in W+(A), we are nearly in position
of applying Proposition 1.3 and deducing that 〈A ; rA〉+ and 〈a ; ra〉+ are presentations of F+

and F+
L respectively. Two points are missing:

- a proof that the monoid 〈A ; rA〉+ admits left cancellation;
- a proof of Condition (1.10), which is a priori stronger than Condition (1.3) as established

as (2.9) in Lemma 2.14.
The latter point is easy.
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Lemma 3.2. Assume that Aα maps t to t′. Then we have

ut′ ≡+
rA

ut · Aα and u∗
t′ ≡+

rA
u∗

t · A0α.(3.1)

Proof. It suffices to look at the proof of Lemma 2.14 and to check that only positive words and
relations are used, which is straightforward.

So the only remaining question is whether 〈A ; rA〉+ admits left cancellation.

3.2. The word reversing technique. In order to study the monoids 〈A ; rA〉+ we shall resort
to general algebraic tools developed in [9, 14] and connected with Garside’s seminal work [21].
This combinatorial approach applies to certain monoid presentations and it is relevant for
establishing properties like the possible cancellativity of the monoid, or its embedding in a
group of fractions.

The main notion is word reversing. In the sequel, we say that (x, r) is a positive group
presentation if r exclusively consists of relations of the form u = v with u, v nonempty words
in W+(x). Note that this condition is satisfied by the presentation (A, rA).

Definition. [9, 14] Assume that (x, r) is a positive group presentation, and that w, w′ are
words in W (x). We say that w is right r-reversible to w′ in one step if w′ is obtained from w
either by deleting some length 2 subword x−1x, or by replacing a length 2 subword x−1y with
a word vu−1 such that xv = yu is one of the relations of r. We write w �r w′ if w is right
r-reversible to w′ in finitely many steps, i.e., if w′ can be obtained from w using finitely many
successive right r-reversing steps.

The idea of right r-reversing is to use the relations of r to push the negative letters (those
in x−1) to the right and the positive letters (those in x) to the left by iteratively reversing the
negative–positive patterns into positive–negative ones. Note that the first case of reversing,
namely deleting some subword x−1x, appears as a special case of the second case provided we
assume that, for every letter x in x, the trivial relation x = x is implicit in r.

Left r-reversing is defined symmetrically: one step consists in deleting one subword xx−1,
or replacing one subword xy−1 with v−1u such that vx = uy is a relation of r.

Example 3.3. Let us consider the presentation (A; rA), and let w be the word A−1A1A
−1.

Then w contains a unique negative–positive pair of letters, namely A−1A1. There exists a unique
relation in rA with the form A . . . = A1 . . . , namely A2 = A1AA0. Therefore, the only way to
rA -reverse w on the right is to replace A−1A1 with AA−1

0 A−1, and we have w �rA
AA−1

0 A−2.
The latter word contains no negative–positive pair, so no further right rA -reversing is possible.
Similarly, w is left rA -reversible to A−2A11. Note that, if we use ra instead of rA , the above
left reversing of w remains possible, but no right reversing can be performed.

If xu = yv is a relation of r, then x−1y ≡r vu−1 holds, and a straightforward induction
shows that w �r w′ implies w ≡r w′. A slightly more careful argument shows that, when only
positive words are considered, r-reversing gives rise to equivalence not only in the group, but
even in the monoid:

Lemma 3.4. [14] Assume u, v, u′, v′ ∈ W+(x). Then u−1v �r v′u′−1 implies uv′ ≡+
r vu′.

In particular, if u, v belong to W+(x), then u−1v �r ε (the empty word) implies u ≡+
r v.

There is in general no reason why the converse implication should be true, but, when this
happens to be the case, then word reversing proves to be a very useful tool, for instance to
recognize cancellativity.

Definition. [14] We shall say that the presentation (x, r) is complete with respect to right
reversing if right reversing always detects positive equivalence, i.e., if u ≡+

r v implies u−1v �r ε
for all words u, v in W+(x). Symmetrically, we say that (x; r) is complete with respect to left
reversing if u ≡+

r v implies that uv−1 is left r-reversible to ε.
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A nice feature is that there exists a criterion which, under weak assumptions, enables one
to recognize whether a given presentation is complete with respect to reversing—or to add new
relations if it is not.

Definition. [14] We say that a positive presentation (x, r) is homogeneous if there exists an
≡+

r -invariant mapping λ : W+(x) → N such that λ(x) � 1 holds for every x in x, and
λ(uv) � λ(u) + λ(v) holds for all words u, v in W+(x).

If all relations in r preserve the length of the words, then the length satisfies the requirements
of homogeneity. The previous definition corresponds to relaxing some unessential properties of
the length but keeping the core that makes inductive argument possible. Then we have the
following criterion for recognizing complete presentations.

Proposition 3.5. [14] Assume that (x, r) is a homogeneous positive presentation. Then (x, r)
is complete with respect to right reversing if and only, for each triple (x, y, z) in x3,

x−1yy−1z �r vu−1 with u, v in W+(x) implies v−1x−1yu �r ε.(3.2)

In other words: Whenever x−1yy−1z reverses (on the right) to a word of the form vu−1 with
u, v in W+(x), then the word v−1x−1yu reverses (on the right) to the empty word.

Proposition 3.6. [14] Assume that (x, r) is a positive presentation that is complete with re-
spect to right reversing. Then the monoid 〈x ; r〉+ is left cancellative if and only if u−1v �r ε
holds for every relation of the form xu = xv in r. Thus, in particular, a sufficient condition
for 〈x ; r〉+ to be left cancellative is that r contains no relation of the form xu = xv.

To apply the previous criterion to the presentations (A, rA) and (a, ra), it suffices to check
that there presentations are homogeneous and satisfy the criterion of Proposition 3.5.

Lemma 3.7. The presentation (A, rA) is homogeneous.

Proof. We cannot use the length, as it is not preserved under the pentagon relation: A1AA0

has length 3, while A2 has length 2. Instead we can use the number of 0’s in addresses. If α
is an address, we shall denote by ν(α) the number of 0’s in α. For t a tree, let addk(t) be the
address of the kth leaf from the left in t. Let us compare ν(addk(t)) and ν(addk(t′)) when t′

is the image of t under some element of F+. For instance, assume that A maps t to t′. Then
addk(t) = 11α implies addk(t′) = 1α, and addk(t) = 10α implies addk(t′) = 01α. So, in these
cases, we have ν(addk(t′)) = ν(addk(t)). Now addk(t) = 0α implies addk(t′) = 00α, hence
ν(addk(t′)) = ν(addk(t)) + 1. An obvious induction shows that, if t′ is the image of t under a
nontrivial element of F+, then ν(addk(t′)) � ν(addk(t)) holds for each k, and there is at least
one k such that the inequality is strict. So, if we define ν(t) to be

∑
k ν(addk(t)), we have

ν(t′) > ν(t). For w a word in W+(A), define

λ(w) = ν(t′) − ν(t),

where (t, t′) is a seed for (the operator associated with) w. The previous argument shows that
λ(w) is a positive integer whenever w is nonempty, and, e.g., we find λ(Aα) = 1 for each α.
Because the number of 0’s in addk is never decreasing under the action of a positive word, we
necessarily have

ν(t′σ) − ν(tσ) � ν(t′) − ν(t)
for every substitution σ when t′ is the image of t under an operator in F+. So, by Lemma 2.4,
we must have ν(t′1) − ν(t1) � λ(w) whenever w maps t1 to t′1.

Assume w = w1w2. Let (tti, t′1) and (t2, t′2) be seeds for w1 and w2, respectively. We saw in
the proof of Lemma 2.4 that a seed for w is the pair (t1ϕ, t′2

ψ), where ϕ and ψ are substitutions
satisfying t′1

ϕ = t2
ψ. Then we find

λ(w) = ν(t′2
ψ) − ν(t1ϕ) = ν(t′2

ψ) − ν(t2ψ) + ν(t′1
ϕ) − ν(t1ϕ)

� ν(t′2) − ν(t2) + ν(t′2) − ν(t1) = λ(w1) + λ(w2).



20 PATRICK DEHORNOY

Finally, the compatibility of λ with the relations of rA is clear, as λ(w) is defined using the
action of w on trees only.

Lemma 3.8. The presentation (A, rA) is complete with respect to right reversing.

Proof. Let us consider (A, rA) first. By Proposition 3.5, it suffices to check that, if α, β, γ are
three addresses and A−1

α AβA−1
β Aγ reverses to a word of the form vu−1 with u, v in W+(x), then

v−1A−1
α Aγu reverses to the empty word. The systematic verification consists in considering all

possible mutual positions of the addresses α, β, γ. An important point is that, for each pair of
addresses (α, β), there is exactly one relation of the form Aα . . . = Aβ . . . in rA , which implies
that word reversing is a deterministic process. So, in particular, there exists at most one pair
of positive words u, v such that A−1

α AβA−1
β Aγ reverses to vu−1. To give an example, let us

consider the case α = φ, β = 1, γ = 11, which is the most complicated one: the reader can check
that A−1A1A

−1
1 A11 reverses to A2A−1

00 A−1
0 A−1A−1

10 A−1
1 , and, then, that A−3A11A1A10AA0A00

reverses to the empty word. For complete details, we refer to [10] where it is shown that most
of the cases follow from a uniform geometric argument, and that the above particular case is
essentially the only non-trivial one requiring a specific verification.

The presentation (A; rA) contains no relation of the form Aαu = Aαv, so, applying Propo-
sition 3.6, we obtain

Lemma 3.9. The monoid 〈A ; rA〉+ admits left cancellation.

All hypotheses of Proposition 1.3 are now satisfied, and we deduce:

Proposition 3.10. The positive geometry monoid G+(A), i.e., F+, admits the presentation 〈A ; rA〉+.

Another consequence is the following strong faithfulness result for the action of F+ on trees:

Proposition 3.11. Assume that w, w′ are words in W+(A) and there exists at least one tree t
such that t • w and t • w′ are defined and equal. Then w ≡+

rA
w′ holds, i.e., w and w′ represent

the same element of F+.

Remark 3.12. The symmetry exchanging left and right induces an antiautomorphism of the
group F and the monoid F+ in which the image of Aα is Aα, where α is obtained from α by
exchanging 0 and 1. As the relations of rA are invariant under this transformation, we can
deduce without new verification that the presentation (A; rA) is complete with respect to left
reversing as well. So, for instance, the monoid 〈A ; rA〉+ admits right cancellation as well as
left cancellation.

3.3. Fractions. Once we know now that (A; rA) is a presentation for the monoid F+, we can
easily establish further properties of this monoid and deduce new results about the group F .

Keeping the same notation as in Section 1, we denote by w the image of a word w of W (A)
in F , i.e., its class under ≡+. When w belongs to W+(A), i.e., contains only positive letters,
w belongs to F+, which we know embeds in F .

Lemma 3.13. Two elements of F+ always admit a common right multiple and a common left
multiple.

Proof. Let a, b be arbitrary elements of F+. By Lemma 2.4, there exists a tree t such that both
t • a−1 and t • b−1 exists, i.e., there exist t1, t2 satisfying t = t1 • a and t = t2 • b. Then (3.1)
gives

ut = ut1 · a = ut2 · b,
hence ut is a common left multiple of a and b.

We deduce the existence of common right multiples using Remark 3.12.

It follows that the monoid F+ satisfies the Ore conditions, on the left and on the right, and
we deduce:
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Proposition 3.14. Thompson’s group F is both a group of right and of left fractions for the
monoid F+.

The general results about word reversing enable us to say more about the monoid F+.

Proposition 3.15. [14] Assume that (x, r) is a positive group presentation that is complete
with respect to right reversing, and, for all x, y in x, there is at most one relation of the form
x . . . = y . . . in r. Then two elements a, b of 〈x ; r〉+ that admit a common right multiple
admit a least common right multiple. Moreover, if u, v are words in W+(x) representing a
and b respectively, the right reversing of u−1v leads in a finite number of steps to a word of
the form v′u′−1 with u′, v′ in W+(x), and, then, both uv′ and vu′ represent the right lcm of a
and b.

The criterion of Proposition 3.15 is clearly satisfied in the presentation (A; rA), and so is its
left counterpart, so we obtain:

Proposition 3.16. Any two elements of the monoid F+ admit a right and a left lcm. The
latter are computed using right and left reversing, respectively: if u, v are words in W+(A), the
right lcm of u and v in F+ is represented by the words uv′ and vu′, where u′ and v′ are the
(unique) positive words determined by u−1v �r v′u′−1.

Another corollary is that left and right rA -reversing must always converge:

Lemma 3.17. For each word w in W (A), there exist unique words u, v, u′, v′ in W+(A) such
that w is right rA-reversible to vu−1 and left rA-reversible to u′−1

v′.

Definition. For w in W (A), the words involved in Lemma 3.17 are called the right denomi-
nator, the right numerator, the left denominator, and the left numerator of w, respectively; we
denote them D

R
(w), N

R
(w), D

L
(w), N

L
(w).

Example 3.18. Let w = A−1A1AA−1
1 A. The reader can check that w is right reversible to

A11AA−1
11 , and left reversible to A−1A−1A−1

0 AA0AA. So we have N
R
(w) = A11A, D

R
(w) = A11,

N
L
(w) = AA0A

2, and D
L
(w) = A0A

2.

By definition, the equivalences w ≡rA
N

R
(w)D

R
(w)−1 ≡rA

D
L
(w)−1N

L
(w) hold for every word

in W (A). It should be noted that the mappings N
R
, . . . , D

L
do not induce well-defined mappings

of F to F+: if w and w′ represent the same element of F , the words N
R
(w) and N

R
(w′) need not

represent the same element of F+. For instance, in the above example, we have w ≡rA
A11AA−1

11 ,
and the reader can check the value D

L
(A11AA−1

11 ) = A10A1 �≡+
rA

D
L
(w) = A0A

2. However, this
lack of compatibility disappears when both a right and a left reversing are performed.

Definition. For w in W (A), we put

N
RL

(w) = N
L
(N

R
(w)D

R
(w)−1), D

RL
(w) = D

L
(N

R
(w)D

R
(w)−1).

Proposition 3.19. (i) The mappings N
RL

and D
RL

induce well-defined mappings (still de-
noted N

RL
and D

RL
) of F into F+.

(ii) A word w represents 1 in F if and only if the words N
RL

(w) and D
RL

(w) are empty.
(iii) For each element c of F , the elements N

RL
(c) and D

RL
(c) have no common left divisor,

and D
RL

(c)−1N
RL

(c) is the shortest decomposition of c as a left fraction w.r.t. F+: if we have
c = a−1b with a, b in F+, there exists d in F+ satisfying a = dD

RL
(c) and b = dN

RL
(c).

3.4. The lattice structures on F . The monoid F+ contains no invertible element excepted 1.
Hence it is eligible to make the positive cone of a partial ordering on the group F . Actually,
two orderings can be considered:

Definition. For a, b in F , we say that a �
R

b is true if a−1b belongs to F+. Symmetrically, we
say that a �

L
b is true if ba−1 belongs to F+
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Note that a �
L

b is equivalent to b−1 �
R

a−1.

Lemma 3.20. For u, v in W (A), the relation u � v is equivalent to D
RL

(u−1v) = ε.

Proposition 3.21. The relation �
R

(resp. �
L
) is a lattice ordering on F , which is compatible

with multiplication on the left (resp. on the right).

The Cayley graph of the monoid F+ is the union of all associahedra, and the lattice structures
on F+ correspond to the lattice structures on the associahedra.

3.5. An alternative presentation. We proved that word reversing associated with the pre-
sentation (A; rA) always terminates in a finite number of steps: this follows from the fact that
the presentation is complete with respect to reversing and from the existence of common mul-
tiples in the monoid F+. A direct argument is also possible. A trivial sufficient condition for
reversing to always terminate is that all relations of the considered presentation have length 2
at most. At the expense of introducing more generators, we can easily fulfill this condition.

Definition. For α an address and p � 0, we put A(p)
α = AαA0α . . . Aα0p−1 , and denote by A∗

the family of all A(p)
α .

The action of A(p)
α on trees is illustrated in Figure 9.

︸ ︷︷
︸

︸ ︷︷
︸A(p)

p vertices p + 1 vertices

Figure 9. Action of A(p)

Lemma 3.22. The closure of A under left rA-reversing, i.e., the smallest subset X of W+(A)
such that, for all u, v in X, there exist u′, v′ in X satisfying u−1v �rA

v′u′−1, is {ε}∪A∗, and
we have the following relations:

(A(q)
α )−1 A(p)

α �rA
(A(q−p)

0q−p )−1 for p < q,

(A(q)

β )−1 A(p)
α �rA

A(p)
α (A(q)

β )−1 for β ⊥ α,

(A(q)

α0β)−1 A(p)
α �rA

A(p)
α (A(q)

α0p+1β)−1

(A(q)

α10pβ)−1 A(p)
α �rA

A(p)
α (A(q)

α0p1β)−1

(A(q)

α10i1β)−1 A(p)
α �rA

A(p)
α (A(q)

α0i1β)−1 for i < p,

(A(q)

α10i)−1 A(p)
α �rA

A(p+q)
α (A(q)

α0i)−1 for i < p.

Definition. We define rA∗ to consist of the following relations:

A(p)
α A(q−p)

0q−p = A(q)
α with p < q,

A(p)
α A(q)

β = A(q)

β A(p)
α with β ⊥ α,

A(p)
α A(p)

α0p+1β = A(q)

α0β A(p)
α

A(p)
α A(q)

α0p1β = A(q)

α10pβ A(p)
α

A(p)
α A(q)

α0i1β = A(q)

α10i1β A(p)
α i < p,

A(p)
α A(q)

α0i = A(q)

α10i A(p+q)
α i < p.

Proposition 3.23. The relations of rA∗ make a presentation of the monoid F+, and of the
group F , in terms of the generators A(p)

α .
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Proof. As we have Aα = A(1)
α , the set A is included in A∗, and all relations of rA are relations

of r∗
A with p = q = 1. Thus the only point is to check that all relations in r∗

A are consequences
of the relations of rA : this follows from Lemmas 3.22 and 3.4.

The relations of rA∗ are simple and natural: the first type is trivial, the next four types are
geometric relations, and the last one, which is illutstrated in Figure 10, is an extension of the
pentagon relation: the latter corresponds to p = q = 1, and it is written A(1)A(1) = A(1)

1 A(2) in
terms of the generators A(p)

α .

A(p)

A(q)

10i

A(q)

0i

A(p+q)

Figure 10. The extended pentagon relation; here p = 4, i = 2, q = 3.

Remark 3.24. If we are only interested in guessing the relations of rA∗ and proving that
they make a presentation of F+ and F , the verification of Lemma 3.22 is not needed, and it
is sufficient to check that the operators of G(A) associated with the left and the right term
of each relation agree on at least one tree, which, by Lemma 3.2, is sufficient to deduce that
the corresponding words represent the same element of F+. This follows from the geometric
description of the action of A(p) directly.

3.6. Complexity of word reversing. By Lemma 3.17, the left and the right rA -reversing of
an arbitrary word in W (A) always converges, i.e., it leads in finitely many steps to a word of
the form uv−1 with u, v in W+(A).

Considering the generators A(p)
α enables us to say more about the convergence of the right

reversing process. Indeed, all relations in rA∗ involve words of length 2 at most, hence the
right rA∗ -reversing of a word containing r positive letters and s negative letters requires at
most rs steps, and all involved words contain at most r positive letters, and at most s negative
letters. We deduce an upper bound for the length of the words obtained using right rA -reversing.

Proposition 3.25. Assume that w is a word in W (A) containing r positive letters and s neg-
ative letters. Then right rA-reversing w leads to a word of length at most r + s + rs; the latter
upper bound is optimal.

Proof. By Lemma 3.22—here Proposition 3.23 would not be sufficient—the rA -reversing steps
in the right reversing of w can be gathered into rA∗ -reversing steps, which are at most rs
in number. Consider the sum of the exponents p of the involved generators A(p)

α . Each rA∗ -
reversing step increases this sum by 1 at most, so the total sum in the final r+s generators A(p)

α

is at most r + s + rs. So, when the generators A(p)
α are expressed as products of Aα’s, at most

r + s + rs of the latter occur.
The bound is optimal, as an easy induction gives

(A1r−1 . . . A1A)−1 As
1r �rA

As(A(s)

1r−1 . . . A(s)
1 A(s))−1,

thus an example of a word of length r + s that reverses to a word of length r + s + rs.
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Other upper bounds can be obtained by using the action of F+ on trees. We already observed
that, if two words w, w′ of W (A) represent the same element of F , the hypothesis that t • w is
defined for some tree t does not guarantee that t • w′ is also defined. However, this unpleasant
phenomenon cannot happen when reversing is considered.

Lemma 3.26. Assume that w, w′ are words in W (A) and w is left or right rA-reversible to w′.
Then, for each tree t, the hypothesis that t • w is defined implies that t • w′ is defined as well.

Proof. The problem with aribitrary equivalences is that one can create a new pair AαA−1
α

or A−1
α Aα, and it is not true that t • AαA−1

α is defined for every α. This however is impossible
in the case of word reversing, as we can only delete pairs AαA−1

α or A−1
α Aα and never create

them. A complete formal proof requires that we check all possible reversing cases: this is easy,
and we skip the details.

We deduce a new upper bound for the length of the words obtained by reversing from a given
word in W (A):

Proposition 3.27. If w is a word in W (A) and t • w is defined for some size n tree t, we have

|N
L
(w)| + |D

R
(w)| � (n − 1)(n − 2)/2 and |N

L
(w)| + |D

R
(w)| � (n − 1)(n − 2)/2.(3.3)

Proof. Let t′ = t • t. By definition, the word w is right rA -reversible to N
R
(w)D

R
(w)−1, and

left rA -reversible to D
L
(w)−1N

L
(w). By Lemma 3.26, this implies that t • N

R
(w)D

R
(w)−1 and

t • D
L
(w)−1N

L
(w) are defined. Put t

L
= t • D

L
(w)−1 and t

R
= t • N

R
(w). By hypothesis, the

terms t, t′, t
L
, and t

R
all have size n. Hence there exists a word u

L
in W+(A), namely ut

L
,

mapping the right comb \n\ to t
L
. By symmetry, there exists u

R
in W+(A) mapping t

R
to

the left comb /n/ of size n. Then the words u
L
N

L
(w)D

R
(w)u

R
and u

L
D

L
(w)N

R
(w)u

R
belong

to W+(A) by construction, and both map the right comb \n\ to its left counterpart /n/ (see
Figure 11).

Now An−2 also maps \n\ to /n/, so, by Proposition 3.11, we must have

An−2 ≡+
rA

u
L
N

L
(w)D

R
(w)u

R
≡+

rA
u

L
D

L
(w)N

R
(w)u

R
.(3.4)

Then Lemma 3.7 gives an upper for the lengths of the words equivalent to a given word u,
namely what is called λ(u) there. In the case of An−2, we have λ(An−2) = (n − 1)(n − 2)/2,
and (3.3) follows.

t

t′

\n\ /n/

w

��

N
L
(w) D

R
(w)

N
R
(w)D

L
(w)

u
L

u
R

t
L

t
R

Figure 11. Bounding the lengths in terms of the size of a term t such that t • w is defined

Once again, the previous upper bound is (nearly) optimal: for w = (A1r−1 . . . A1A)−1 As
1r ,

the word D
R
(w) is A(s)

1r−1 . . . A(s)
1 A(s), which has length rs in the letters Aα, so the sum of the

lengths of N
L
(w) and D

R
(w) is r+rs, while the minimal size of a term t such that t•w is defined

is r + s + 2.
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Remark 3.28. For each word w in W+(A), the parameter λ(w) of Lemma 3.7 is an upper
bound for the length of the words w′ that are rA -equivalent to w. We do not know whether this
bound is always sharp, but this is the case for the elements Ak at least. Indeed, we immediately
obtain λ(Ak) = k(k + 1)/2. Now we have

Ak ≡+
rA

(A1k−1) (A1k−2A1k−20) . . . (A1A10 . . . A10k−2) (AA0 . . . A0k−1).

3.7. The monoid F+
L . We have seen in Section 2 that, besides the family A, the group G(A),

i.e., F , also admits the smaller generating family a. This family gives rise to another submonoid
of F .

Definition. We denote by F+
L the submonoid of F generated by a.

By construction, we have F+
L ⊆ F+ ⊆ F . The monoid F+

L is eligible for the same methods
of investigation as the monoid F+, in particular for word reversing.

Lemma 3.29. The presentation (a, ra) is complete with respect to left and to right reversing.

Proof. Homogeneity is trivial in this case, as all relations in ra preserve the length of the
words: in aiaj = aj+1ai, both sides are length 2 words. As for completeness, the verifications
are similar, but more simple than in the case of (A, rA). Assume for instance i � j + 2 and
j � k + 2. Then one can check that a−1

i aja
−1
j ak is right ra-reversible to ajaka−1

i−2a
−1
j−1, and

then that a−1
k a−1

j a−1
i akaj−1ai−2 is right ra-reversible to the empty word.

By using the same analysing as for F+ above (with even easier technical details), we obtain:

Proposition 3.30. (i) The monoid 〈a ; ra〉+ admits left and right cancellation.
(ii) The monoid F+

L admits the presentation 〈a ; ra〉+.
(iii) Any two element in the monoid F+

L admit a least common left multiple. The latter can
be computed using left ra-reversing, as explained in Proposition 3.15.

(iv) The group F is a group of left fractions for the monoid F+
L .

Proof. For (i), we observe that ra contains no relation of the form xu = xv or ux = vx and
apply Lemma 3.29.

For (ii), b construction, the words ut belong to W+(a), and it is easy to check that the
relations of ra are sufficient to establish the equivalence of the words ut′ and ut · ai when
t′ = t • ai holds.

However, the study does not continue much further, as the monoid F+
L lacks the symmetry

satisfied by F+. In particular, the elements a1 and a2 have no common right multiple in F+
L ,

and right ra-reversing need not succeed in W+(a). That is why the balanced monoid F+ might
turn out to be more useful than the one-sided monoid F+

L .

4. The geometric presentation of Thompson’s group V

Our approach to Thompson’s group F was based on its connection with the associativity.
We now develop a similar approach for Thompson’s group V . The latter corresponds to the
case when the commutativity identity xy = yx is added to the associativity identity. As in
Section 2, the geometry of the commutativity operators leads to a natural presentation of the
group: in addition to the geometric and pentagon relations, the only new relations are the
MacLane–Stasheff hexagon relations, plus some torsion relations.

4.1. The geometry monoid of a family of algebraic laws. The approach developed in
Section 2 for the special case of associativity extends to all other algebraic laws. The general
form of an identity I is τ− = τ+, where τ−, τ+ are formal combinations of variables, or, equiv-
alently, decorated trees. Then, for each set of decorated trees T , we can consider the partial
operator I on T such that a tree t belongs to the domain of I if it can be written as τϕ

− for
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some T -valued substitution ϕ, and, then, t • I is defined to be τϕ
+ . The operator I−1 is defined

symmetrically, and, as above, we denote by I±1
α the translated copy ∂αI±1, i.e., the result of

letting I±1 act on the αth subtree of its argument.

Definition. For I,J , . . . algebraic laws, we define the geometry monoid of I,J , . . . , denoted
G(I,J , . . . ), to be the monoid generated by all partial operators I±1

α , J±1
α , . . . acting on deco-

rated trees.

So, for instance, the monoid G(A) of Section 2 is the geometry monoid of the associativity
identity.

Remark 4.1. Formally, the definition of the operators Iα and, therefore, of the deometry
monoid, depends on choosing a specific family of (decorated) trees T . We shall forget about
this point here, which amounts to assuming that we work once for all inside a sufficiently large
family of decorated trees, for instance the set TN of all N-decorated trees. We shall come back
to the question in Section 6 below.

The following fact is obvious:

Lemma 4.2. Let I,J , . . . be algebraic laws. Then two trees t, t′ are {I,J , . . . }-equal if and
only if some element of G(I,J , . . . ) maps t to t′.

At this degree of generality, we cannot expect any really interesting result. Going further
requires to restrict the considered algebraic laws. In particular, an unpleasant phenomenon
is that, in general, the geometry monoid G(I,J , . . . ) contains the empty mapping, i.e., there
exist compositions of operators I±1

α , J±1
β , . . . , that apply to no tree, typically because of

incompatibility between labels. This however is excluded when the considered laws are simple
enough.

Definition. We say that an algebraic identity τ− = τ+ is linear if no variable is repeated twice
or more in τ− or τ+.

So, for instance, the associativity identity x(yz) = (xy)z is linear, as x, y, and z occur only
once on each side of the equality, while the self-distributivity identity x(yz) = (xy)(xz) is not,
as x is repeated twice in the right term.

Lemma 4.3. Assume that I,J , . . . are linear algebraic laws. Then each operator in G(I,J , . . . )
admits a seed consisting of injective trees, i.e., there exists a pair of injective trees (t, t′) such
that, as a pair of trees, f is the set of all substitutes of (t, t′).

Proof. The point is that, if t1, t2 are injective trees, then there always exists substitutions ϕ1, ϕ2

such that tϕ1
1 and tϕ2

2 are equal, which need not be the case when some labels in t1 or t2 occur
twice. Then the substitutions may be chosen so that the common skeleton of tϕ1

1 and tϕ2
2 is

the union of the skeletons of t1 and t2, and the proof is the same as that of Lemma 2.4 in the
particular case of associativity.

In the previous case, Lemma 2.3 applies to the monoid G(I,J , . . . ), and, exactly as in the
case of G(A), it leads to a group.

Proposition 4.4. Assume that {I,J , . . . } is a family of linear algebraic laws. Then near-
equality is a congruence on G(I,J , . . . ), and the quotient-monoid is a group. The operators I±1

α ,
J±1

α , . . . induce a partial action of this group on trees. Injective trees form a separating family
for this partial action.

Definition. Under the above hypothesis, the group G(I,J , . . . )/≈ is called the geometry group
of the laws I,J , . . . , and it is denoted G(I,J , . . . ).
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Remark 4.5. Here, we restrict to laws that involve a single binary operation, like associativity
or commutativity. A similar approach is possible for laws involving more than one (binary)
operation, like the distributivity identity x(y + z) = xy +xz, at the extense of considering trees
in which the internal nodes are decorated with operation symbols. Also, the case of operations
other than binary would be treated by considering rooted trees in which the degree of the
internal nodes depend on their label.

4.2. Commutativity operators and Thompsons’s group V . The commutativity identity

xy = yx(C)

is eligible for the previous approach. In particular, commutativity is a linear identity, since the
two variables x, y occur once in each member of the identity. Here the basic operator is the
operator exchanging the left and the right subtrees of a tree:

Definition. We denote by C the (partial) operator that maps every tree of the form t1
∧t2 to

the corresponding tree t2
∧t1. For each address α, we put Cα = ∂αC. We define G(A, C) to be

the monoid generated by all operators Aα and Cα and their inverses.

Associativity and commutativity are linear laws, hence Lemma 4.3 and, therefore, Proposi-
tion 4.4 apply. So, near-equality is a congruence on the monoid G(A, C), and we obtain a group,
denoted G(A, C) by identifying near-equal operators. As in Section 2, we shall use Aα for the
class of Aα in G(A, C), and, similarly, Cα for the class of Cα. We still denote by A the family
of all Aα’s, and, similarly, we use C for the family of all Cα’s.

Proposition 4.6. The geometry group G(A, C) of associativity and commutativity is isomor-
phic to Thompson’s group V .

Proof. We associate with each element of G(A, C) an element of V , i.e., a piecewise linear
mapping of [0, 1] into itself as in we did ofr G(A) and F in Section 2: we associate to each
tree a dyadic partition of [0, 1], and we map f to the piecewise linear function that maps the
partition associated to t′ to the partition associated to t, where (tt, t′) is a seed for f—we reverse
the orientation to obtain a homomorphism with composition—and interpolates the values. The
latter homomorphism is surjective since, as was shown in Section 2, its image includes F , and it
contains the mappings denoted C and π0 in [5], which correspond to AC0A

−1 and AC0A
−1C1

respectively.

In the sequel, we identify V with G(A, C).

C

1 2 12

Figure 12. From G(A, C) to V : the action of C

4.3. Guessing relations in G(A, C). As in the case of G(A), the notion of geometric inheri-
tance provides a large family of relations in the monoid G(A, C).

We observed that, if t′ is the image of t under Aα, then the subtree t/α11 of t reappears as t′/α1 ,
and it follows that, for every address β, applying Aα11β before Aα is the same as applying Aα

first, and then Aα1β . Now, for the same reason, applying Cα11β before Aα is the same as
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applying Aα first, and then Cα1β . So, if we use �α to represent either Aα or Cα, we obtain
that, in G(A, C), the following relations are satisfied:

�βAα = Aα�β whenever β ⊥ α holds,
�α11βAα = Aα�α1β ,

�α10βAα = Aα�α10β ,

�α0βAα = Aα�α00β .

(4.1)

Similar phenomena appear when we replace the operator Aα with Cα: the action of Cα on a
tree t consists in exchanging the subtrees t/α0 and t/α1 , and we deduce the following relations,
where �α still stands for Aα or Cα:

�βCα = Cα�β whenever β ⊥ α holds,
�α0βCα = Cα�α1β ,

�α1βCα = Cα�α0β .

(4.2)

The relations mentioned in (4.1) and (4.2) will be called the A- and C-geometric relations,
respectively.

Apart from the geometric relations, we know that the pentagon relations, i.e.,

A0AA1 = A2(4.3)

and its shifted copies, are satisfied in G(A), hence in G(A, C). Two additional types of relations
arise naturally when commutativity is considered.

Lemma 4.7. The following relations and their translated copies hold in G(A, C):

ACA = C0AC1,(4.4)

C2 ≈ id.(4.5)

Proof. Relation (4.4)corresponds to two ways of going from (t1∧t2)∧t3 to (t2∧t3)∧t1, as shown
in Figure 13.

The involutivity of C is obvious—but, as C is defined only on those trees that are not ◦, we
obtain a ≈-relation, not an equality.

A

C

A

C1

A

C0

1

2 3

1

3 2 1 3

2

3 1

2

1 2
3 3

1 2

Figure 13. The Hexagon Relation

In the sequel, the relation (4.5) and its shifted copies will be called torsion relations, while
(4.4) and its copies will be called the hexagon relations.

As the action of V on injective trees is free, the previous relations in G(A, C) induce similar
relations in G(A, C), i.e., in V . We naturally use the same names for these induced relations—
with Aα and Cα replacing Aα and Cα respectively, and = instead of ≈. At this point, we may
summarize the situation as follows.
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Definition. We define rAC to consist of all A- and C-geometric relations, namely the translated
copies of

�0α · ♦1β = ♦1β · �0α,(g⊥)

�11α · A = A · �1α, �10α · A = A · �01α, �0α · A = A · �00α,(gA)

�0α · C = C · �1α, �1α · C = C · �0α,(gC)

with �,♦ = A or C, plus the pentagon relations, i.e., the translated copies of

AA = A1AA0,(p)

plus the hexagon relations, defined to be the translated copies of

ACA = C1AC0 and A−1CA−1 = C0A
−1C1.(h)

Proposition 4.8. All relations in rAC plus the torsion relations C2
α = 1 are satisfied by the

elements of A and C in the group G(A, C), i.e., in V .

Remark 4.9. It may appear strange to distinguish two hexagon relations, which are equivalent
when the torsion relations C2

α = 1 are present. The reason of this option is that we shall
investigate a torsion-free version of the group V in Section 6, and it is appropriate to keep track
of the uses of the torsion relations separately.

4.4. Restricting the family of generators. As in the case of F , we shall consider two
families of generators for the group V : besides the families A and C comprising all Aα’s
and Cα’s, we shall also consider the proper subfamilies corresponding to right branch addresses.

Definition. For i � 1, we put ci = C1i−1 . We denote by c the family of all ci’s.

Thus ci is an exact counterpart to ai. We now list some relations satisfied by the elements
of a and c in G(A, C). A disadvantage of restricting the families of generators is that expressing
the geometric phenomena is less simple than with the whole families A and C.

Definition. We define rac to consist of the following relations:

ai�j = �j+1ai for j � i + 1 and � = a or c,(4.6)

cia
−1
i c−1

i+1�j = �jcia
−1
i c−1

i+1 for j � i + 2 and � = a or c,(4.7)

ai+1aic
e
i ai+1 = a2

i c
e
i for e = ±1,(4.8)

aicici+1ai = ci+1ci,(4.9)

ci+1cia
−1
i ci+1 = cia

−1
i cia

−1
i .(4.10)

Lemma 4.10. All relations in rac follow from rAC (and the definitions ai = A1i−1 , ci = C1i−1).

Proof. It is sufficient to establish the relations for i = 1 and then use ∂i−1 to deduce the
general version. Relations (4.6) and (4.7) are of purely geometric nature: (4.6) is a A-geometric
relation, and (4.7) follows from

CA−1C−1
1 �11α ≡g CA−1�10αC−1

1 ≡g C�01αA−1C−1
1 ≡g �11αCA−1C−1

1 ,

which is valid both for � = A or C. Relations (4.8) use the pentagon relations: A1ACeA1 ≡g

A1AA0C
e ≡p A2Ce. Finally, appealing to the hexagon relations, we find

ACC1 ≡ ACAA−1C1 ≡h C1AC0A
−1C1 ≡h C1AA−1CA−1 ≡ C1CA−1,

C1CA−1C1 ≡g CC0A
−1C1 ≡h CA−1CA−1,

which gives (4.9) and (4.10).
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4.5. Constructing trees. Our aim is to prove that the relations rAC and rac make presenta-
tions of the group V , and, as for F , we shall appeal to the criterion of Proposition 1.2. So, as
in Section 2, the point is to introduce for each tree t a distinguished word ut that describes the
construction of t from some distinguished tree in its V -orbit.

In contrast to the case of associativity, considering commutativity requires that the labels
are taken into account, because Condition (PA4) in the definition of a free partial action is
satisfied for injective trees only: for instance, the operators id and C do not coincide, but both
map the tree ◦∧◦ to itself. So, we use decorated versions of the right combs \n\.
Definition. For I1, . . . , Ik finite subsets of N, we define the decorated right comb \I1,...,Ik\ by

\I1, . . . , Ik\ = [◦�1 , ◦�2 , . . . , ◦�n ],

where (�1, . . . , �n) is the increasing enumeration of I1, followed by the increasing enumeration
of I2, etc. (Figure 14).

2
5

6
1

3 4

1
2

3
4

5 6

Figure 14. The decorated right combs \{2, 5, 6}, {1, 3, 4}\ and \{2, 5, 6, 1, 3, 4}\
(the latter also being \{1, 2, 3, 4, 5, 6}\)

In particular \I\ is the right comb in which the labels of the leaves are the elements of I
enumerated in increasing order. What we need for our current inductive construction is an
operator that maps \I ∪ J\ to \I, J\ when I and J are disjoint. To this end, it will be useful
to introduce new specific elements of G(A, C).

Definition. For each address α, we put Σα = CαA−1
α C−1

α1 . We denote by Σ the family of
all Σα’s, and by rACΣ the family obtained by adding the definition of Σα to rAC . For i � 1,
we put σi = Σ1i−1 , i.e., σi = cia

−1
i c−1

i+1, and we denote by σ the family of all σi’s.

The action of the operator Σ associated with Σ on trees is illustrated in Figure 15. In terms
of the notation \t1, . . . , tn\, the action of σi is to switch the ith and the (i + 1)th factors:

σi : \t1, . . . , ti, ti+1, . . . tn\ �−→ \t1, . . . , ti+1, ti, . . . tn\.

Σ
1

2 3
2

1 3

Figure 15. The action of Σ

Definition. For I, J finite disjoint subsets of N, the word cI,J is inductively determined by
c∅,∅ = ε and the rule: for � smaller than all elements of I and J ,

c{�}∪I,J = ∂cI,J ,

cI,{�}∪J =

{
σ1σ2 . . . σp−1cp if I has p elements and J is empty,
∂cI,J · σ1σ2 . . . σp if I has p elements and J is nonempty.

The word σI,J is defined similarly, except that cI,{�} is defined to be σ1σ2 . . . σp.
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Example 4.11. Let I = {2, 5, 6} and J = {1, 3, 4}. By considering the elements of I ∪ J in
decreasing order, we find successively c∅,∅ = ε, c{6},∅ = ε, c{5,6},∅ = ε, c{5,6},{4} = σ1c2,
c{5,6},{3,4} = ∂(σ1c2) · σ1σ2 = σ2c3σ1σ2, c{2,5,6},{3,4} = ∂(σ2c3σ1σ2) = σ3c4σ2σ3,
c{2,5,6},{1,3,4} = ∂(σ3c4σ2σ3) · σ1σ2σ3 = σ4c5σ3σ4σ1σ2σ3.

Similarly, we have σ{2,5,6},{1,3,4} = σ4σ5σ3σ4σ1σ2σ3.

Lemma 4.12. For all sets I, J , and for every tree t, we have

\I ∪ J\ cI,J−−−−→ \I, J\ and \I ∪ J, t\ σI,J−−−−→ \I, J, t\.
Proof. We use induction on the cardinality of I ∪ J . The result is clear if I and J are empty.
Assume that � is smaller than all elements in I and J . The induction hypothesis asserts that
cI,J maps \I ∪ J\ to \I, J\, hence ∂cI,J maps ◦�

∧\I ∪ J\, which is \{�} ∪ I ∪ J\, to ◦�
∧\I, J\,

i.e., to \{�} ∪ I, J\, as expected for c{�}∪I,J .
Let us consider cI,{�}∪J . Let p be the cardinal of I. Assume first J nonempty. We have

seen that ∂cI,J maps \{�} ∪ I ∪ J\ to \{�} ∪ I, J\. Then the iterated transposition σ1σ2 . . . σp

carries the leftmost leaf of \{�} ∪ I, J\, i.e., ◦�, through p leaves to the right, i.e., we obtain
\I, {�}, J\, which is also \I, {�}∪J\. Finally, if I is empty, then cI,J is ε, as an induction shows,
and σ1σ2 . . . σp−1cp maps \{�}, J\ to \J, {�}\. So, in each case, cI,{�}∪J maps \{�} ∪ I ∪ J\ to
\I, {�} ∪ J\.

The argument is similar for σI,J .

Let us recall that our current aim is to select a distinguished word ut in W (A, C) for each N-
decorated tree t so that (the operator associated to) ut maps some distinguished element in the
G(A, C)-orbit of t to t. The distinguished element we choose is the decorated right comb \I\,
where I is the set of labels in t. Then we shall use the same inductive construction as in the
case of associativity. The only change is that, before beginning the inductive construction, we
first sort the labels in order to push to the initial positions the labels that correspond to the
left subtree of the considered tree. This is exactly what (the operators associated with) cI,J

and σI,J do. So the following definition should be natural.

Definition. For each injective tree t, the words ut, u
∗
t are defined by the rules:

ut = u∗
t = ε for t of size 1,

ut = cI1,I2 · u∗
t1 · ∂ut2 , u∗

t = σI1,I2 · u∗
t1 · ∂u∗

t2 · A for t = t1
∧t2 and Ik the labels in tk.

The following result is the exact counterpart to Lemma 2.13, and it describes how to construct
an arbitrary decorated tree from the corresponding right comb.

Lemma 4.13. For each injective tree t with labels I, we have

\I\ ut−−−−→ t and \I, . . . \ u∗
t−−−−→ \t, . . . \,(4.11)

i.e., ut constructs t from \I\, and u∗
t constructs t∧t′ from \I\∧t′ for every tree t.

Proof. The inductive verification is the same as for Lemma 2.13. The diagrams are now:

\I\ = \I1 ∪ I2\
cI1,I2−−−−→ \I1, I2\

u∗
t1−−−−→ \t1, I2\

∂ut2−−−−→ \t1, t2\ = t,

\I, ..\ = \I1 ∪ I2, ..\
σI1,I2−−−−→ \I1, I2, ..\

u∗
t1−−−−→ \t1, I2, ..\

∂u∗
t2−−−−→ \t1, t2, ..\ A−−−−→ \t1∧t2, ..\ = \t, ..\

for t = t1
∧t2 and I1, I2 the sets of labels in t1 and t2 respectively.
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4.6. Derived relations. In order to apply Proposition 1.2 to prove that the relations of Propo-
sition 4.8 make a presentation of the group G(A, C), i.e., of V , we have to check that these
relations are sufficient to establish the equivalence of ut′ and ut ·�α under the hypothesis that
�α maps t to t′, where �α denotes either Aα or Cα. The needed verifications are easy, but
longer than in the case of G(A), and we begin with some technical, but easy preparatory re-
sults consisting in verifying that certain relations involving the letters Aα, Cα, and Σα follow
from rACΣ or derived lists of relations.

Lemma 4.14. The following relations follow from rACΣ :
(i) The A- and C-geometric relations of rAC in which � or ♦ is replaced with Σ;
(ii) The Σ-geometric relations, defined to be the translated copies of

�11α · Σ = Σ · �11α, �10α · Σ = Σ · �0α, �0α · Σ = Σ · �10α,(gΣ)

in which � stands for A, C or Σ,
(iii) The translated copies of the relations

ΣA = AC0, ΣA1A ≡ A1AΣ0,(4.12)

Σ1ΣA1 = AΣ, ΣΣ1A = A1Σ, ΣΣ1Σ = Σ1ΣΣ1.(4.13)

Proof. The extension of the A- and C-geometric relations to Σα is obvious, as Σα is defined
from Cα, Aα, and C1α. The Σ-geometric relations follow from the other geometric relations.
For instance, we find

Σ�11α = AC0A
−1�11α ≡gA

AC0�1αA−1 ≡g⊥ A�1αC0A
−1 ≡gA

�11αAC0A
−1 = �11αΣ.

The first relation in (4.12) follows from the definition and an hexagon relation:

ΣA0 = CA−1C−1
1 A ≡h AC0.

The second relation comes by cancelling A0 on the right in

ΣA1AA0 ≡p ΣAA ≡(4.12) AC0A ≡g AAC00 ≡p A1AA0C00 ≡(4.12) A1AΣ0A0.

Then we observe that the hexagon relation implies

C1Σ ≡ C1ΣAA−1 ≡(4.12) C1AC0A
−1 ≡h ACAA−1 ≡ AC.(4.14)

Next, the first two relations in (4.13) are obtained by cancelling A on the right in

Σ1ΣA1A ≡(4.12) Σ1A1AΣ0 ≡(4.12) A1C10AΣ0

≡g A1AC01Σ0 ≡(4.14) A1AA0C0 ≡p AAC0 ≡(4.12) AΣA,

ΣΣ1AA ≡h ΣΣ1A1AA0 ≡(4.12) ΣA1C10AA0 ≡g ΣA1AC01A0

≡(4.12) A1AΣ0C01A0 ≡ A1AC0 ≡(4.12) A1ΣA.

Finally, we have

ΣC1Σ ≡(4.14) ΣAC ≡(4.12) AC0C ≡g ACC1 ≡(4.14) C1ΣC1,

so, using ΣA1A ≡(4.12) A1AΣ0, and Σ1A1A ≡(4.12) A1C10A ≡g A1AC01, we deduce

A1AΣΣ1Σ ≡ ∂0(ΣC1Σ) · A1A ≡ ∂0(C1ΣC1) · A1A ≡ A1AΣ1ΣΣ1,

which implies the third relation in (4.13) by cancelling A1A on the left.

On the other hand, we observe that, by construction, the words ut and u∗
t involve the

letters ai, ci, and σi only. So it will be convenient to work with the following restricted list of
relations.
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Definition. We define racσ to consist of the following relations:

ai�j = �j+1ai, with j � i + 1 and � = a, c or σ,(4.15)

σi�j = �jσi, with j � i + 2 and � = a, c or σ,(4.16)

σiσi+1ai = ai+1σi, and σi+1σiai+1 = aiσi,(4.17)

σi�i+1σi = �i+1σi�i+1, with � = σ or c.(4.18)

Lemma 4.15. All relations in racσ are consequences of rac , hence of rAC (plus the definitions
of ai, ci and σi from A and C). Furthermore, the relation σ2

i = 1 follows from rac completed
with the relations c2

i = 1.

Proof. When � is a or c, (4.15) coincides with (4.6); for �j = σj , we apply (4.6) to cj , a−1
j ,

and c−1
j+1 successively. Similarly, (4.16) for �j = aj or cj directly follows from (4.7) owing to

the definition of σi; the relation for �j = σj then follows by replacing σj with its definition. As
for (4.17), we find

σiσi+1ai ≡ cia
−1
i a−1

i+1c
−1
i+2ai ≡(4.6) cia

−1
i a−1

i+1aic
−1
i+1 ≡(4.8) ai+1cia

−1
i c−1

i+1 ≡(4.19) ai+1σi.

Next, we observe that the relation (4.9) of rac implies

σi = cia
−1
i c−1

i+1 ≡rac c−1
i+1aici,(4.19)

and we deduce symmetrically

σi+1σiai+1 ≡ c−1
i+2ai+1aiciai+1 ≡(4.8) c−1

i+2a
2
i ciai+1 ≡(4.6) aic

−1
i+1aiciai+1 = aiσi.

For (4.18) with �2 = c2, we have

σ1c2σ1 ≡ c1a
−1
1 σ1 = c1a

−1
1 c1a

−1
1 c−1

2 ≡(4.10) c2c1a
−1
1 ≡ c2σ1c2.

As for (4.18) with �2 = σ2, we have

σ1σ2σ1 = σ1c2a
−1
2 c−1

3 σ1 ≡(4.16) σ1c2a
−1
2 σ1c

−1
3 ≡(4.17) σ1c2σ1a

−1
1 σ−1

2 c−1
3 ,

σ2σ1σ2 = c2a
−1
2 c−1

3 σ1σ2 ≡(4.16) c2a
−1
2 σ1c

−1
3 σ2 ≡(4.17) c2σ1a

−1
1 σ−1

2 c−1
3 σ2

≡ c2σ1c2c
−1
2 a−1

1 σ−1
2 c−1

3 σ2 ≡(4.15) c2σ1c2a
−1
1 c−1

3 σ−1
2 c−1

3 σ2.

Applying the relations σ1c2σ1 ≡ c2σ1c2 and σ2c3σ2 ≡ c3σ2c3—hence σ−1
2 c−1

3 ≡ c−1
3 σ−1

2 c−1
3 σ2—

which were established above, we deduce σ1σ2σ1 ≡ σ2σ1σ2.
Finally, we have seen that rac implies σ1 = c1a

−1
1 c−1

2 ≡ c−1
2 a1c1, hence σ2

1 ≡ c1c
−2
2 c1: so

c2
1 ≡ c2

2 ≡ 1 implies σ2
1 ≡ 1.

4.7. Preparatory lemmas. We can now establish a technical result for the words cI,J and σI,J

that will make inductive arguments possible in the sequel.

Lemma 4.16. For I, J, K disjoint with p = #I � 1, we have

�I∪J,K · σI,J ≡racσ �I,J∪K · ∂p�J,K for � = σ and � = c.(4.20)

Proof. We begin with the auxiliary formulas

σ1σ2 . . . ck+1σi ≡racσ ci+1σ1σ2 . . . ck+1, for 1 � i � k,(4.21)

σ1σ2 . . . σkck+1σk ≡racσ ck+1σ1σ2 . . . σkck+1, for 1 � k.(4.22)

A direct inductive verification is possible; we can also observe that Lemma 4.15 tells us that
(σ1, . . . , σk+1) and (σ1, . . . , σk, ck+1) satisfy the relations of Artin’s presentation of the braid
group Bk+2: therefore, every braid relation between the standard generators σi of Bk+2 must
hold between the σi’s, which is the case for the counterpart of (4.21) and (4.22).
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Next, we claim that the following relations are true, where q denotes #J :

σ1σ2 . . . σq+rσJ,K ≡racσ ∂σJ,K · σ1σ2 . . . σq+r,(4.23)

σ1σ2 . . . σq+r−1cq+rσJ,K ≡racσ
∂cJ,Kσ1σ2 . . . σq+r−1cq+r.(4.24)

Indeed, an easy induction shows that the word cJ,K is a product of σi’s with 1 � i � q + r − 2,
and, if it not empty, of cq+r−1 occurring once, and that σJ,K is obtained from cI,J by replacing
the possible cq+r−1 with σq+r−1. Then (4.23) comes by applying (4.21) with k = q + r − 1 to
the successive letters σi in cJ,K , and so does (4.24) using (4.22) for the possible letter cq+r−1

of σJ,K .
Let us turn to the proof of the first formula in (4.20). The result is trivial for I = J = K = ∅.

For an induction, it is sufficient to prove that, if � is smaller than all elements in I ∪ J ∪K, the
result is true for ({�}, J, K), and it is true for ({�}∪ I, J, K), (I, {�}∪ J, K), and (I, J, {�}∪K)
whenever it is for (I, J, K) and I is nonempty.

For the case of ({�}, J, K), we find

c{�},J∪K · σJ,K = σ1 . . . σq+r−1cq+r · σJ,K

≡(4.24) ∂cJ,K · σ1 . . . σq+r−1cq+r

= ∂cJ,K · σ1 . . . σr · ∂r(σ1 . . . σq−1cq) = c{�}∪J,K · ∂rc{�},J .

Assume I �= ∅. For ({�} ∪ I, J, K), using the induction hypothesis, we find

cI∪{�},J∪KσJ,K = ∂cI,J∪K · σ1σ2 . . . σq+r · σJ,K ≡(4.23) ∂cI,J∪K · ∂σJ,K · σ1σ2 . . . σq+r

≡(IH) ∂σI∪J,K · ∂r+1cI,J · σ1σ2 . . . σq+r

≡(4.16) ∂σI∪J,K · σ1σ2 . . . σr · ∂r+1cI,J · σr+1 . . . σq+r

= ∂σI∪J,K · σ1σ2 . . . σr · ∂r(∂cI,J · σ1σ2 . . . σq) = c{�}∪I∪J,K · ∂rcI∪{�},J ,

The remaining cases are easy:

cI,{�}∪J∪K · σ{�}∪J,K = ∂cI,J∪K · ∂σJ,K · σ1σ2 . . . σr ≡(IH) ∂σI∪J,K · ∂r+1cI,J · σ1σ2 . . . σr

≡(4.16) ∂σI∪J,K · σ1σ2 . . . σr · ∂r+1cI,J = cI∪{�}∪J,K · ∂rcI,{�}∪J ;

cI,J∪{�}∪KσJ,{�}∪K = ∂cI,J∪K · ∂σJ,K ≡(IH) ∂cI∪J,K · ∂rcI,J = cI∪J,{�}∪K · ∂r+1cI,J ,

and the proof is complete.

Definition. For p, q � 1, we put cp,q = c{q+1,... ,q+p},{1,... ,q} and σp,q = σ{q+1,... ,q+p},{1,... ,q}.

So σp,q is the iterated transposition that switches two blocks of p and q elements respectively,
putting the p elements on the top. For instance, we have σp,1 = σ1 . . . σp−1, and σ1,q =
σq−1 . . . σ1.

Lemma 4.17. For all p, q, r, we have

cp+q,r ≡racσ σp,r · ∂pcq,r and σp+q,r ≡racσ σp,r · ∂pσq,r,(4.25)

cp,q+r ≡racσ ∂qcp,r · σp,q and σp,q+r ≡racσ ∂qσp,r · σp,q,(4.26)

aq+1 · σp+1,q ≡racσ σp+2,q · a1.(4.27)

Proof. Relation (4.25) and (4.26) follow from (4.20) by taking I = {r + 1, . . . , r + p}, J =
{r + p + 1, . . . , r + p + q}, K = {1, . . . , r}, and I = {q + r + 1, . . . , q + r + p}, J = {1, . . . , q},
K = {q+1, . . . , q+r}, respectively. In the first case, we have cI,J∪K = σp,r, and, in the second
one, we have cI∪J,K = ∂qcp,r.
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For (4.27), we use induction. For q = 0, the result is clear; for q � 1, we find

aq+1σp+1,q ≡(4.25) aq+1 · ∂σp+1,q−1 · σp+1,1 = ∂(aqσp−1,q−1) · σp+1,1

≡(IH) ∂σp+2,q−1a1 · σp+1,1 = ∂σp+2,q−1 · a2σ1 . . . σp+1

≡(??) ∂σp+2,q−1 · σ1σ2a1σ2 . . . σp+1

≡racσ ∂σp+2,q−1 · σ1σ2σ3 . . . σp+2a1 ≡(4.25) σp+2,qa1,

which completes the computation.

Lemma 4.18. Assume that t is a size n tree. Then, for p, q � 0, we have

�i+n · u∗
t ≡racσ

u∗
t · �i+1, for � = a, c or σ,(4.28)

∂qut · c1,q ≡racσ
cn,q · u∗

t and ∂qu∗
t · σp+1,q ≡racσ

σp+n,q · u∗
t ,(4.29)

u∗
t · cp,q+1 ≡racσ cp,q+n · ∂qut, and u∗

t · σp,q+1 ≡racσ σp,q+n · ∂qu∗
t .(4.30)

Proof. We use induction on n. For n = 1, the words ut and u∗
t are empty, and all formulas are

equalities. Otherwise, assume t = t1
∧t2, with, as usual, nk the size of tk and Ik its set of labels.

For (4.28), we find

�i+n · u∗
t = �i+n · σI1,I2 · u∗

t1 · ∂u∗
t2 · A ≡g σI1,I2 · �i+n · u∗

t1 · ∂u∗
t2 · A

≡(IH) σI1,I2 · u∗
t1 · �i+n2 · ∂u∗

t2 · A
≡(IH) σI1,I2 · u∗

t1 · ∂u∗
t2 · �i+2 · A ≡g σI1,I2 · u∗

t1 · ∂u∗
t2 · A · �i+1 = u∗

t · �i+1.

(The first equivalence holds because we consider σI1,I2 , which consists of σi’s only.)
Consider now the second relation in (4.29). The relation follows from the commutativity of

\q,I,p,..\ ∂qσI1,I2−−−−−→ \q,I1,I2,p,..\ ∂qu∗
t1−−−−→ \q,t1,I2,p,..\ ∂q+1u∗

t2−−−−−→ \q,t1,I2,p,..\ aq+1−−−−→ \q,t1∧t2,p,..\σp+n,q

σp+n,q

σp+n2+1,q

σp+2,q

σp+1,q

\I,p,q,..\ σI1,I2−−−−→ \I1,I2,p,q,..\ u∗
t1−−−−→ \t1,I2,p,q,..\ ∂u∗

t2−−−−→ \t1,I2,p,q,..\ a1−−−−→ \t1∧t2,p,q,..\
The first (leftmost) square is commutative by (4.25). The second one is commutative by induc-
tion hypothesis. For the third, (4.25) tells us that σp+n2+1,q is racσ-equivalent to σ1,q ·∂σp+n2,q,
and that σp+2,q is racσ-equivalent to σ1,q · ∂σp+1,q. As ∂q+1u∗

t2 racσ-commutes with σ1,q

by geometric relations, we are left with proving the racσ-equivalence of ∂qu∗
t2 · σp+1,q and

σpn2,q · ∂u∗
t2 , which is the induction hypothesis. Finally, the commutativity of the last square

follows from (4.27).
The verification of the other three formulas is similar.

We are now in position for proving the counterpart to Lemma 2.14:

Lemma 4.19. Assume t′ = t • �α, where � is A, C, or Σ. Then we have

ut′ ≡rACΣ ut · �α and u∗
t′ ≡rACΣ u∗

t · �0α.(4.31)

Proof. Clearly, it suffices to consider the cases of Aα and Cα, as Σα is defined from the latter.
As for Lemma 2.14, we use induction on the length of α as a sequence of 0’s and 1’s. So assume
first that α is the empty address. Let us consider the case of A. The hypothesis t′ = t • A
implies that there exist trees t1, t2, t3 such that t is (t1∧t2)∧t3, and t′ is t1

∧(t2∧t3). We write
I1 (resp. I2, I3) for the labels in t1 (resp. t2, t3), and n1 (resp. n2, n3) for their size. We obtain

ut′ = cI1∪I2,I3 · σI1,I2 · u∗
t1 · ∂u∗

t2 · A · ∂ut3(4.32)

ut · A = σI1,I2∪I3 · u∗
t1 · ∂cI2,I3 · ∂u∗

t2 · ∂2ut3 · A(4.33)

u∗
t′ = σI1∪I2,I3 · σI1,I2 · u∗

t1 · ∂u∗
t2 · A · ∂u∗

t3 · A(4.34)

u∗
t · A0 = σI1,I2∪I3 · u∗

t1 · ∂σI2,I3 · ∂u∗
t2 · ∂2u∗

t3 · A1AA0.(4.35)
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Using geometric relations, we may move the factor A to the right in (4.32), while, in (4.33),
we may replace u∗

t1 · ∂cI2,I3 with ∂pcI2,I3 · u∗
t1 using (4.28). Then, applying (4.25) gives the

equivalence of ut′ and ut ·A. The argument is similar for (4.34) and (4.35), the only difference
being an additional pentagon relation for replacing AA by A1AA0 on the right.

For C, with similar notation, we have t = t1
∧t2 and t′ = t2

∧t1, and we find now

ut′ = cI2,I1 · u∗
t2 · ∂ut1 ,(4.36)

ut · C = cI1,I2 · u∗
t1 · ∂ut2 · C,(4.37)

u∗
t′ = σI2,I1 · u∗

t2 · ∂u∗
t1 · A,(4.38)

u∗
t · C0 = σI1,I2 · u∗

t1 · ∂u∗
t2 · AC0.(4.39)

By (4.28), we have u∗
t2 ·∂ut1 ≡racσ

∂n2ut1 ·u∗
t2 , and the racσ-equivalence of ut′ and ut ·C follows

from the commutativity of the diagram

\I\ cI1,I2−−−−−−−→ \I1, I2\
u∗

t1−−−−−→ \t1, I2\
∂ut2−−−−−−→ t1

∧t2∥∥∥ racσ+torsion

cn2,n1 (4.30)

cn2,1 (4.29)

c1,1=C

\I\ cI2,I1−−−−−−−→ \I2, I1\ ∂n2ut1−−−−−−−−→ \I2, t1\ u∗
t2−−−−−→ t2

∧t1

The commutativity of the left square follow from the fact that both cI1,I2 · cn2,n1 and cI2,I1

induce the same permutation of the labels: it follows that these words must be equivalent
with respect to any family of relations that makes a presentation of the symmetric group, and,
therefore, they myst be equivalent with respect to the Coxeter relations of racσ completed with
the torsion relations c2

i = σ2
i = 1.

The argument is similar for u∗
t′ . First (4.28) gives u∗

t2 · ∂u∗
t1 ≡racσ

∂n2u∗
t1 · u∗

t2 , and the rest
is the commutativity of

\I, ..\ σI1,I2−−−−→ \I1, I2, ..\
u∗

t1−−−−→ \t1, I2, ..\
∂u∗

t2−−−−→ \t1, t2, ..\ A−−−−→ \t1∧t2, ..\∥∥∥ racσ+torsion

σn2,n1 (4.30)

σn2,1 (4.29)

σ1,1=Σ (4.12)

C0

\I, ..\ σI2,I1−−−−→ \I2, I1, ..\ ∂n2u∗
t1−−−−→ \I2, t1, ..\ u∗

t2−−−−→ \t2, t1, ..\ A−−−−→ \t2∧t1, ...\
The induction is now easy, and there is no need to consider the case of Aα and Cα separately. So
we use �α to represent the two cases simultaneously. Assume α = 0β. Then we have t′ = t′1

∧t2
with t′1 = t1 • �α, and we find

ut′ = cI1,I2 · u∗
t′1
· ∂ut2 ≡(IH) cI1,I2 · u∗

t1 · �0β · ∂ut2 ≡g cI1,I2 · u∗
t1 · ∂ut2 · �0β = ut · �α,

u∗
t′ = σI1,I2 · u∗

t′1
· ∂u∗

t2 · A ≡(IH) σI1,I2 · u∗
t1 · �0β · ∂u∗

t2 · A
≡g σI1,I2 · u∗

t1 · ∂ut2 · �0β · A ≡g σI1,I2 · u∗
t1 · ∂ut2 · A · �00β = u∗

t · �0α.

The argument is symmetric (and simpler: no commutation is needed) in the case α = 1β.

Applying Proposition 1.2, we obtain

Proposition 4.20. The relations rACΣ completes with the torsion relations C2
α = Σ2

α = 1,
make a presentation of the group G(A, C), i.e., of Thompson’s group V , in terms of the gener-
ators Aα, Cα and Σα.

As the relations rACΣ follow from those of rAC and the definition of Σα, we immediately
deduce:

Proposition 4.21. The relations rAC , i.e., the geometric relations, completed with the penta-
gon and hexagon relations, and the torsion relations, make a presentation of V in terms of the
generators Aα and Cα.
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As in the case of the group G(A), i.e., F , we can also restrict to the right branch generators ai

and σi. By looking at the proof of Lemma 4.22, we obtain:

Lemma 4.22. Assume t′ = t • �i, where � is a, c, or σ. Then we have

ut′ ≡racσ ut · �i.(4.40)

Always applying Proposition 1.2, we deduce

Proposition 4.23. The relations racσ completed with the torsion relations c2
i = σ2

i = 1 make
a presentation of the group G(A, C), i.e., of V , in terms of the generators ai, ci and σi.

Finally, as all relations in racσ follow from rac , we also obtain

Proposition 4.24. The relations rac completed with the torsion relations c2
i = 1 make a pre-

sentation of the group G(A, C), i.e., of V , in terms of the generators ai and ci.

5. Semi-commutativity and the group V ′

We have seen above how to naturally connect Thompson’s group V with the associativity
and commutativity laws. When we consider the computations of Section 4, we see that the
main technical role is played by the elements Σα. This suggests to introduce the subgroup
of G(A, C) generated by the elements Aα and Σα. We shall see now that the latter naturally
arises as a geometry group of some algebraic laws, namely the geometry group of associativity
together with the weakened form of commutativity.

5.1. The semi-commutativity identity.

Definition. We define semi-commutativity to be the identity

x(yz) = (yx)z.(Σ)

As associativity and semi-commutativity are linear laws in the sense defined at the beginning
of Section 4, they admit a geometry group.

Proposition 5.1. The geometry group G(A,Σ) of associativity and semi-commutativity is the
subgroup V ′ of G(A, C) generated by the elements Aα and Σα.

Proof. Figure 15 shows that the operators associated with the semi-commutativity identity are
the operators Σα of Section 4, so the geometry monoid G(A, Σ) is the sumonoid pf G(A, C) gen-
erated by the operators A±1

α and Σ±1
α . Quotienting under near-equallity gives the corresponding

result for the geometry groups.

So, in particular, if we extract from the relations established for G(A, C) those that involve
the generators Aα and Σα only, the latter have to be satisfied in the group G(A,Σ).

Definition. We define rAΣ to be the family of all A and Σ-geometry relations, namely the
translated copies of

�0α · ♦1β = ♦1β · �0α,(g⊥)

�11α · A = A · �1α, �10α · A = A · �01α, �0α · A = A · �00α,(gA)

�11α · Σ = Σ · �11α, �10α · Σ = Σ · �0α, �0α · Σ = Σ · �10α,(gΣ)

with �,♦ standing for A or Σ, together with the translated copies of

ΣA1A = A1AΣ0, Σ1ΣA1 = AΣ, ΣΣ1A = A1Σ, ΣΣ1Σ = Σ1ΣΣ1.(5.1)

Proposition 5.2. All relations of rAΣ , as well as the torsion relations Σ2
α = 1, are satisfied

in the group G(A,Σ).

We shal also consider the subfamily of rAΣ containing only those relations that involve the
elements of a and σ.
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Definition. We define raσ to consist of the following relations:

ai�j+1 = �jai, with j � i + 1 and � = a or σ,

σi�j = �jσi, with j � i + 2 and � = a or σ,

σiσi+1σi = σi+1σiσi+1, σi+1σiai+1 = aiσi, σiσi+1ai = ai+1σi.

Lemma 5.3. All relations of raσ are satisfied in V ′.

Actually, it is easy to check

Lemma 5.4. All relations of raσ follow from rAΣ plus the definitions σi = Σ1i−1 .

5.2. Presentations of V ′. Our aim is to prove:

Proposition 5.5. The family rAΣ completed with the torsion relations Σ2
α = 1 make a presen-

tation of the group G(A,Σ), i.e., V ′, in terms of the generators Aα and Σα.

Proof. The method should be clear: we have to select a family of trees containing one element
in each V ′-orbit, then define distinguished words in W (A,Σ) describing how to construct a tree
starting from the distinguished element of its orbit, and, finally, check that there are enough
relations in rAΣ to witness for the relations (1.3) of Proposition 1.2.

The construction is a slight modification of the one used in Section 4. The difference between
commutativity and semi-commutativity is that the latter cannot change the rightmost label of
a tree. To keep the same conventions as in Section 4, let T∞

N denote the set of all decorated
trees whose leaves except the rightmost one wear labels in N, and whose rightmost leaf is
labelled ∞. Then every tree in T∞

N is equivalent up to associativity and semi-commutativity to
some right comb \I,∞\. For such a tree t, the word ut maps \I\ to t, and, by construction, ut

consists of letters ai and σj exclusively, since the rightmost leaf is never changed. Indeed, the
only letter ci possibly occurring in ut comes from the factors cI,J in the inductive construction,
and this happens only when I contains the largest element of I ∪ J . We can therefore use the
words ut and u∗

t without change. Then the only point is to check that t′ = t • �α implies

ut′ ≡raσ ut · �α and u∗
t′ ≡raσ u∗

t · �0α(5.2)

both in the case � = A and � = Σ. For the case of Aα, it suffices to look at the proof of
Lemma 4.22. The case of Σ has not been considered in Section 4, and we consider it now. So
we assume t = t1

∧(t2∧t3) and t′ = t2
∧(t1∧t3). We obtain

ut′ = σI2,I1∪I3 · u∗
t2 · ∂σI1,I3 · ∂u∗

t1 · ∂2ut3 ,(5.3)

ut · Σ = σI1,I2∪I3 · u∗
t1 · ∂σI2,I3 · ∂u∗

t2 · ∂2ut3 · Σ.(5.4)

By (4.28), we have u∗
t2 · ∂σI1,I3 ≡raσ ∂n2σI1,I3 · u∗

t2 , u∗
t1 · ∂σI2,I3 ≡raσ ∂n1σI2,I3 · u∗

t1 , and
u∗

t2 · ∂ut1 ≡raσ ∂n2ut1 · u∗
t2 . Then the rAΣ -equivalence of ut′ and ut · Σ follows from the

commutativity of the diagram

\I\ σI1,I2∪I3
·∂n1σI2,I3−−−−−−−−−−−−→ \I1, I2, I3\

u∗
t1−−−−→ \t1, I2, I3\

∂u∗
t2−−−−→ \t1, t2, I3\

∂2u∗
t3−−−−→ \t1, t2, t3\∥∥∥ raσ+torsion

σn2,n1 (4.30)

σn2,1 (4.29)

σ1,1 (5.1)

σ1,1=Σ

\I\ σI2,I1∪I3
·∂n2σI1,I3−−−−−−−−−−−−→ \I2, I1, I3\ ∂n2u∗

t1−−−−→ \I2, t1, I3\ u∗
t2−−−−→ \t2, t1, I3\

∂2u∗
t3−−−−→ \t2, t1, t3\

The relations of rAΣ are sufficient to obtain the commutativity of the last three squares. As for
the first square, the associated permutations are equal, so the relations of raσ completed with
the torsion relations σ2

i = 1 must give the result.
The argument is similar for the words u∗

t , with an associated diagram coinciding with the
above one up to an additional square on the right whose commutativity is provided by the
relation ΣA1A = A1AΣ0. The induction along addresses is similar to the one we used for the
groups G(A) and G(A, C), i.e., F and V .
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As in Section 2 and 4, looking at the previous proof enables one to extract the following
result:

Proposition 5.6. The group V ′ is generated by a and σ, and the relations raσ completed with
σ2

i = 1 make a presentation of V ′ in terms of these generators.

Part 2. The group of multiscaled braids

The presentations of Section 4 show that the groups V and V ′ are connected with the infinite
symmetric group S∞, and make it natural to consider the groups with similar presentations
but with the torsion relations σ2

i = 1 removed, as was in particular done in independent work
by M. Brin [2]. The relationship between these new groups and the groups V and V ′ is then
parallel to that between Artin’s braid group B∞ and S∞. Here we shall concentrate on the case
of the group associated with V ′, which is technically simpler as only two families of generators
are to be considered, instead of three in the case of V . A mixture of Thompsons’s group F
and Artin’s braid group B∞—whence our notation FB∞—the group so obtained can be seen
both as a braided version of Thompson’s group V —whence the notation B̂V of [2], with BV
for the similar braided version of V —and a sort of fractal version of Artin’s braid group B∞, as
its elements can adequately be represented by braid diagrams in which the ordinary sequence
of integer indexed strands is replaced with a multiscaled sequence of strands indexed by finite
sequences of integers. The study of the group FB∞ turns out to be rich and interesting, and it
is the subject of the second part of this text.

6. Algebraic properties of FB∞

In this section, we start from the presentation of FB∞ analogous to that of V ′ and establish
various algebraic properties, in particular that FB∞ is the group of fractions for the monoid
with the same presentation, and that FB∞ comes equipped with a linear ordering and a self-
distributive operation extending similar objects previously defined on Artin’s braid group B∞.

6.1. The group FB∞ and the monoid FB+
∞. We saw in Section 5 that the group V ′ admits

two natural presentations, namely one in terms of the families of generators A and Σ, and
one in terms of the restricted families a and σ. Here we start from the latter, which makes
the verifications more simple, and remove the torsion relations σ2

i = 1. Then we see that the
remaining relations between the generators σi exactly are those of the standard presentation of
Artin’s braid group B∞ in terms of the generators σi, namely σiσj = σjσi for j � i + 2 and
σiσi+1σi = σi+1σiσi+1, cf. [1, 4].

Definition. We define FB∞ to be the group 〈a,σ ; raσ〉, i.e., the group generated by two
infinite sequences a1, a2, . . . , σ1, σ2, . . . with the relations i.e.,

ai�j = �j+1ai, with j � i + 1, and � = a or σ,

σi�j = �jσi, with j � i + 2, and � = a or σ,

σiσi+1σi = σi+1σiσi+1, σi+1σiai+1 = aiσi, σiσi+1ai = ai+1σi.

(6.1)

The relations (6.1) include the relations of the standard presentation of Thompson’s group F
in terms of the ai generators, those of the standard presentations of Artin’s braid group B∞
in terms of the generators σi, and mixed relations connecting the generators ai and σi. The
relations in the first line can be called shifted commutation relations, those in the second line
are ordinary commutation relations, while in the third line can be called braid relations, as we
shall see in Section 7.

The group FB∞ is a sort of twisted product of Thompson’s group F and Artin’s braid
group B∞, and it is not surprising that it can be investigated by the same methods as F
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and B∞, in particular in terms of monoid and fractions. The tools presented in Section 3 prove
to be specially relevant here.

Definition. We define FB+
∞ to be the monoid 〈a,σ ; raσ〉+.

So, as a monoid, FB+
∞ is defined by the same presentation as the group FB∞. All relations

in raσ are of the type u = v where u and v are nonempty words, so raσ is eligible for the word
reversing method of Section 3. The main technical point is:

Proposition 6.1. The presentation (a,σ; raσ) is complete with respect to both right and left
reversing.

We shall establish Proposition 6.1 using the method of Section 3, i.e., we first show that the
presentation is homogeneous, and, then, we check that the criterion of Proposition 3.5 holds
for all triples of generators.

Lemma 6.2. The presentation (a,σ; raσ) is homogeneous.

Proof. As the relations σiσi+1ai = ai+1σi and σi+1σiai+1 = aiσi in raσ do not preserve the
length of the words, the length itself cannot be used. Instead we shall define a convenient
function λ so that the contribution of σi depend on the letters that precede them. First we
define an action of W+(a,σ) on N-indexed sequences of integers as follows:

(. . . , ni−1, ni, ni+1, ni+2, . . . ) • ai = (. . . , ni−1, ni + ni+1, ni+2, . . . ),

(. . . , ni−1, ni, ni+1, ni+2, . . . ) • σi = (. . . , ni−1, ni+1, ni, ni+2, . . . ).

It is easily verified that this action is compatible with the relations of raσ . For instance,
we have (n1, n2, n3 . . . ) • a1σ1 = (n3, n1 + n2, . . . ) = (n1, n2, n3 . . . ) • σ2σ1a2. Then, for u
a word in W+(a,σ), we define wt(ai, u) to be 1 and wt(σi, u) to be the product of the ith
and (i + 1)-th entries in the sequence (1, 1, . . . ) • u. Finally, for w in W+(a,σ), we define
λ(w) =

∑
p wt(w(p), wp), where w(p) denotes the pth letter in w and wp denotes the length p−1

prefix of w. Then λ has the required properties. For instance, assuming (1, 1, 1, . . . ) • u =
(n1, n2, n3, . . . ), we have

λ(uσ1σ2σ1) = λ(u) + n1n2 + n2n3 + n1n3 = λ(uσ2σ1σ2),

λ(uσ1σ2a1) = λ(u) + n1n2 + n1n3 + 1 = λ(ua2σ1),

λ(uσ2σ1a2) = λ(u) + n1n3 + n2n3 + 1 = λ(ua1σ1).

(The intuition underlying this definition will become obvious in the next section: we attribute
to each σi a weight that is the total number of elementary crossings involved in the associated
multiscaled braid diagram.)

Lemma 6.3. For each triple of letters (x, y, z), the right and the left cube conditions at (x, y, z)
are satisfied in the presentation (a,σ; raσ).

Proof. As there are infinitely many letters, infinitely many cases should be considered a priori.
However, it is clear that the only point that matters is the mutual distance of the indices, and,
therefore, only finitely many types occur. The verification is purely mechanic, and we postpone
it to an appendix.

By Proposition 3.5, Proposition 6.1 is established. This in turn enables us to read some
properties of the monoid FB+

∞ and of the group FB∞ almost directly.

Proposition 6.4. (i) The monoid FB+
∞ admits left and right cancellation.

(ii) Any two elements of FB+
∞ that admit a right (resp. left) common multiple admit a right

(resp. a left) least common multiple.



GEOMETRIC PRESENTATIONS FOR THOMPSON’S GROUPS AND MULTISCALED BRAIDS 41

Proof. (i) For each letter x, the family raσ contains no relation of the form x . . . = x . . . or
. . . x = . . . x, so Proposition 3.6 applies.

(ii) For all letters x, y, the family raσ contains at most one relation of the form x . . . = y . . . ,
and at most one relation of the form . . . x = . . . y so Proposition 3.15 applies.

The next step is to prove that any two elements of FB+
∞ admit a common left multiple. By

Proposition 3.15 again, this amounts to proving that left reversing always terminates, which
is not a priori obvious as the length of the words that appear in the reversing process may
increase. By Garside’s theory, it is known that any two elements in the braid monoid B+

∞
admit a common left multiple, and, therefore, the left reversing of any word of the form uv−1

with u, v in W+(σ) terminates in a finite number of steps. The same is true for u, v in W+(a),
since, in this case, the length cannot increase. So the only remaining case is that of mixed
words involving both σ and a. We shall treat this case directly, by explicitly describing the
result of reversing.

Adding the relations σ2
i = 1 to the relations of the standard presentation of the group B∞

yields the Coxeter presentation of the symmetric group S∞ in terms of transpositions. One
obtains in this way a surjective homomorphism of B∞ onto S∞, so every word in W+(σ) defines
a bijection of N. We denote by w[k] the image of k under the bijection associated in this way
with the word w.

Definition. For w in W+(σ) and k in N, we inductively define dk(w) by dk(ε) = ε and

dk(wσi) = dσi[k](w) · dk(σi), with dk(σi) =


σk+1 for k < i,
σiσi+1 for k = i,
σi+1σi for k = i + 1,
σk for k > i + 1.

(6.2)

It is easy to check that, with the standard diagrammatic interpretation of braid words
(cf. Section 7), w[k] is the initial position of the strand finishing at position k in the dia-
gram coded by w, and dk(w) encodes the braid diagram obtained from the diagram coded by w
by doubling the strand that finishes at position k (Figure 16).

dk(σi) = σi+1 for k < i

di(σi) = σiσi+1

di+1(σi) = σi+1σi

dk(σi) = σi for k > i + 1

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

1 k i i + 1

Figure 16. Doubling the kth strand (from the bottom) in a braid.

Lemma 6.5. For w in W+(σ) and k � 1, the word w ·a−1
k is left raσ-reversible to a−1

w[k] ·dk(w).

Proof. It suffices to check the formula when w has length 1, and to show that the induction
rule preserves it. Looking at the various cases shows that the result is true when w consists of
a single letter σi. For instance, σ1a

−1
1 is left reversible to a−1

2 σ2σ1 on the one hand, and we
have σ1[1] = 2 and d1(σ1) = σ1σ2 on the other hand. Then the inductive rule for left reversing
is that u1u2v

−1 is left reversible to v′′−1u′
1u

′
2 if and only if, for some v′, the word u2v is left

reversible to v′−1u′
2 and u1v

′−1 is left reversible to v′′−1u′
1.
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Proposition 6.6. (i) Left raσ-reversing always terminates in finitely many steps.
(ii) Any two elements in the monoid FB+

∞ admit a left lcm.
(iii) The monoid FB+

∞ embeds in the group FB∞, and FB∞ is a group of left fractions
of FB+

∞, i.e., every element of FB∞ can be expressed as x−1y with x, y in FB+
∞.

Proof. We know that left reversing inside W+(a) and W+(σ) terminate in a finite number of
steps, so Lemma 6.5 is what is needed for (i). Then (ii) follows from (the left counterpart to)
Proposition 3.15. It follows that the monoid FB+

∞ satisfies Ore’s conditions on the left, and,
therefore, it embeds in the group FB∞ and the latter is a group of left fractions for FB+

∞.

As FB∞ is the group of fractions of a monoid where least common multiples exist and which
has no torsion, we immediately deduce, using the result of [15] (or [?]):

Corollary 6.7. The group FB∞ is torsion-free.

This result will be strengthened in the sequel, as we shall prove in Section 8 that FB∞ is
actually an orderable group.

Proposition 6.8. (i) Two words u, v in W+(a, σ) represent the same element in the mon-
oid FB+

∞ if and only if the left raσ-reversing of the word uv−1 ends up with the empty word, if
and only if the right raσ-reversing of the word u−1v ends up with the empty word.

(ii) A word w in W (a,σ) represents 1 in FB∞ if and only if its double left raσ-reversing
ends up with an empty word, where double left reversing consists in left reversing w into u−1v
with u, v in W+(a,σ), and then left reversing vu−1.

Proof. Point (i) follows from the completeness of the presentation (a,σ; raσ) with respect to
left and right reversing. Point (ii) is a consequence: starting with w in W (a,σ), we know by
Proposition 6.6(i) that there exist two words u, v in W+(a,σ) such that w is left raσ-reversible
to u−1v. Then w represents 1 in FB∞ if and only if u and v represent the same element of FB∞,
hence the same element of FB+

∞, as FB+
∞ embeds in FB∞. Now, by (i), the latter is true if and

only if the left reversing of vu−1 ends up with the empty word.

Corollary 6.9. (i) The Dehn function of FB∞ relative to the (infinite) presentation (a, σ; raσ)
is quadratic, i.e., every length � word in W+(a,σ) representing 1 in FB∞ can be connected to
to the empty word via O(�2) relations of raσ .

(ii) The subgroup of FB∞ generated by the elements ai is a copy of Thompson’s group F ;
the subgroup of FB∞ generated by the elements σi is a copy of Artin’s group B∞.

(iii) The mapping ∂ is an injective endomorphism of FB∞ into itself.

Proof. For (ii), it is clear that the subgroup of FB∞ generated by the family a is a homomorphic
image, i.e., a quotient, of F . The problem is to show that the kernel is trivial, i.e., that a word w
of W (a) that represents 1 in FB∞ also represents 1 in F . Now this follows from Proposition 6.8:
if w belongs to W (a), its (double) left reversing is the same as a word of W (a,σ) and as a word
of W (a), because the only relations of raσ that can be used in this reversing are those of ra .

The argument is the same for the inclusion of B∞ in FB∞, and for the injectivity of ∂: in
the latter case, the point is that all words involved in the reversing of a word in the image of ∂,
i.e., containing only letters ai and σi with i � 2, themselves belong to the image of ∂, as shows
an inspection of the relations of raσ .

6.2. An alternative presentation. We have seen that each of the groups F, V , or V ′ admits
two natural presentations, namely one in terms of generators indexed by addresses, and one in
terms of restricted subfamilies indexed by positive integers. In the case of the group FB∞, we
started with the latter approach. We shall see now that the other approach is also possible.

Proposition 6.10. The group FB∞ admits the presentation 〈A,Σ ; rAΣ〉.
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Proof. We first define elements Aα and Σα in FB∞ as follows. For Aα, we use the formula
of Lemma 2.17, i.e., for p � 0, we put A1p = ap+1, and, for α = 1p00e010e11 . . . 10eq with
p, q, e0, . . . , eq � 0, we put

Aα = (ae0+1
p+1 ae1+1

p+2 . . . a
eq+1
p+q+1)(ap+q+1a

−1
p+q+2)(a

e0+1
p+1 ae1+1

p+2 . . . a
eq+1
p+q+1)

−1.(6.3)

For the Σα, we define similarly Σ1p = σp+1 for p � 1, and, for α = 1p00e010e11 . . . 10eq with
p, q, e0, . . . , eq � 0, we put

Σα = (ae0+1
p+1 ae1+1

p+2 . . . a
eq+1
p+q+1)(σp+q+1)(ae0+1

p+1 ae1+1
p+2 . . . a

eq+1
p+q+1)

−1.(6.4)

It is easy to check that (6.4) follows from rAΣ , so this is the only possible choice.
It remains to prove that the elements Aα and Σα so defined satisfy all relations of rAΣ , which

is a priori not obvious, as we established that the relations of raσ follow from rAΣ , but not the
converse implication. As for the elements Aα, we know that the elements ai generate a copy of
the group F inside FB∞, so the elements Aα must satisfy all relations of rA . As for the other
relations, the fact that raσ plus the torsion relations σ2

i make a presentation of V ′ implies that
all relations of rAΣ follow from raσ plus the torsion relations. The problem is to eliminate the
torsion relations. This can be done as follows. In order to prove that some relation u = v follows
from raσ , where u and v involve the letters Aα and Σα, it is sufficient to exhibit two injective
trees t, t′ such that we have t′ = t •u = t •v, and to establish the equivalences ut′ ≡raσ ut ·u and
ut′ ≡raσ ut · v. This was done in Section 5, with the proviso that the torsion relations σ2

i were
available. Now, when we look at the argument of Section 5, we see that the torsion relations
are used at one place only, namely to justify that two words of the form σI,J giving rise to
the same permutation are equivalent. Now, if we start with a term t in which the labels are 1
to n when enumerated from left to right, the word u∗

t contains no letter σi at all, and the only
question is to control the relations needed for the words u∗

t′ . The point is that if the words u
and v correspond to braids in which any two strands cross at most once, i.e., to what is called
simple braids, then there exists a one-to-one correspondence between the permutations and the
involved braids, and, in order to establish the needed permutation equivalences, only the braid
relations, i.e., raσ , are needed. This is precisely the case for all relations of rAΣ , as a direct
inspection shows.

6.3. A self-distributive operation on FB∞. One of the most intriguing properties of the
group B∞ is the existence of an exotic binary operation that obeys the self-distributivity law
x(yz) = (xy)(xz). This operation (here denoted as a bracket) is defined by the formula

x[y] = x · ∂y · σ1 · ∂x−1,(6.5)

thus a sort of twisted conjugacy. There are several ways of making this definition natural. The
importance of this operation comes from the fact that the subsystem generated by any element
of B∞, so in particular by 1, is a free LD-system, which is directly connected with the existence
of a canonical ordering of B∞ [12, 16].

In this section, we shall see that the self-distributivity properties of B∞ extend to FB∞, in
an even stronger form.

Definition. An LD-system is defined to be a set equipped with a binary operation x, y �→ x[y]
satisfying the left self-distributivity law

x[y[z]] = x[y][x[z]].(6.6)

An enhanced LD-system is defined to be an LD-system equipped with a second binary opera-
tion ⊗ satisfying the mixed laws

x[y[z]] = (x ⊗ y)[z] and x[y ⊗ z] = x[y] ⊗ x[z].(6.7)
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It is easy to check that any group equipped with conjugacy and product is an enhanced LD-
system. The self-distributive operation defined on B∞ by (6.5) is rather diffrent from a group
conjugacy in that x[x] = x is never true. However, there is no way to enhance the LD-system
made by B∞ equipped with its bracket.

The interesting fact is that not only can the self-distributive structure of B∞ be extended
to FB∞, but also it can be enhanced.

Definition. For x, y in FB∞, we set

x[y] = x · ∂y · σ1 · ∂x−1,(6.8)

x ⊗ y = x · ∂y · a1,(6.9)

where we recall ∂ denotes the endomorphism of FB∞ that maps σi to σi+1 and ai to ai+1 for
each i.

Proposition 6.11. When equipped with [] and ⊗, the set FB∞ is an enhanced LD-system.
Furthermore, it is left-cancellative, i.e., x[y] = x[z] implies y = z.

Proof. A simple verification:

x[y][x[z]] = (x · ∂y · σ1 · ∂x−1)[x · ∂z · σ1 · ∂x−1]

= x · ∂y · σ1 · ∂x−1 · ∂x · ∂2z · σ2 · ∂2x−1 · σ1 · ∂2x · σ−1
2 · ∂2y−1 · ∂x−1

=(∗) x · ∂y · ∂2z · σ1σ2σ1σ
−1
2 · ∂2y−1 · ∂x−1

= x · ∂y · ∂2z · σ2σ1 · ∂2y−1 · ∂x−1 = x[y · ∂z · σ1 · ∂y−1] = x[y[z]].

The reason for (∗) is that ∂2x commutes with σ1 for every x,
As for left cancellativity, x[y] = x[z] implies ∂y · σ1 = ∂z · σ1, hence ∂y = ∂z, and, therefore,

y = z since, by Corollary 6.9(iii), the mapping ∂ is injective.
Similarly, we find:

x[y[z]] = x · ∂y · ∂2z · σ2σ1 · ∂2y−1 · ∂x−1 = x · ∂y · a1a
−1
1 · ∂2z · σ2σ1 · a2a

−1
2 · ∂2y−1 · ∂x−1

= (x ⊗ y) · a−1
1 · ∂2z · σ2σ1a2 · ∂(x ⊗ y)−1 = (x ⊗ y) · ∂2z · a−1

1 σ2σ1a2 · ∂(x ⊗ y)−1

= (x ⊗ y) · ∂z · σ1 · ∂(x ⊗ y)−1 = (x ⊗ y)[z],

x[y ⊗ z] = x · ∂y · ∂2z · a2σ1 · ∂x−1 = x[y] · ∂x · σ−1
1 · ∂2z · a2σ1 · ∂x−1

= x[y] · ∂x · ∂2z · σ−1
1 a2σ1 · ∂x−1 = x[y] · ∂(x[z]) · ∂2x · σ−1

2 σ−1
1 a2σ1 · ∂x−1

= x[y] · ∂(x[z]) · ∂2x · a1 · ∂x−1 = x[y] · ∂(x[z]) · a1 = x[y] ⊗ x[z],

which completes the proof.

The self-distributive structure on FB∞ so constructed will be instrumental in the next sec-
tions.

6.4. Further results. It is well-known that Thompson’s group F is generated by the elements
we call here a1 and a2, all other ai’s can be defined from them by conjugacy; moreover, F admits
a finite presentation in terms of a1 and a2, as it turns out to be sufficient to express in terms
of a1 and a2 the shifted commutation relations that connect them to a3 and a4 [5]. As explained
in [2], the same argument works for the group FB∞, which admits a finite presentation in terms
of the generators a1, a2, σ1, and σ2.

7. Multiscaled braids

It is standard to interpret the elements of the braid group B∞ in terms of (three-dimensional)
geometric braids and of (planar) braid diagrams. Here we shall define similar interpretations
for the elements of FB∞. The idea is still to use braid diagrams, but, instead of starting
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from positions that are indexed by integers, we start from positions that are indexed by finite
sequence of integers and we interpret the additional generators ai as rescaling operators.

7.1. Diagrams for B∞. By definition, every element of the braid group B∞ is represented by
words that are finite sequences of letters σ±1

i . It is customary to associate with the letters σi

and σi the following elementary diagrams

D(σi):

D(σ−1
i ):

1 2 i i+11

. . . . . .

. . . . . .

and, then, to associate with every braid word w the diagram D(w) obtained by stacking one
above the other the elementary diagrams D(σ±1

i ) associated with the successive lettres of w.
As shown by E. Artin in the 1920’s, two braid words represent the same element of B∞,

i.e., they are equivalent under the congruence defined by the braid relations, if and only if
the diagrams they encode are the 2D-projections of isotopic 3D-figures, i.e., of figures that be
continuously deformed one into the other without moving the ends of the strands.

It is important to observe that, although we start with an infinite sequence of strands, only
finitely many strands are really braided in a braid diagram of the type above: for i large enough,
all strands beyond position i are straight lines. Thus, if we define Dn(σi) to be the diagram
similar to D(σi) starting from positions 1 to n only, and if Dn(w) is defined accordingly, then,
for every braid word w, the complete diagram D(w) can be replaced without loss of generality
by Dn(w) with n large enough. More precisely, for n′ � n, let cn,n′ denote the completion
mapping cn,n′ adding n′−n unbraided new strands on the right of an n strand diagram. Then,
for each word w, there exists an integer n such that Dn(w) is defined and D(w) is the union—or,
in an obvious sense, the direct limit—of the finite diagrams cn,n′(Dn(w)) for n′ � n (Figure 17).

1 2 3 1 2 3 4 5

Figure 17. The braid diagram D3(σ1σ
−1
2 ) and its completion D5(σ1σ

−1
2 ) un-

der c3,5: one adds two unbraided strands numbered 4 and 5 at the right; then the
infinite diagram D(σ1σ

−1
2 ) is the union (or direct limit) of all finite dia-

grams Dn(σ1σ
−1
2 ).

7.2. Diagrams for FB∞. In order to associate braid diagrams to the elements of FB∞, we
consider strands that start from positions that are no longer indexed by elements of N, i.e., by
positive integers, but by finite sequences of integers.

Definition. We denote by N∗ the set of all finite sequences of positive integers, and by N(∗)

the quotient of N∗ obtained by identifying s with (s, 1)—i.e., s followed by 1—for every finite
sequence s. The elements of N(∗) will be called positions.

Thus the positions (1), (1, 1), and (1, 1, 1) coincide, and so do (2, 3) and (2, 3, 1). In the
sequel, we consider braid diagrams in which the strands begin and end at positions belonging
to N(∗). We equip N∗ with the lexicographical ordering, i.e., (i1, . . . , ip) < (j1, . . . , jq) holds if
either (i1, . . . , ip) is a beginning of (j1, . . . , jq) or, for some r, we have it = jt for t < r and
ir < jr. This ordering induces a well-defined ordering on N(∗).

There are two adequate ways of visualizing the set N(∗). The first one is to embed it into
the real line. To this end, we choose a base b > 2 and we map the sequence (i1, . . . , ip) to the
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rational whose base b expansion is 0.1i1−101i2−1 . . . 01ir−1, i.e., the sum of all b−p for which there
is a 1 at position p. For instance, for b = 3, the sequence (1) is mapped to 0, (1, 2) is mapped
to 0, 01, i.e., to 1/9, while (2) is mapped to 0.1, i.e., 1/3, and (3, 1, 2) is mapped to 0.11001,
i.e., to 109/243. Requiring b � 2 guarantees the compatibility of the standard ordering of the
reals with the lexicographical ordering on N(∗), and requiring in addition b > 2 guarantees that
the image of N(∗) is discrete, which fits better to our current approach (Figure 18, left).

Another way of thinking of N(∗) is to consider distances in the semiring N[ε] where ε obeys
the rule ε+1 = 1, i.e., is infinitely small compared with 1 on the right. Then we map (i1, . . . , ip)
to i1 + (i2 − 1)ε + . . . + (ir − 1)εr−1. Here (1) is mapped to 1, (1, 2) is mapped to 1 + ε, while
(2) is mapped to 2 and (3, 1, 2) is mapped to 3 + ε2 (Figure 18, right).

1 2 3 . . .1,2 1,3

1,1

1,2 1,31,4

1,2,1 1,1,2 1,1,3

×3

×32

1 2 3 . . .

1,1

1,2 1,3 1,4

1,2,1 1,1,2 1,1,3

×ε−1

×ε−1

Figure 18. Realization of the set of positions N(∗) using a base, here b = 3, and
using infinitesimals.

Once the set of positions has been fixed, we can define the diagrams. As in the case of B∞,
we shall first describe infinite diagrams: although the latter only are direct limits of finite
diagrams and the latter are the main objects, it is simpler to begin with the infinite version.

In the case of B∞, defining D(σi) means describing what happens to the strand starting from
each position. Here we do the same. Keeping the intuition of infinitesimal distances, we say
that the positions of the form (i, s) lie near i. Then, we define D(σi) to be the diagram where
all strands starting near i cross over all strands starting near i + 1, and all relative distances
are preserved. So this corresponds to the picture:

D(σi):

1 i i+1

. . . . . .

Formally, this means that, for all finite sequences s, s′, the strand starting at (i, s) goes to (i +
1, s), and the strand starting at (i + 1, s′) goes to (i, s′), the former going in front of the latter;
for j �= i, i + 1, the strand starting at (j, s) goes to (j, s).

The action of ai is defined to be a pinching—or a rescaling—near i: the strands at the left
of i remain vertical, the strands starting near i are pinched by a factor ε, and the next strands
are translated so as to keep their mutual distances and avoid gaps:

D(ai):

1 i i+1 i+2

. . . . . .

i i+ε i+1
Formally, this means that, for j < i, the strand starting at (j, s) goes to (j, s), the strand
starting at (i, s) goes to (i, 1, s), the strand starting at (i + 1, j, s) goes to (i, j + 1, s), and, for
j � i + 2, the strand starting at (j, s) goes to (j − 1, s).
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7.3. Finite approximations. Although intuitively natural, the previous infinite diagrams
are misleading, as they involve infinitely many crossings, making in particular the definition
of isotopy problematic. Actually, as in the case of B∞, the important objects are the finite
approximations of the infinite diagrams. The only difference with B∞ is that, instead of having
to consider a 1-dimensional sequence of finite approximations Dn(w) for an infinite diagram,
we have now to consider a 2-dimensional sequence of finite approximations indexed by (finite)
binary trees.

Up to now, we used a binary system of addresses for the nodes in binary trees. It will
be convenient here to switch to an alternative system where addresses are finite sequences of
integers. The principle is that the right direction is given priority over the left direction: an
address in the new system indicates how many intervals are crossed on the right branch before
the next left forking.

Definition. For s a finite sequence of positive integers, say s = (i1, . . . , ip), we define s to be
the binary address 1i1−101i2−1 . . . 01ip−1.

So, for instance, we have (1, 2) = 010 and (3, 1, 1) = 1100. Clearly, the correspondence so
defined is a bijection (see Figure 19), and, for α a binary address, we denote by α the preimage
of α in this correspondence.

φ (1)

0 1 (1,1) (2)

00 01 10 11 (1,1,1) (1,2) (2,1) (3)

000 001 010 011 100 101 110 111 (1,1,1,1)(1,1,2) (1,3)(2,1,1)(2,2)(3,1) (4)100 101 110 111

0011 0111 1011 1111 (1,1,3) (1,4) (2,3) (4,1)(5)

Figure 19. Correspondence between the two systems of addresses for the nodes in
a binary tree

Definition. For t a finite binary tree, we denote by Pt the set of all sequences α for α in the
outer skeleton of t, i.e., for α address of a leaf in t.

For instance, for t = (◦∧◦)∧◦, the outer skeleton of t consists of the three addresses 00, 01,
and 1, hence Pt consists of (1, 1, 1), which is identified with (1) in N∗, of (1, 2), and of (2).

In the case of B∞, for w in W (σ), we have defined the diagram Dn(w) provided n is bigger
than all indices i such that σ±1

i occurs in w. For w in W (σ,a), we shall define a similar finite
diagram Dt(w) provided t is large enough. The difference is that, in the case of B∞, the action
of σi does not change the set of positions we are considering, while, in the case of FB∞, the
action of σi and ai may change that set. That is why the definition of the diagram Dt(w) has
to be slightly more complicated.

Definition. Assume that t is a size n tree such that t • σi is defined in the sense of Section 4.
Then Dt(σi) is defined to be the finite diagram with n strands starting from the positions Pt,
and such that each strand starting at (i, s) goes to (i + 1, s), each strand starting at (i + 1, s)
goes to (i, s), all the latter under all the former, and each strand starting at (j, s) goes to (j, s)
for j �= i, i + 1.

The diagram Dt(ai) is defined similarly when t • ai exists; the rules are now that each strand
starting at (i, s) goes to (i, 1, s), each strand starting at (i + 1, j, s) goes to (i, j + 1, s), each
strand starting at (j, s) goes to (j, s) for j < i, and, finally, each strand starting at (j, s) goes
to (j − 1, s) for s > i + 1.
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The diagrams Dt(σi) and Dt(a−1
i ) are defined to be the mirror images of Dt•σi(σi) and

Dt•ai(ai), respectively. Finally, for w in W (a, σ), and t a binary tree such that t • w is defined,
the diagram Dt(w) is inductively defined by the rule that, if w is xw′ where x is one of σ±1

i ,
a±1

i , then Dt(w) is obtained by stacking Dt(x) over Dt•x(w′).

Example 7.1. Let w = a−1
1 σ1a1. The smallest tree t for which t • w is defined is (◦∧◦)∧◦,

and the diagram Dt(w) is displayed in Figure 20, left. Now t′ • w exists for every tree t′ whose
skeleton includes that of t, for instance t′ = ((◦∧◦)∧◦)∧(◦∧◦). The corresponding braid diagram
is displayed in Figure 20, right.

1

1

2

1,2 2 1 1,2 2 31,3

1 1,2 2 1 1,2 2 3, 1,2

ε ε ε

ε εε2

ε
=1+

ε

=1+
2ε

=1+
ε

=1+

ε
=1+ ε

=1+

a−1
1

σ1

a1

Figure 20. The braid diagram Dt(a
−1
1 σ1a1) and its completion Dt′(a

−1
1 σ1a1), for

t = (◦∧◦)∧◦ and t′ = (◦∧(◦∧◦))∧(◦∧◦). Each additional strand in Dt′ is obtained
by following the strand that starts immediately on its left and adapting the distance
to that strand by looking at the strand that lies immediately on its right, if there
is one, or preserving it otherwise (the rightmost strand are dashed because, in this
construction, they are always superfluous)

Although the construction may seem more involved, it is exactly similar to that of ordinary
braid diagrams, and, in particular, the infinite braid diagram D(w) is nothing but the union of
the finite diagrams Dt(w) for t large enough.

7.4. The group of multiscaled braids. As in the case of ordinary braid diagrams, we have
a natural notion of isotopy for multiscaled braid diagrams. In order to avoid any unessential
problem, it is convenient to use finite diagrams and to think of N(∗) as embedded in the reals,
i.e., to appeal to a finite base rather than to infinitesimal distances, which are kept as a heuristic
device. As our diagrams are piecewise linear, isotopy is generated by ∆-moves (see for instance
[?] or [4]), or, equivalently, by the Reidemeister moves of type II and III displayed in Figure 21.

∼ ∼

Figure 21. Reidemeister moves of type II (left) and III (right); the only require-
ment is that the endpoints remain fixed
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Our aim is to show that, as in the case of ordinary braids diagrams, the isotopy classes
of multiscaled braid diagrams form a group, and that this group is (isomorphic) to FB∞. A
minor problem is that, contrary to the case of ordinary braids, we cannot fix a finite integer
and construct a group using n strand diagrams: for t a fixed binary tree, the diagrams starting
from t, i.e., from the positions of Pt, do not lead to a group, as the positions change. So, we
must define the complete group of all multiscaled braids directly, and, to this end, we must be
able to multiply (finite) diagrams with different numbers of strands. This is easy. In the case
of ordinary braid diagrams, we can define the product of two diagrams Dn1(w1), Dn2(w2) with
possibly different numbers of strands by taking n to be the sup of n1 and n2 and completing
both diagrams into n strand diagrams by adding trivial new strands. Here we shall do the same
thing.

Definition. For t a binary tree, we define a t strand braid diagram to be a (finite) multiscaled
braid diagram in which the initial positions of the strands are Pt. If t′ is another tree whose
skeleton includes that of t, we denote by ct,t′ the completion that transforms any t strand
diagram into a t′ strand diagram by adding trivial new strands.

With this notation, what we define to be the product of two finite diagrams Dt1(w1) and
Dt2(w2) is the concatenation of the diagrams ct1,t(Dt(w1)) and ct2,t•w′(Dt2(w2)), where t is the
smallest tree such that t includes t1 and t • w1 includes t2—we say that a tree includes another
one when the skeleton of the former includes the skeleton of the latter. The product so defined
induces the usual concatenation on the associated infinite diagrams.

Lemma 7.2. Completion preserves isotopy, i.e., if D, D′ are isotopic t strand braid diagrams,
then, for each t′ including t, the t′ strand diagrams ct,t′(D) and ct,t′(D′) are isotopic.

Proof. Isotopy does not take the mutual distances of the strands into account. The completion
procedure ct,t′ consists in iterately doubling a strand, and it is easy to check that doubling any
strand in one of the two basic Reidemeister moves gives an isotopy.

Therefore there is no ambiguity is saying that two infinite multiscaled braid diagrams are
isotopic if they are the completions of isotopic finite diagrams—and, in this way, we avoid all
possible difficulties arising from considering infinitely many crossings. Then multiscaled braid
diagrams up to isotopy make a group, and we set:

Definition. The group of multiscaled braid diagrams up to isotopy is called the multiscaled
braid group.

Our aim for the rest of this section is to prove

Proposition 7.3. The multiscaled braid group is (isomorphic to) FB∞.

In other words, we aim at showing that the relations rAΣ make a presentation of the multi-
scaled braid group in terms of the generators σi and ai. As in the case of ordinary braids, one
direction is trivial.

Lemma 7.4. All relations of rAΣ induce isotopies.

Proof. The graphical verification is given in Figure 22.

7.5. Diagram colouring. Owing to Lemma 7.4, it remains to establish that the morphism
of FB∞ to the multiscaled braid group is injective. Our method will consist in showing that,
for any word w in W (a,σ), the class of w in FB∞ can be recovered from the isotopy class of
any diagram Dt(w). To do that, we use diagram colourings.

The principle, which can be traced back at least to Alexander, is to fix a nonempty set S (the
colours), to attribute colours from S to the input strands of a braid diagram D, and to push
the colours along the strands. If the colours never change, the sequence of output colours is just
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σ1σ3 vs. σ3σ1 σ1a3 vs. a3σ1

a1a2 vs. a3a1 a1σ2 vs. σ3a1

σ1σ2σ1 vs. σ2σ1σ2 a1σ1 vs. σ2σ1a2 a2σ1 vs. σ1σ2a1

Figure 22. The relations of rAΣ and the corresponding multiscaled braid diagrams isotopy.

a permutation of the sequence of input colours, and we do not gain much information about
the diagram. Now, assume that the set of colours S is equipped with two binary operations,
here denoted x, y �→ x[y] and x, y �→ x[[y]] to suggest that products are images of y under x.
Then we require that, when a x-coloured strand makes a positive (resp. negative) crossing over
a y-coloured strand, then the colour of the latter becomes x[y] (resp. x[[y]]), as below:

x y y x

x[y] x y x[[y]]

In this way, for each sequence of input colours �x and each braid diagarm D, one obtains a
well-defined sequence of output colours denoted �x • D. If D is the n strand diagram encoded by
a word w in W (σ), we shall write �x •w for �x •Dn(w), and, similarly, we write �x •w for �x •Dt(w)
when w is a word in W (a,σ) and t is a tree such that t • w is defined.

The following observation was made in several different frameworks [2, ?, ?, 12], and it is
follows from an easy graphical verification:

Lemma 7.5. [16] Assume that (S, [ ], [[ ]]) is a rack, i.e., (S, [ ]) is an LD-system and [[ ]] is a
left inverse for [ ], i.e., for all x, y, the element x[[y]] is the unique element z satisfying x[z] = y.
Then S-colourings are invariant under Reidemeister moves II and III, i.e., for every diagram D
and every sequence of input colours �x, the output colours �x • D only depend on the isotopy class
of D.

In the sequel, we consider a slightly more general situation, namely the case when (S, [ ])
is still an LD-system but we only assume that (S, [ ]) admits left cancellation, i.e., x[y] = x[z]
implies y = z. Then we are not sure that all pairs of colours are eligible for negative crossings:
we can still define x[[y]] to be the unique element z satisfying x[z] = y when it exists, but, now,
x[[y]] need not be everywhere defined. The following lemma gathers the results we need here:

Lemma 7.6. Assume that (S, [ ]) is a left cancellative LD-system.
(i) For every finite family of multiscaled braid diagrams D1, . . . , Dp, there exists at least one

sequence �x of colours from S such that �x • Dk is defined for each k.
(ii) If D, D′ are isotopic diagrams, and �x is a sequence of colours from S such that both �x •D

and �x • D′ are defined, then the latter are equal.
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Proof. The result is known in the case of ordinary braid diagrams [16]. Now finite multiscaled
braid diagrams are ordinary braid diagrams: the only difference lies in the encoding in terms
of σi’s and ai’s, but, geometrically, there is no difference. This is formalized in Lemma 8.18,
which states that every multiscaled braid diagram can be deformed into an ordinary braid
diagram, preceded and followed by rescaling operations that do not interfer with colourings.

It follows that the LD-system consisting of FB∞ equipped with the bracket of Section 6.3 is
eligible for colouring multiscaled braid diagrams. An example is displayed in Figure ?? below.

In the case of an ordinary n strand braid diagram D, the input positions and the ouput
positions are 1, 2, . . . , n for some n, and an S-colouring consists of a sequence of elements of S
indexed by 1, . . . , n, i.e., equivalently, of pairs of the form (i, x) with i an integer and x an
element of S. In the case of multiscaled diagrams, an S-colouring consists of a sequence of
elements of S indexed by positions in N(∗), i.e., of a family of pairs (s, x) where s is a finite
sequence of integers and x is an element of S. Such pairs will simply be called S-coloured
positions. For instance, in Figure 23, the initial coloured positions are ((1), x), ((1, 2), y), and
((2), z), while the final one are ((1), x[y]), ((1, 2), x), and ((2), z). If �x is a sequence of S-coloured
positions and w is a word in W (a,σ), we still denote by �x•w the sequence of S-coloured positions
obtained by propagating the colours through the diagram of w starting from the positions of �x,
when it exists. The following result is a direct consequence of the rule for changes of colours in
crossings:

Lemma 7.7. Assume that �x is a sequence of S-coloured positions and �x • σi is defined. Let
x1, . . . , xq be the colours attributed to positions of the form (i, s) enumerated in increasing order.
Then �x•σi is obtained from �x by replacing ((i, s), x) with ((i+1, s), x) and replacing ((i+1, s), x)
with ((i, s), x1[. . . [xq[x]] . . . ]).

We shall now switch from the language of sequences of S-coloured positions to that of S-
decorated trees. We introduced above a one-to-one mapping P−1 from positions, i.e., finite se-
quences of integers, to binary addresses. Using this correspondence, we can map every coloured
position (s, x) to a pair (s, x) consisting of a binary address and a colour. As, in N(∗), we
identify the positions s and (s, 1), the number of final 0’s in s remains open. The ambiguity
disappears when the addresses are adjusted so as to make the outer skeleton of a tree.

Definition. (Figure 23) Assume that �x is a sequence of S-coloured positions. Then we define
tr(�x) to be the S-decorated tree t such that �x consists of all pairs (P (α), x) for α an outer address
in t and x the corresponding label. We define tr∗(�x) to be the finite sequence (t1, . . . , tn) such
that tr(�x) is t1

∧ . . . ∧tn
∧◦x, i.e., ti is the 1i−10th subtree of tr(�x)—we recall that t1

∧t2
∧t3 stands

for t1
∧(t2∧t3).

tr tr∗y zx

x

x

x

y

y

xz

z

z

z

z
x[ ]yx

[ ]yx

[ ]yx

[ ]yx

yx

x

z

z

x y

[ ]yx x

x

[ ]yx , x

, y

Figure 23. Correspondence between sequences of S-coloured positions and S-
decorated trees: for instance, the initial sequence of coloured positions consists
of ((1), x), ((1, 2), y), and ((2), z), corresponding to the coloured addresses (00, x),
(01, y), and (1, z), hence to the tree (◦x

∧◦y)∧◦z
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The generators ai and σi act on sequences of S-coloured positions, and it is easy to describe
the corresponding action on S-decorated trees.

Lemma 7.8. Assume that �x is a sequence of S-coloured positions and we have tr∗(�x) =
(t1, . . . , tn). Then, whenever �x • ai (resp. �x • σi) is defined, we have

tr∗(�x • ai) = (t1, . . . , ti−1, ti
∧ti+1, ti+2, . . . , tn),(7.1)

tr∗(�x • σi) = (t1, . . . , ti−1, t
′, ti, ti+2, . . . , tn),(7.2)

where t′ denotes the tree obtained from ti+1 by replacing every label x with the corresponding
label x1[. . . [xp[x]] . . . ], where x1, . . . , xp are the labels of the leaves in ti enumerated from left
to right.

Proof. For (7.1), we compare the action of ai on positions and on trees, and the result directly
follows as the colours and labels are not changed. For (7.2), the principle is the same: the action
on positions and on trees are similar. As for colours and labels, the changes are described in
Lemma 7.7, and the current formula follows.

Figure 23 gives an easy example for the previous situation.
The key tool is to introduce a convenient evaluation function that associated with every

sequence of FB∞-coloured positions a specific element of FB∞. This function is constructing
using FB∞-decorated trees and the operation ⊗.

Definition. (Figure 24) Assume that �x is a sequence of FB∞-coloured positions. Let (t1, . . . , tn)
be tr∗(�x), and let xi be the ⊗-evaluation of ti, i.e., the image of ti under the mapping e defined
by

e(t) = x for t = ◦x, e(t) = e(t1) ⊗ e(t2) for t = t1
∧t2.(7.3)

Then E∗(�x) is defined to be (x1, . . . , xn), and E(�x) is defined to be x1 · ∂x2 · . . . · ∂n−1xn.

11 1

1 1

1 11
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(σ1a1)
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σ1

σ1

σ1

σ1

Figure 24. Evaluation of sequences FB∞-coloured positions via a sequence of
FB∞-decorated trees and their ⊗-evaluation

It is now easy to describe the action of the generators ai and σi on E∗ and E.

Lemma 7.9. Assume that �x is a sequence of FB∞-coloured positions. Then we have

E(�x • ai) = E(�x) · ai, E(�x • σi) = E(�x) · σi,(7.4)

whenever the sequence �x • ai or �x • σi is defined.

Proof. Let us assume tr(�x) = t1
∧ . . . ∧tn

∧◦x and E∗(�x) = (x1, . . . , xn). First, we find

E∗(�x • ai) = (x1, . . . , xi−1, xi ⊗ xi+1, xi+2, . . . , xn),(7.5)

E∗(�x • σi) = (x1, . . . , xi−1, xi[xi+1], xi, xi+2, . . . , xn).(7.6)

Indeed, (7.5) directly follows from (7.1). As for (7.6), it follows from (7.2) by using the rela-
tions (6.7) of enhanced LD-systems: an induction on the size of ti using the left formula in (6.7)
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first shows that each label x in ti+1 gives a label xi[x] in t′, and, then, an induction on the size
of ti+1 shows that the ⊗-evaluation of t′ is xi[xi+1] as xi+1 is the ⊗-evaluation of ti+1.

We can now establish (7.4). For readability, we assume i = 1, but the argument is the same
for other values of i. For ai, we find

E(�x • a1) = (x1 ⊗ x2) · ∂x3 · . . . · ∂n−2xn

= x1 · ∂x2 · a1 · ∂x3 · . . . · ∂n−2xn

= x1 · ∂x2 · ∂2x3 · . . . · ∂n−2xn · a1 = E(�x) · a1,

as a1 · ∂kx = ∂k+1x · a1 holds for k � 1. For σi, we find similarly

E(�x • σ1) = x1[x2] · ∂x1 · ∂2x3 · . . . · ∂n−1xn

= x1 · ∂x2 · σ1 · ∂x−1
1 · ∂x1 · ∂2x3 · . . . · ∂n−1xn

= x1 · ∂x2 · σ1 · ∂2x3 · . . . · ∂n−1xn

= x1 · ∂x2 · ∂2x3 · . . . · ∂n−2xn · σ1 = E(�x) · σ1,

as σ1 · ∂kx = ∂kx · σ1 holds for k � 2.

We are now able to conclude:

Proof of Proposition 7.3. We wish to prove that, if w and w′ are words in W (a, σ) and there
is a tree t such that the diagrams Dt(w) and Dt(w′) are isotopic, then the words w and w′ are
equivalent modulo the relations rAΣ , i.e., they represent the same element of the group FB∞.
Now, by Lemma 7.6, we know that there exists at least one way to attribute colours from FB∞
to the initial positions of the diagrams in such a way that the colours can be propagated
through w and w′, and the hypothesis that Dt(w) and Dt(w′) are isotopic implies that the
final sequences of colours are the same. In other words, we have a sequence of FB∞-coloured
positions �x such that both �x • w and �x • w′ exist and they are equal to some sequence �y. Now
an obvious induction from (7.4) gives the equality

E(�x) · w = E(�y) = E(�x) · w′

in FB∞—we recall that w denotes the image of w in FB∞—and we deduce that both w and
w′ are equal to E(�x)−1E(�y).

Thus multiscaled braids give an accurate diagrammatic realization of the group FB∞.

8. The group FB∞ as the geometry group of twisted semi-commutativity

In the first part of this work, we introduced the general notion of a geometry group for
a family of algebraic laws, and we interpreted Thompson’s group F and V , as well as the
subgroup V ′ of V , as the geometry groups of associativity, associativity plus commutativity,
and associativity plus semi-commutativity, respectively. The group FB∞ has been introduced
as an extension of the group V ′, and it is natural to wonder whether it can also be realized as
the geometry group of some algebraic laws. In this section, we shall give a positive answer to
that question, at the expense of generalizing the notion of a geometry group to transformations
that are slightly more general than those corresponding to algebraic laws. Indeed, FB∞ turns
out to be, in some convenient sense, the geometry group of associativity together with a twisted
form of semi-commutativity.
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8.1. Twisted (semi)-commutation. As applying (semi)-commutativity is an involutive op-
eration, while FB∞ is a torsion-free group, we cannot expect that FB∞ be interpreted so
as to include (semi)-commutativity operators. So we are led to consider variants of (semi)-
commutativity. A natural way for making commutativity operators non-involutive is to assume
that subtrees are changed when they are switched. The simplest case is when only one of the
subtrees is changed, and it is then natural to consider the case when the new subtree depends on
the two subtrees that have been exchanged, i.e., to assume that there exists a binary operation
on the considered family of trees.

Definition. (Figure 25) Assume that T is a set of trees equipped with a binary bracket oper-
ation -[-]. Then we define the T -twisted commutation operator to be the partial operator CT

on T given by

CT : t1
∧t2 �−→ t1[t2]∧t1.(8.1)

t1 t2 t1[t2] t1

CT

Figure 25. The twisted commutation operator CT

Observe the similarity between this approach and the definition of braid diagram colourings
in Section 7.

So the idea remains to switch the left and the right subtrees but, in the transformation, the
right subtree is (possibly) changed when it crosses the left subtree. The bracket notation is
chosen to emphasize that t1[t2] is the image of t2 under the action of t1. Note that the standard
commutation operator C simply corresponds to using the trivial operation t1[t2] = t2.

As in the case of the operators Cα, we define CT
α to be the translated operator ∂αCT , i.e., CT

acting on the αth subtree. As for inverses, the operators CT
α need not be injective in general,

but we have the following obvious criterion:

Lemma 8.1. Assume that T is a set of trees equipped with a bracket operation. Then the
associated operators CT

α are injective if and only the bracket on T is left cancellative, i.e.,

t[t1] = t[t2] implies t1 = t2.(8.2)

Under such an hypothesis, the inverse operator of CT
α is still a partial operator on T . In

Section 6, we chosed to investigate the torsion-free version FB∞ of the group V ′ rather than
that of the group V , we are led to considering a twisted version of semi-commutation. In order
to preserve the relation between Cα and Σα established in Section 4, we define the twisted
version ΣT of Σ by ΣT = CT A−1(CT

1 )−1, which corresponds to setting

Definition. (Figure 26) Assume that T is a set of decorated trees equipped with a bracket
operation. Then we define the T -twisted semi-commutation operator ΣT by

ΣT : t1
∧(t2∧t3) �−→ t1[t2]∧(t1∧t3).(8.3)

We naturally define ΣT
α to be the α-translated copy of ΣT . Under the hypothesis that the

bracket on T is left cancellative, the operator ΣT
α is injective, and its inverse (ΣT

α)−1 is a partial
operator. The (semi)-commutation operators correspond to no algebraic identity, but we still
have a family of partial injections of a set of decorated trees into itself, and, on the shape of
what we did in the Part 1, it is natural to consider the monoids they generate:



GEOMETRIC PRESENTATIONS FOR THOMPSON’S GROUPS AND MULTISCALED BRAIDS 55

t1

t2 t3

t1[t2]
t1 t3

ΣT

Figure 26. The twisted semi-commutation operator ΣT

Definition. Assume that T is a family of trees equipped with a left cancellative bracket opera-
tion. Then we define G(A, CT ) (resp. G(A,ΣT )) to be the monoid generated by the operators A±1

α

and CT
α
±1 (resp. the operators A±1

α and ΣT
α
±1) acting on T .

Our aim is now to investigate the monoids G(A, CT ) and, mainly, G(A,ΣT ) for appropriate
choices of the bracket operation. Note that, if T is equipped with the trivial bracket t1[t2] = t2,
we just have

G(A, CT ) = G(A, C) and G(A, ΣT ) = G(A,Σ),

i.e., we come back to the framework of Sections 4 and 5.

8.2. LD-systems. In general, the twisted operators CT
α and ΣT

α need not satisfy the same
relations as their standard versions. However it is easy to list the requirements for the bracket
operation on T ensuring that the relations of rACΣ are valid in the monoid G(A,ΣT ).

Lemma 8.2. (i) The relations A1ΣT = ΣT ΣT
1 A, AΣT = ΣT

1 ΣT A1, and ΣT ΣT
1 ΣT = ΣT

1 ΣT ΣT
1

hold in the monoid G(A,ΣT ) if and only if, for all trees t1, t2, t3 in T , we have

t1[t2∧t3] = t1[t2]∧t1[t2],(8.4)

(t1∧t2)[t3] = t1[t2[t3]],(8.5)

t1[t2[t3]] = t1[t2][t1[t3]].(8.6)

(ii) Assume T = TS, i.e., T is the set of all S-decorated trees for some set S. Then the
conditions of (i) are satisfied if and only if there exists a left cancellative left self-distributive
bracket operation on S such that, for all trees t1, t2 in TS, the tree t1[t2] is obtained by replacing
each label y in t2 with the corresponding label x1[x2[. . . xn[y] . . .]], where (x1, . . . , xn) is the
left-to-right enumeration of the labels in t1.

(iii) In this case, all relations of rACΣ are satisfied by the operators Aα, CT
α , and ΣT

α, and
the torsion relations CT

α
2 ≈ ΣT

α
2 ≈ id are satisfied if and only if, for all trees t1, t2, we have

t1[t1[t2]] = t2.(8.7)

Proof. For (i), the verifications are given in Figures 27, 28, and 29, respectively. Then (ii)
follows from an induction on the size of the trees t1 and t2. Finally, in order to establish (iii),
it suffices to check the C-geometric relations, and the hexagon relations, which is done in
Figures 30 and 31.

Remark 8.3. As we are mostly interested in the group FB∞, we adjusted the constraints
about the bracket operation on trees so as to guarantee that the relations of rAΣ are satisfied,
and we saw that all relations of rACΣ are then valid. If we start with the operators CT

α and
require that the relations of rAC be satisfied, we come up with exactly the same constraints, as
can be read in Figures 30 and 31.
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A1

ΣT

ΣT ΣT
1 A

t1
t2

t3 t4

t1

t2 t3
t4 t1[t2∧t3] t1 t4

t1[t2]
t1

t3 t4

t1[t2]
t1[t3]

t1 t4
t1[t2] t1[t3] t1 t4

Figure 27. The relation A1Σ
T = ΣT ΣT

1 A requires t1[t2
∧t3] = t1[t2]

∧t1[t2]

A

ΣT
1

ΣT A

ΣT

t1
t2

t3 t4

t1 t2 t3 t4

t1
t2[t3]

t2 t4

t1[t2[t3]]
t1

t2 t4

t1[t2[t3]]

t1 t2
t4

(t1∧t2)[t3]

t1 t2
t4

Figure 28. The relation AΣT = ΣT
1 ΣT A1 requires (t1

∧t2)[t3] = t1[t2[t3]]

ΣT
1

ΣT

ΣT

ΣT
1

ΣT
1

ΣT

t1
t2

t3 t4

t1
t2[t3]

t2 t4

t1[t2[t3]]
t1

t2 t4

t1[t2]
t1

t3 t4

t1[t2]
t1[t3]

t1 t4

t1[t2][t2[t3]]
t1[t2]

t1 t4

t1[t2[t3]]
t1[t2]

t1 t4

Figure 29. The relation ΣT
1 ΣT ΣT

1 = ΣT ΣT
1 ΣT requires t1[t2[t3]] = t1[t2][t1[t3]]

We shall therefore be interested in the sequel with sets equipped with a left self-distributive
operation, i.e., a binary operation that satisfies the algebraic identity

x[y[z]] = x[y][x[z]](LD)

—or x(yz) = (xy)(xz) when the operation symbol is omitted.

Definition. An algebraic system consisting of a set equipped with a left self-distributive oper-
ation is called an LD-system. An LD-system is said to be left cancellative if its left translations
are injective, i.e., if (8.2) holds; it is called an LD-quasigroup (in [12]) or a rack (in [19]) if its
left translations are bijective. An LD-system is said to be involutory if (8.7) holds. Note that
an involutory LD-system is necessarily an LD-quasigroup.

If S is an LD-quasigroup, it can be equipped with a second self-distributive operation, namely
the operation such that x[[y]] is the unique z satisfying x[z] = y (assuming that -[-] denotes the
first operation). In this case, one has x[[x[y]]] = x[x[[y]]] = y for all x, y. With this notation,
saying that S is involutory amounts to saying that -[[-]] coincides with -[-].
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Figure 30. The twisted hexagon relations
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Figure 31. The twisted C-geometric relations

Example 8.4. We have seen that any set S equipped with x[y] = y is a (trivial) LD-system;
it is clearly involutory.

If G is a group, then G equipped with x[y] = xyx−1 and x[[y]] = x−1yx is an LD-quasigroup.
Still assuming that G is a group, let S be a subset of G. On G × S define (x, a)[(y, b)] =
(xax−1y, b) and (x, a)[[(y, b)]] = (xa−1x−1y, b). Then (G×S, -[-]) is an LD-quasigroup. When G
is a free group based on S, the resulting LD-quasigroup is the free LD-quasigroup based on S,
i.e., any other LD-quasigroup based on S is a homomorphic image of this LD-quasigroup.

Another left cancellative LD-system of a completely different flavour has appeared in Sec-
tion 6, namely the set FB∞ equipped with the bracket of (6.6).

From now on, we shall always restrict to the context of Lemma 8.2(ii), i.e., consider the
twisted (semi)-commutation operators on the set TS that stem from some left cancellative LD-
system S. Accordingly, we shall simplify our notation, and write G(A,ΣS) for G(A, ΣTS ), and,
similarly, G(A, CS) for G(A, CTS ) from now on.

8.3. Making groups. As in the case of the geometry monoids of algebraic laws, we can derive
some groups from the monoids G(A,ΣS) by identifying near-equal operators. The question
is again to prove that every operator in the above monoids admits a seed, i.e., that, for an
appropriate notion of substitution, the operator consists of all substitutes of some distinguished
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pair of trees. However, some care is needed because the framework is not exactly that of
Section 4, and the definition of a substitution has to be revisited.

In Section 4, we defined a substitution to be a mapping ϕ from N to a set of (decorated)
trees T , so that, for each N-decorated tree t, we obtain a tree in T denoted tϕ by replacing each
leaf labelled k in t with ϕ(k). In our current framework, we shall start with decorated trees
in which the labels are no longer integers, but more complicated data, namely abstract terms
constructed using integers and binary operations, here the bracket operations -[-] and -[[-]].

Definition. We define N̂ to be the closure of N under the brackets operations -[-] and -[[-]]; the
elements of N̂ are called terms.

Thus typical terms are 1, 3, 1[3], 1[2[[3]]], etc. Terms make an absolutely free algebra based
on N, which means that, if S is any set equipped with two binary operations, and f is any
mapping of N to S, there exists a unique way to evaluate each term τ into an element f̂(τ)
of S by mapping k to f(k) and then using the operations of S to inductively evaluate more
complicated terms.

Definition. Assume that S is a set equipped with two binary operations, and f is a mapping
of N to S. For each N̂-decorated tree t, we define the f -evaluation of t to be the S-decorated
tree obtained by replacing each label in t with its f -evaluation.

Thus, for instance, if t is the tree 1[2]∧2—from now on, we simply write � instead of ◦� for the
tree consisting of a single vertex labelled �—if S is a group G equipped with the two conjugacy
operations as in Example 8.4, and if we have f(1) = x and f(2) = y, the f -evalutation of t is
the G-decorated tree (xyx−1)∧y. The following result is obvious:

Lemma 8.5. The pair (1∧2, 1[2]∧1) is a local seed for the operators CT in the sense that, for
every left cancellative LD-system S, the restriction of the action of CT to trees of TS with the
same skeleton as 1∧2 is the set of all pairs of S-decorated trees obtained by evaluating this pair
in S. Similarly, (1∧(2∧3), 1[2]∧(1∧3)) is a local seed for ΣT .

There are two problems for extending the result to arbitrary operators in G(A, CS) or
G(A,ΣS). The first problem is that, as in the case of standard commutativity, using tree
substitutions is necessary for enlarging the skeletons. Consider for instance the product CT A:
by Lemma 8.5, the S-decorated trees in the image of CT are the evaluations of the N̂-decorated
tree 1[2]∧1, whose skeleton is {φ, 0, 1}. Now, in order to apply A, we need a larger skeleton
comprising the two additional addresses 10 and 11. In the case of standard commutativity,
the solution is to apply the substitution 1 �→ 1∧2, 2 �→ 3 and to conclude that the pair
(1∧2)∧3, (2∧1)∧3) is a seed for CA. In the current case, the solution is similar, but applying
the substitution not only changes the skeleton, but also the labels: when we replace 1 with 1∧2
and 2 with 3, then the label 1[2] occurring in the right tree of the seed of CT has to be replaced
with (1∧2)[3], which, by (8.4), is 1[2[3]]. The conclusion is that the pair ((1∧2)∧3, (1[2[3]]∧1)∧2))
is a local seed for CT A.

Similarly, let us consider CT A−1. In the untwisted case, we replace the vertex 2 with 2∧3,
and conclude that (1∧(2∧3), 2∧(3∧1)) is a seed. In the twisted case, the solution is the same,
but the label of the considered vertex is now 1[2]: we still apply the substitution 2 �→ 2∧3, but,
according to (8.5), we then distribute 1, i.e., we replace 1[2] with 1[2]∧1[3]. Finally, the pair
(1∧(2∧3), 1[2]∧(1[3]∧1)) is a local seed for CT A−1.

Definition. Assume that ϕ is a mapping of N to TN̂. First we inductively extend ϕ to N̂ so
that ϕ(τ [τ ′]) (resp. ϕ(τ [[τ ′]])) is obtained by replacing each label y in ϕ(τ ′) with τ1[. . .[τk[y]] . . .]
(resp. τ1[[. . .[[τk[[y]]]] . . .]]), where τ1, . . . , τk is the left-right enumeration of the labels in ϕ(τ).
Then we define the substitute tϕ or an arbitrary term t of TN̂ using induction as in Section 4,
i.e., we define tϕ = ϕ(t) if t has size 1, and tϕ = tϕ1

∧tϕ2 for t = t1
∧t2.
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With this extended notion of substitution, it is easy to improve Lemma 8.5 as follows:

Lemma 8.6. The pair (1∧2, 1[2]∧1) is a seed for the operators CT in the sense that, for every
left cancellative LD-system S, the action of CT on TS is the set of all pairs of S-decorated trees
obtained by evaluating a substitute of the above pair in S. Similarly, (1∧(2∧3), 1[2]∧(1∧3)) is a
seed for ΣT .

When we consider the action of twisted (semi)-commutation on trees decorated using an
LD-quasigroup S, it is routine to extend the previous result to any operator in G(A, CT ;TS , -[-])
or G(A,ΣT ;TS , -[-]). The point is that we can always assume that the left tree involved in a
seed is an injective N-decorated tree.

Things are more delicate when we consider a left cancellative LD-system that is not an
LD-quasigroup. The problem in this case is to restrict to terms that involve the bracket op-
eration exclusively, and this in turn makes it impossible to assume that the left tree in a seed
is N-decorated: for instance, a seed for the operator (CT )−1 is the pair (1∧2, 2∧2[[1]]), but,
without -[[-]], the only possible solution is (1[2]∧1, 1∧2) or one of its substitute. The problem in
this case is that, in order to carry out the proof of the counterpart of Lemma 2.4, we must be
able to unify two N̂-decorated trees. When one of the trees to unify is an injective N-decorated
tree, the existence of a solution is trivial. In the case of general N̂-decorated trees, the question
is not trivial, and it relies on specific results about the self-distributivity identity. The results
of Chapter VIII of [12] show that a seed exists provided there is at least one way of unifying
the involved trees: so, when we consider two operators in G(A, CS) or G(A, ΣS) that admit a
seed, either their product is never defined, or it admits a seed. So we are left with the question
of proving that an operator in G(A, CS) or G(A,ΣS) never has an empty domain. Here we shall
consider the second case only and prove the following result, which is sufficient:

Lemma 8.7. Assume that S is a left cancellative LD-system, and that w1, . . . , wn are words
in W (A,Σ). Then there exists an S-decorated tree t such that t • wi is defined for each i, the
action being that of G(A,ΣS).

The proof of Lemma 8.7 decomposes into two easier results.

Lemma 8.8. Assume that w, w′ are words in W (a,σ) and w is left raσ-reversible to w′. Then,
for each tree t, if t • w′ is defined, so is t • w.

Proof. It suffices to consider the various possible cases. Consider for instance the case of
a1σ

−1
1 , which is left reversible to σ−1

2 σ−1
1 a2. So assume that t • σ−1

2 σ−1
1 a2 is defined. Write t as

t1
∧(t2∧(t3∧t4)). The hypothesis that t • σ−1

2 is defined implies that t2 can be expressed as t3[t′2]
for some t′2, and then we have t •σ−1

2 = t1
∧(t3∧(t′2

∧t4)). The hypothesis that the latter tree lies
in the domain of σ−1

1 then implies that t1 in turn can be expressed as t3[t′1] for some t′1. But, in
this case, we have t • a1 = (t3[t′1]

∧t3[t′2])
∧(t3∧t4), a term explicitly in the domain of σ−1

1 . The
other cases are similar.

Lemma 8.9. Assume that u1, . . . , un are words in W+(a,σ). Then there exists a tree t such
that t • u−1

i is defined for each i.

Proof. By Proposition 6.6(ii), any two elements in the monoid FB+
∞ admit a left (least) com-

mon multiple, so there must exist words v1, . . . , vn in W+(a, σ) such that v1u1, . . . , vnun all
represent the same element of FB+

∞. Let t′ be any tree in the common domain of the positive
equivalent words viui, and let t be the common image of t′ under the (operators associated
with) these words. By construction, we have t • u−1

i = t′ • vi for each i.

Proof of Lemma 8.7. Let w1, . . . , wn be arbitrary words in W (a,σ). By Proposition 6.6(i),
each word w is left raσ-reversible to some word u−1

i vi with ui, vi in W+(a,σ). By Lemma 8.8,
it suffices to show that there exists a tree t such that t • u−1

i vi is defined for each i. The only
problem is with the negative factors u−1

i , and, there, the result is given by Lemma 8.9.
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As was said above, the previous result was the missing part in the proof of:

Lemma 8.10. Assume that S is a left cancellative LD-system. Then every operator in the
monoid G(A,ΣS) admits a seed.

It follows that, if S is a left cancellative LD-system, the monoid G(A,ΣS) satisfies the
hypothesis of Lemma 2.17, and we thus obtain:

Proposition 8.11. Assume that S is a left cancellative LD-system. Then near-equality is a
congruence on the monoid G(A,ΣS). The quotient-monoid is a group. The operators Aα and ΣT

α

induce a partial action of this group on TS.

Definition. For S a left cancellative LD-system, we define G(A,ΣS) to be the quotient-group
of G(A,ΣS) under near-equality.

Remark 8.12. We skipped the details of the unification arguments needed to completely es-
tablish Lemma 8.10, and the reader may feel uncomfortable with the result. However, the
results of this section are needed to justify the existence of the group G(A,ΣS) in the general
case only; in the specific case that we shall inverstigate in the next section, a direct argument
shows that the action of G(A,ΣS) is free, and there is no problem to quotient the monoid into
a group.

8.4. Using the self-distributive operation on FB∞. The results of Sections 5 show that,
when -[-] is the trivial operation x[y] = y, the group G(A, ΣS) is the group G(A,Σ), i.e., the
group V ′. We can now reset the initial question of this section more precisely as:

Question 8.13. Does there exist a left cancellative LD-system S such that the associated ge-
ometry group G(A,ΣS) is the group FB∞?

A positive answer would exactly correspond to what can be called a geometric realization
of FB∞, i.e., a realization of FB∞ as the geometry group of associativity and twisted semi-
commutativity. We shall now answer Question 8.13 in the positive. To do so, we have to exhibit
a convenient LD-system, and we shall do it here by using the bracket on FB∞. Another solution
using the conjugacy operation on a free group will be given in Section 9 below. Our current
aim is to prove:

Proposition 8.14. The group G(A,ΣFB∞) is isomorphic to FB∞, i.e., FB∞ is the geometry
group of associativity and FB∞-twisted semi-commutativity.

Proving Proposition 8.14 amounts to proving that the relations rAΣ make a presentation
of the group G(A,ΣFB∞) in terms of the generators Aα and ΣT

α, or, equivalently, that the
relations raσ make a presentation in terms of the generators ai and σi. We shall do this using
Proposition 1.2(i). The argument is actually very close to the one we used in Section 7 to show
that FB∞ is the group of multiscaled braids, and most of the computations have already been
done. We use a similar notation here.

Definition. For t an FB∞-decorated tree, we put

E(t) = x1 · ∂x2 · . . . · ∂n−1xn,

where t = t1
∧ . . . ∧tn

∧◦x is the decomposition of t along its right branch and xi is the ⊗-
evaluation of ti.

Lemma 8.15. Assume that t is an FB∞-decorated tree. Then we have

E(t • ai) = E(t) · ai, E(t • σi) = E(t) · σi,(8.8)

whenever the tree t • ai or t • σi is defined.
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Proof. For t = t1
∧ . . . ∧tn

∧◦x, let us denote the sequence (t1, . . . , tn) by D(t), and let E∗(t) be
the sequence (x1, . . . , xn) where xi is the ⊗-evaluation of ti. Then, whenever they exist, we
have the equalities

D(t • ai) = (t1, . . . , ti−1, ti
∧ti+1, ti+2, . . . , tn),

D(t • σi) = (t1, . . . , ti−1, ti[ti+1], ti, ti+2, . . . , tn),

hence, assuming E∗(t) = (x1, . . . , xn),

E∗(t • ai) = (x1, . . . , xi−1, xi ⊗ xi+1, xi+2, . . . , xn),

E∗(t • σi) = (x1, . . . , xi−1, xi[xi+1], xi, xi+2, . . . , xn).

The latter exactly are the formulas (7.5) and (7.6) of the proof of Lemma 7.9, and we can then
repeat the rest of the computation used there.

We are now able to conclude.

Proof of Proposition 8.14. Using an induction, we deduce from (8.8) the equality

E(t • w) = E(t) · w(8.9)

for each FB∞-decorated tree t and every word w in W (a, σ) such that t • w is defined, where
we recall w denotes the class of w in FB∞. Assume that two words w, w′ represent the same
element of G(A,ΣFB∞), i.e., the associated operators are near-equal. Then there exists at least
one tree t such that both t • w and t • w′ are defined, and, then, by hypothesis, these trees are
equal. From (8.9) we deduce

w = E(t)−1 · E(t • w) = E(t)−1 · E(t • w) = w′,

i.e., w and w′ represent the same element of FB∞.

8.5. The general group of twisted semi-commutativity. To conclude with a simple state-
ment, we can define Σ∗

α to be the union of all operators ΣT
α (considered as sets of pairs) for all

possible sets TS associated with a left cancellative LD-system, and define G(A,Σ
#
) to be the

monoid generated by all operators Aα, Σ∗
α and their inverses. Then, by construction, each spe-

cific monoid G(A,ΣS) is a quotient of G(A,Σ
#
). The same argument as above shows that near-

equality is a congruence on G(A,Σ
#
), and we can introduce the corresponding group G(A,Σ

#
).

Thus G(A,Σ
#
) can be considered naturally as the geometry group of associativity and twisted

semi-commutativity. Then we can state:

Proposition 8.16. The geometry group G(A, Σ
#
) of associativity and twisted semi-commutativity

is isomorphic to FB∞.

Proof. By construction, the group G(A,ΣFB∞) is a quotient of the general group G(A,Σ
#
).

By Lemma 8.2(iii), the group G(A,Σ
#
) is a quotient of FB∞. Now, Proposition 8.14 shows

that the canonical mapping of FB∞ to G(A,ΣFB∞) is an isomorphism, so the two surjective
homomorphisms of which the latter is the product must be isomorphisms as well.

This leads to a natural question. We have introduced, for each particular left cancellative LD-
system S, a geometry group of associativity together with S-twisted semi-commutativity. We
saw in Section 5 that, if S is trivial, this geometry group is V ′, while, if S is FB∞ equipped with
its bracket, the geometry group is FB∞ itself. Now, another natural example of left cancellative
LD-system is provided by the conjugacy operation of a group. The natural question is: what
is the associated geometry group, in particular what is the one corresponding to conjugacy in
a free group? The question will be answered in Section 9 below.
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8.6. An ordering on the group FB∞. We conclude the current with an application, namely
the orderability of the group FB∞. The Twisted semi-commutativity is involved in the technical
argument.

One of the consequences of the existence of a self-distributive structure on B∞ is the existence
of an explicit ordering compatible with multiplication on the left [16]. On the other hand, it
is known that Thompson’s group F is even bi-orderable, i.e., it admits a linear ordering with
is compatible with multiplication on both sides. So it is not surprising that the group FB∞
turns out to be orderable, although a specific argument is needed to prove that the action of F
introduces no cycle in the ordering of B∞. We shall prove:

Proposition 8.17. The group FB∞ is left-orderable, i.e., there exists a linear ordering <
on FB∞ that is compatible with multiplication on the left: x < y implies zx < zy for all x, y, z
in FB∞.

As in the case of B∞, a linear ordering on FB∞ could be derived from the self-distributive
operation described in the previous section. Actually, we shall resort to a more simple approach
consisting in using the braid ordering , thanks to a decomposition result of every element of FB∞
in terms of one braid and two elements of Thompson’s group F .

Lemma 8.18. Every element of the group FB∞ admits an (non necessarily unique) expression
of the form u−1vw with u, v in W+(a) and v in W (σ).

Proof. As FB∞ is a group of left fractions of FB+
∞, it suffices to prove that every element in

the monoid FB+
∞ as an expression consisting of a word in W+(σ) followed by a word in W+(a).

Using an induction on the number of ai’s, we deduce this from the fact that, for each pair ai, σj ,
there exists a relation in raσ transforming aiσj into a word of the form u . . . ai′ , where u consists
of one or two letters σk.

We fix some linear ordering on trees: a tree t is said to be smaller than t′, denoted t ≺ t′, if
either t has size 1 and t′ has size 2 at least, or t and t′ have size at least 2 and t/0 ≺ t′/0 holds,
or or t and t′ have size at least 2 and t/0 = t′/0 and t/1 ≺ t′/1 hold.

Definition. We say that an element of FB∞ is positive if it admits an expression u−1vw with
u, w in W+(a), v in W (σ), and

(i) either some generator σi occurs in v, but neither σ−1
i nor any σ±1

j with j < i occurs, or
(ii) the word v is empty and, for n large enough, \n\ • u is ≺-smaller than \n\ • v.

As explained in [16], defining x < y to mean that x−1y has an expression satisfying (i) yields
a linear ordering < on B∞. On the other hand, it is clear that (ii) defines a linear ordering
on F .

Lemma 8.19. A positive element of FB∞ cannot be trivial, i.e., 1 is not positive.

Proof. By construction, the bracket operation on the group FB∞ induces a well-defined opera-
tion on the subset B∞ of FB∞. So we can consider the (partial) action of FB∞ on B∞-decorated
trees involving associativity and B∞-twisted semi-commutativity. In order to prove that some
element x of FB∞ is non-trivial, it is sufficient to exhibit a B∞-decorated tree t such that t • x
exists and is not t.

Now, for t a B∞-decorated special tree, we denote by Lt the infinite sequence in BN
∞ consisting

of the labels in t enumerated from left to right, and completed with an infinite sequence of 1’s.
For instance, if t is the tree (◦σ1

∧◦1)∧◦σ2 , the sequence Lt is (σ1, 1, σ2, 1, 1, . . . ).
Assume that x is an element of FB∞ that be expressed as u−1vw with u, w in W+(a) and

v in W (σ), and assume that we are in case (i) of the definition, i.e., the braid word v is what
is called σi-positive. By Lemma 8.8, there exists at least one B∞-decorated tree t such that
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t • u−1vw is defined. Use <Lex to denote the lexicographic extension of the braid ordering <
to BN

∞. Then we have

Lt = Lt•u−1 <Lex Lt•u−1v = Lt•u−1vw = Lt•x.

This is enough to conclude that x is not 1.

We deduce

Proposition 8.20. For x, y in FB∞, say that x < y holds if x−1y is positive. Then the
relation < is a linear ordering on FB∞ that is compatible with multiplication on the left, and
extends the braid ordering.

Proof. Lemma 8.19 guarantees that the relation < has no cycle. The fact that < is linear follows
from the property that every nontrivial element of FB∞ has to be positive or to have a positive
inverse. This follows from Lemma 8.18, and from the corresponding facts in B∞ and F .

So, in particular, the group FB∞ is orderable, and Proposition 8.17 is established. Observe
that, contrary to the case of B∞, there is no global characterization of the ordering on FB∞ in
terms of σ-positivity: for instance, a1σ2a

−1
1 σ−1

3 is an expression of 1 in which the σi generator
with lower index, namely σ2, has one positive occurrence and no negative occurrence.

9. Homeomorphisms of a punctured sphere

There is a well-known realization of Artin’s braid group Bn as the mapping class group of
a disk with n punctures [1], and the induced action on the fundamental group leads to Artin’s
representation of Bn in the automorphisms of a rank n free group. In this section, we prove
similar results for the group FB∞. Starting from the fact that FB∞ can be mapped inside
the mapping class group of a sphere with a Cantor set of punctures—as already observed by
M. Brin and J. Meier—we prove here that FB∞ embeds in the groups of automorphisms of a
free group of countable rank using the ordering constructed in Section 6.

9.1. The mapping class group of a sphere with a Cantor set of punctures. As FB∞
includes B∞, one can expect to use a disk with infinitely many punctures, and therefore a free
group of infinite rank. Actually, the tree-like structure of FB∞ should make it natural to use
a set of punctures that is dense in the diameter of the disk. A suitable choice is to take this
set of punctures to be a Cantor set. Also, it is convenient to collapse the boundary of the
disk, i.e., to start with a 2-sphere. In the sequel, we fix a real number ρ in (0, 1)—for instance
ρ = 1/3—and we denote by K the Cantor subset of [0, 1] obtained by iteratively removing the
median intervals of sizes ρk.

Definition. (Figure 32) We denote by SK the topological space obtained from the disk of
diameter [−ρ, 1 + ρ] in R2 by removing all points of K, and collapsing the outer circle to a
point.

We denote by MCG(SK) the mapping class group of SK, i.e., the group of all homeomor-
phisms of SK up to isotopy. As in the case of a finite set of punctures, a continuous motion of
the points of (0, 1)\K inside D2 that finishes with (0, 1)\K gives rise to a well-defined element
of MCG(SK). We can then mimick the standard construction and define elements of MCG(SK)
corresponding to the usual Dehn’s half-twists on the one side and to Thompson’s piecewise lin-
ear homeomorphisms on the other side. Because of the Cantor set K, the full group MCG(SK)
is huge, and we shall always work with small subgroups of that huge group.

By construction, the complement of K in (0, 1) consists of a countable collection of open
intervals indexed by dyadic numbers. For further explicit constructions, we fix the following
notation.
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S2 = D2 with ∂D2 collapsed

0 1
4

1
2

3
4

1

a Cantor set of punctures
= a continuous gap with
countably many bridges
indexed by dyadic numbers

Figure 32. The space SK : a sphere in which the equator is replaced with the
complement of a Cantor set, or, equivalently, two disks connected by a countable
family of bridges (here the ratio α used to construct K is about 1/6)

Definition. (Figure 33) For α a binary address (i.e., a finite sequence of 0’s and 1’s) of length �,
we define ∆α to be the image in SK of the disk centered at the point whose binary expansion
is 0.α1 and whose diameter is (1/2)� + ρ�+1 (where ρ is the distance used in the construction
of the Cantor set K). For s a finite sequence of positive integers, we define Ds to be ∆s0.

For instance, D1, i.e., ∆0, is (the image of) the disk centered at 1/4 with diameter 1/2+ ρ2,
while D1,1, which is ∆00 is (the image of) the disk centered at 1/8 and has diameter 1/4 + ρ3.
The diameters are adjusted so that ∆α0 (resp. ∆α1) includes the left (resp. right) half of ∆α∩K.
Note that only the disks ∆α with α finishing with 0 are disks Ds: for instance, ∆1 is not a
Ds disk.

D1 ∆1

D1,1
D1,2 D2,1

D2 D3

Figure 33. The disks ∆α and Di in SK . By construction, all disks Ds,i are included in Ds.

Definition. (Figure 34) For i � 1, we define σ̃i to be the class in MCG(SK) of a clockwise
half-turn (with rescaling) that exchanges Di and Di+1 and is the identity on all other Dj ’s. We
define ãi to be the class in MCG(SK) of a motion that fixes Dj for j < i, dilates Di,1 to Di,
translates Di,j+1 to Di+1,j for every j, and contracts Dj to Dj+1 for j > i.

Lemma 9.1. Mapping σi to σ̃i and ai to ãi defines a homomorphism of FB∞ into MCG(SK).

Proof. It suffices to check that all relations in raσ induce isotopies. The result is well-known
for Coxeter relations; the case of the Thompson relations is clear. Finally, the diagrams of
Figure 35 treat the mixed relations.

In the sequel, the subgroup of MCG(SK) generated by all σ̃i and ãi, i.e., the image of FB∞
under the homomorphism of Lemma 9.1, will be denoted by F̂B∞.
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SK
σ̃i

SK

ãi

Di Di+1 Di
Di+1

Di Di+1

Di

Di Di+1Dj+1

Di+1 Di,1Di,2.. Dj

Figure 34. Action of σ̃i and ãi, with the detail on the equator

ã1

σ̃2

σ̃1

ã2

σ̃1

ã2

σ̃1

σ̃2

ã1

σ̃1

Figure 35. Relations in MCG(SK) (the order of the factors corresponds to com-
position of functions)

9.2. Action on the fundamental group. As the set SK has a perfect set of punctures, its
fundamental group is a group of uncountable type. Here we shall be interested only in the
subgroup of π1(SK) corresponding to loops that cross the equator finitely many times only.
This subgroup will be called the tame fundamental group of SK, denoted πtame

1 (SK). The latter
group is easily described. The basepoint of all loops will be the South pole of SK.

Definition. (Figure 36) For s a finite sequence of positive integers, we define xs to be the class
in πtame

1 (SK) of the loop that starts from the basepoint, reaches the South pole of Ds, turns
once clockwise around Ds, and returns to the basepoint.

Lemma 9.2. The group πtame
1 (SK) is a free group based on the family of all xs for s a finite

sequence of positive integers.

Proof. In order to prove that the family {xs; s ∈ N∗} generates πtame
1 (SK), it is sufficient to prove

that, for each nonempty binary address α, the loop γα crossing the equator at 0 and returning
by the bridge centered at the rational with binary expansion 0.α can be expressed as a product
of xs’s. Indeed, the boundary of the initial disk D2 was collapsed, so the loop crossing at 0 and
returning at 1 is trivial, and, if we can obtain γα, then, by considering γ−1

β γα, we can obtain
any loop crossing the equator twice, and, from there, any loop crossing the equator finitely
many times.

So let us inductively define a word wα in the xs’s for α a nonempty address. We start with
w0 = 1 and w1 = x1. Then, for α = 0β, we construct wα from wβ by appending 1 at the
beginning of each index s occurring in wβ . For α = 1β, we construct wα from wβ by shifting
the first entry by +1 in every index s occurring in wβ and adding x1 on the left. For instance,



66 PATRICK DEHORNOY

*

x1

x1,1

x1,2

x2

x2,1 x3

SK

Figure 36. Generators of πtame
1 (SK)

for α = 1101, we successively find w1 = x1, next w01 = x1,1, then w101 = x1x2,1, and, finally,
wα = x1x2x3,1. It is easy to check inductively that wα so constructed represents the loop γα.

It remains to show that the elements xs form a free family. Assume that we have a relation
in πtame

1 (SK), say W (xs1 , . . . , xsn) = 1 with W a freely reduced word. Assume first that the
disks Ds1 , . . . , Dsn are pairwise disjoint. Then collapsing each disk Dsi to a point induces
a surjective homomorphism of the subgroup of πtame

1 (SK) generated by xs1 , . . . , xsn
onto the

fundamental group of a disk with n punctures. The latter is known to be a free group of rank n,
so the only possibility is that W be trivial.

Finally, consider the case when some disk Dsi may include another disk Dsj , i.e., when some
index si may be a prefix of another index sj . Then for each i, we define yi = xsi,1xsi,2 . . . xsi,pi

,
where pi is the minimal p such that (si, p) is a prefix of no other index sj . Note that the process
creates no new inclusions. Let f be the result of collapsing all generators xsi,p with p > pi.
Then, by construction, we have f(xsi

) = yi, and, therefore, the hypothesis W (xs1 , . . . , xsn
) = 1

implies W (y1, . . . , yn) = 1. Now, for each i, the generator xsi,pi occurs in yi only, and the
disks Dsi,pi are disjoint. Then the same argument as above shows that W must be trivial.

The homeomorphisms of SK induce automorphisms of its fundamental group π1(SK), and,
possibly, of its subgroup πtame

1 (SK). In particular, this is the case for the homeomorphisms
in F̂B∞, i.e., those generated by the elements ãi and σ̃i. In this way, we obtain a homomorphism
of F̂B∞ into the automorphisms of a free group of countable rank.

Definition. We denote by φ the homomorphism of FB∞ into Aut(πtame
1 (SK)) induced by the

action of FB∞ on SK described in Lemma 9.1. For w a word in W (a,σ), we denote by ŵ the
image of the element of FB∞ represented by w under φ.

Explicit formulas are easy to obtain:

Lemma 9.3. The automorphisms of πtame
1 (SK) associated with σi and ai are:

σ̂i : xj,s �→ xj,s for j �= i, i + 1, xi,s �→ xixi+1,sx
−1
i , xi+1,s �→ xi,s,(9.1)

âi :

{
xj,s �→ xj,s for j < i, xj,s �→ xj+1,s for j > i,

xi �→ xixi+1, xi,1,s �→ xi,s, xi,j+1,s �→ xi+1,j,s for j � 2.
(9.2)

Proof. The formulas can be read in Figure 37 directly.



GEOMETRIC PRESENTATIONS FOR THOMPSON’S GROUPS AND MULTISCALED BRAIDS 67

∗

∗

∗

σi ai

xi xi+1
xi+2

Di Di+1

Di Di+1Di

Di+1

xixi+1

xi+2
xi+3

xixi+1x
−1
i

xi+2

xi

Figure 37. Action of σi and ai on the generators of πtame
1 (SK)

It will be also convenient to have for the inverses of the generators; these are:

σ̂−1
i : xj,s �→ xj,s for j �= i, i + 1, xi,s �→ xi+1,s, xi+1,s �→ x−1

i+1xi,sxi+1,(9.3)

â−1
i :

{
xj,s �→ xj,s for j < i, xj+1,s �→ xj,s for j > i,

xi,s �→ xi,1,s, xi+1 �→ x−1
i,1 xi, xi+1,j,s �→ xi,j+1,s for j � 2.

(9.4)

The representation of FB∞ in Aut(πtame
1 (SK)) defined above extends the standard Artin

representation of the braid group B∞. Let us denote by FN∗ the free group generated by
the elements xs—hence a copy of πtame

1 (SK)—and by FN the subgroup of FN∗ generated by
the elements xi with i a positive integer. Then the restriction of σ̂i defines an automorphism
of FN, namely the standard Artin representation of braids: σ̂i maps xi to xixi+1x

−1
i and xi+1

to xi and leaves all other xj ’s unchanged. On the other hand, the restriction of âi defines
an endomorphism of FN that is not surjective: neither xi nor xi+1 belong to the image of ãi.
Restoring surjectivity requires that new generators xi,j be added so that xi,1 is â−1

i (xi) and
xx,j+1 is â−1

i (xi+1,j), and, by and by, one arrives to the full group FN∗ .
Formulas (9.1) and (9.2) enable one to explicitly determine the automorphism associated

with an element of FB∞. In the sequel, it will be also necessary to use the following alternative
recipe, which connects the computation of the automorphism with twisted semi-commutativity
as defined in Section 8.

Definition. For α a binary address, we define yα in FN∗ inductively by the following rules:
yφ = 1, yα0 = xα, and yα1 = y−1

α0 yα. We say that an FN∗ -labeled tree t is natural if, for each
address α of a leaf in t, the label of α is yα.

Thus, for instance, we have y00 = x0 = x1,1, y01 = y−1
00 y0 = x−1

1,1x∅ = x−1
1,1x1, y10 = x1 = x2,

and y11 = y−1
10 y1 = x−1

2 y−1
0 yφ = x−1

2 x−1
1 . The tree (◦x1,1

∧◦x−1
1,1x1

)∧◦x−1
1

is a natural FN∗ -labeled
tree of size 3.

Proposition 9.4. For w in W (a,σ), the automorphism ŵ can be computed as follows:
(i) Choose a natural FN∗-labeled tree t such that t • w is defined;
(ii) Then we have t • w = t′ŵ, where t′ is the natural tree with the same skeleton as t • w,

i.e., ŵ(yα) is the label at α in t • w whenever α is the address of a leaf in t • w.
(iii) The latter relation extends to each α in the skeleton of t • w if the labels are propagated

to interior nodes using the rules of Lemma 9.2.
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Proof. It is straightforward to directly check the result when w consists of a single letter σ±1
i

or a±1
i . So the point is to show that the result is true for w = w1w2 assuming that it is true

for w1 and w2. Assume that t is a natural tree such that t • w exists. Denote by t′ and t′′

the natural trees whose skeletons are those of t • w1 and of t • w, respectively. By induction
hypothesis, we have t • w1 = t′ŵ1 , hence t • w = t′ŵ1 • w2. By induction hypothesis again,
we have t′ • w2 = t′′ŵ2 , which means that, for each α in the outer skeleton of t′′, ŵ2(yα) is
the label at α in t′ • w2. By construction, this label is an expression E(yβ1 , . . . , yβq

) involving
some variables yβ1 , . . . , yβq with products and inverses. When we substitute t′ with t′ŵ1 and
apply the same associativity and semi-commutativity operators, the result is the expression
E(ŵ1(yβ1), . . . , ŵ1(yβq

)), which is also ŵ1(E(yβ1 , . . . , yβq
)) as ŵ1 is a group automorphism.

We deduce that t • w is t′′ŵ1◦ŵ2 , i.e., t′′ŵ, as was expected.

A detailed example is described in Figure 38.

t : (1) t • a2σ1 : (1) t′ : (1)

x1 (x−1
1 ) (x1x2x3x

−1
1 ) (x1x

−1
3 x−1

2 x−1
1 ) (x1) (x−1

1 )

(x2) (x−1
2 x−1

1 ) (x1x2x
−1
1 ) x1x3x

−1
1 x1 x−1

3 x−1
2 x−1

1 (x1,1) x−1
1,1x1 x2 x−1

2 x−1
1

x2,1 x−1
2,1x2 x3 x−1

3 x−1
2 x−1

1 x1x2,1x
−1
1 x1x

−1
2,1x2x

−1
1 x1,1,1 x−1

1,1,1x1,1

a2σ1
vs.

Figure 38. Computing the automorphism of FN∗ associated with a2σ1: starting
with t wearing the “natural” labels (expressed in x-coordinates), we apply associa-
tivity and conjugacy-twisted semi-commutativity to obtain t • a2σ1, and we compare
it with the natural tree t′ with the same skeleton. For each address α, the image
of yα (expressed in x-coordinates) is the label written at α in t • a2σ1; originally,
only the leaves have labels, but we can propagate the labels to inner nodes using the
rules of Lemma 9.2, i.e., labelling each node with the product of the labels of its
sons. So we read that x1 is mapped to x1x2x3x

−1
1 , that x2 is mapped to x1, and that

x1,1,1 is mapped to x1x2,1x
−1
1 . For addresses outside the skeleton of t′, it suffices to

extend t into a bigger tree so that the skeleton of the corresponding image contains
that address. For instance, to determine the image of x1,1,2 (i.e., y0010), we enlarge t
by splitting the leaf at 101 into two new leaves with labels x2,2 and x−1

2,2x2, and we

read that x1,1,2 is mapped to x1x2,2x
−1
1 .

9.3. The injectivity result. It is well-known that Artin’s representation is an embedding
of B∞ into Aut(FN). Our aim now is to extend the result and to prove the following result,
which gives a realization of FB∞ as a group of automorphisms of a (countable rank) free group:

Proposition 9.5. The representation φ of FB∞ in Aut(FN∗) is an embedding.

The method for proving Proposition 9.5 relies on the possibility of considering words w of
a specific form, in connection with the linear ordering of FB∞ described in Section ??. In the
case of braids, the method was first used by D. Larue in [26] (see also [16]), and it gives a useful
method for proving the possible injectivity of a representation [30, 7, 31].

For u a word in the letters x±1
s , we use red(u) for the freely reduced word obtained from u

by removing all pairs xsx
−1
s and x−1

s xs. Thus FN∗ identifies with the set of all freely reduced
words equipped with the product u1 ∗ u2 = red(u1u2).

We begin with two auxiliary results. The first one is essentially identical to the property
established as [16] Proposition 5.1.6 in the case of braids. The only change is the possible
occurrence of varaiables xs with s of length more than 1.
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Lemma 9.6. For each i, the image of a word ending with x−1
i under σ̂i or under σ̂±1

j with
j > i is a word ending with x−1

i .

Proof. Assume that u is a word ending with x−1
i , say u = u′x−1

i . Then we have

σ̂i(u) = red(σ̂i(u′)xix
−1
i+1x

−1
i ).(9.5)

In order to prove that the right hand word in (9.5) ends with x−1
i , it is sufficient to check that

the final x−1
i cannot be cancelled during the reduction process by some xi coming from σ̂i(u′).

By (9.1), a letter xi in σ̂i(u′) must come from some letter in u′, namely xi, x−1
i , or xi+1.

We consider the three cases separately and display the involved letter in u′. Assume first
u′ = u′′xiu

′′′. Then (9.5) becomes

σ̂i(u) = red(σ̂i(u′′)xixi+1x
−1
i σ̂1(u′′′)xix

−1
i+1x

−1
i ).

The hypothesis that the first xi cancels the final x−1
i implies that the word σ̂i(u′′′) must be

empty, hence so must be u′′′. But this contradicts the hypothesis that u′′xiu
′′′x−1

i is reduced.
Assume now u′ = u′′x−1

i u′′′. Then (9.5) becomes

σ̂i(u) = red(σ̂i(u′′)xix
−1
i+1x

−1
i σ̂1(u′′′)xix

−1
i+1x

−1
i ).

The hypothesis that the first xi cancels the final x−1
i implies now that x−1

i+1x
−1
i σ̂i(u′′′)xix

−1
i+1

freely reduces to the empty word, which implies that σ̂i(u′′′) must be xix
2
i+1x

−1
i , and, therefore,

that u′′′ must be x2
i . But this contradicts the hypothesis that u′′x−1

i u′′′ is reduced.
Finally assume u′ = u′′xi+1u

′′′. Then (9.5) becomes

σ̂i(u) = red(σ̂i(u′′)xiσ̂1(u′′′)xix
−1
i+1x

−1
i ).

The hypothesis that the first xi cancels the final x−1
i implies now that σ̂i(u′′′)xix

−1
i+1 reduces to

the empty word, hence σ̂i(u′′′) must be xi+1x
−1
i , and, therefore, that u′′′ must be x−1

i+1xi. But
again this contradicts the hypothesis that u′′xi+1u

′′′ is reduced.
We consider now similarly the action of σ̂e

j with j > i and e = ±1. We find

σ̂j(u) = red(σ̂e
j (u

′)x−1
i ),(9.6)

and we still wish to show that the final x−1
i cannot vanish in the reduction process. Now it

could do it only with some xi in σ̂e
j (u

′), itself coming from some xi in u′. For a contradiction,
we display the latter as u′ = u′′xiu

′′′. Then (9.6) becomes

σ̂j(u) = red(σ̂e
j (u

′′)xiσ̂
e
j (u

′′′)x−1
i ),

and, as above, we see that σ̂e
j (u

′′′) must be empty, hence that u′′′ must be so, contradicting the
hypothesis that u′′xiu

′′′x−1
i is reduced.

The second preliminary result is specific to our current situation.

Definition. A word in the letters x±1
s is said to be special if it is freely reduced and it admits a

suffix of the form x−1
s ss,j1,s1 . . . xs,jr,sr

, where r is nonnegative, s, s1, . . . , sr are finite sequences
of positive integers, and j1, . . . , jr are positive integers.

Thus x−1
1 and x1x

−1
2 x2,1 are special words.

Lemma 9.7. For each i, the image of a special word under â−1
i is a special word.

Proof. Let u = u′x−1
j,ssj,s,j1,s1 . . . xj,s,jr,sr be a special word. We consider the image of u un-

der â−1
i , according to the various mutual positions of i and j. Assume first j < i. Then we

have â−1
i (xj,s) = xj,s, and, similarly, â−1

i (xj,s,jk,sk
) = xj,s,jk,sk

for each k, hence

â−1
i (u) = red(â−1

i (u′)x−1
j,sxj,s,j1,s1 . . . xj,s,jr,sr ).(9.7)
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In order to conclude that the right hand word in (9.7) is special, it suffices to prove that the
displayed letter x−1

j,s cannot vanish during the reduction process. Now assume that it does.
The letter x−1

j,s is cancelled by some letter xj,s, which must come from â−1
i (u′). By (9.4),

such a letter must come from a letter xj,s of u′. Let us display the considered letter and
write u′ = u′′xj,su

′′′. Then â−1
i (u′) is red(â−1

i (u′′)xj,sâ
−1
i (u′′′)). Now the hypothesis that the

final x−1
j,s in â−1

i (u′)x−1
j,s is cancelled by the xj,s above means that â−1

i (u′′′) is the empty word,
hence, as âi is an automorphism, that u′′′ itself is the empty word. But this means that u′

finishes with xj,s, contradicting the hypothesis that u′x−1
j,s is a reduced word.

The argument is similar in the case j > i+1, and, more generally, it works in all cases except
those of xi and xi+1. Indeed, in these cases, â−1

i maps xj,s to a (possibly different) letter xj′,s′

so that a letter xj′,s′ in a word â−1
i (v) must come from a letter xj,s in v. In each such case, the

previous argument shows that the letter x−1
j,s witnessing for specialness becomes a letter x−1

j′,s′

that cannot be cancelled. On the other hand, (9.4) shows that, in all considered cases, the final
letters xj,s,jk,sk

become letters xj′,s′,jk,sk
, and the word â−1

i (u) is special.
So there remain the cases of xi and xi+1. To simplify reading, we assume i = 1. Let us first

consider x1, i.e., u = u′x−1
1 x1,j1,s1 . . . x1,jr,sr

, which gives

â−1
1 (u) = red(â−1

1 (u′)x−1
1,1x1,1,j1,s1 . . . x1,1,jr,sr ).(9.8)

The question is to study whether the letter x−1
1,1 can vanish in the reduction. Now (9.4) shows

that a letter x1,1 in â−1
1 (u′) must come either from a letter x1 or from a letter x−1

2 in u′. By
the same argument as above, the first case is excluded. As for the second one, let us display
the involved letter x−1

2 and write u′ = u′′x−1
2 u′′′. Then (9.8) becomes

â−1
1 (u) = red(â−1

1 (u′′)x−1
1 x1,1â

−1
1 (u′′′)x−1

1,1x1,1,j1,s1 . . . x1,1,jr,sr ,

and the hypothesis is that â−1
1 (u′′′) is the empty word. So, as above, we deduce that u′′′ is

empty, and obtain u′ = u′′x−1
2 , which is not forbidden, and then

â−1
1 (u) = red(â−1

1 (u′′)x−1
1 x1,1,s1 . . . x1,1,sr ).(9.9)

In order to show that the right hand side of (9.9) is a special word, it is sufficient to prove
that the letter x−1

1 cannot disappear. Now the only way x−1
1 could vanish is with some x1 in

â−1
1 (u′′), necessarily coming from some x2 in u′′. Write u′′ = u′′′x2u

′′′′. As above, we obtain
â−1
1 (u′′′′) = ε, hence u′′′′ = ε, implying that u′′ finishes with x2, and contradicting that u′′x−1

2

be a reduced word. So the study for x1 is complete: the critical letter x−1
1 becomes a letter x−1

1,1

that may vanish in the reduction process, but, in this case, there remains instead a letter x−1
1

that still witnesses for specialness.
Finally, let us consider the case of x2. The problem here is that â−1

1 maps x2 to x−1
1,1x1,

which is not a single letter. So assume u = u′x−1
2 x2,j1,s1 . . . x2,jr,sr . We obtain

â−1
1 (u) = red(â−1

1 (u′)x−1
1 x1,1x1,j1+1,s1 . . . x1,jr+1,sr

).(9.10)

In order to conclude that â−1
1 (u) is a special word, it suffices to prove that the letter x−1

1 cannot
vanish. Now a letter x1 in â−1

1 (u′) must come from a letter x2 in u′, and we argue as above.
This completes the proof.

With this preliminary result at hand, we can now prove the injectivity of the homomor-
phism φ of FB∞ into Aut(FN∗).

Proof of Proposition 9.5. Our aim is to show that, if w is a word in W (a,σ) that represents
a non-trivial element of FB∞, then the automorphism ŵ is not the identity mapping of FN∗ ,
i.e., there exists at least one letter xs such that ŵ(xs) is not xs. Proposition ?? tells us that
every element of FB∞ can be represented by a word w−1

1 w2w3, with w1, w3 in W+(a) and w2
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in W (σ), so we can assume that w has the form above. We separate two cases, according to
whether the braid word w2 is trivial or not.

Case 1: w2 = ε, i.e., w ∈ W (a). Let (t, t′) be the pair of trees associated with w as in
Proposition ??, i.e., the seed of the corresponding associativity operator. Let α1, . . . , αn (resp.
α′

1, . . . , α′
n) be the left-to-right enumeration of the addresses of leaves in t (resp. t′). Then

Proposition 9.4 shows that, for each k, the automorphism ŵ maps yα′
k

to yαk
, and yα′

k0 to yαk0.
The latter variables are xs-variables. The hypothesis that w is non-trivial implies that α′

k is
different from αk for some k, so we conclude that there must exist a variable xs such that ŵ
maps xs to xs′ with s′ �= s, and, therefore, ŵ is not the identity mapping.

Case 2: w2 �= ε. According to the characterization of the braid ordering recalled in Propo-
sition ?? and at the expense of possibly replacing w with w−1, we can assume that there exists
an index i such that at least one letter σi occurs in w′ but no letter σ−1

i or σ±1
j with j < i

occurs in w2.
Let (t, t′) be a pair of trees satisfying t′ = t • w3 in the sense of the associativity action of

Section 2, and such that t is a right comb of size at least i + 1: such a tree t certainly exists as
w1 consists of positive letters only. Let α be the ith leaf address in t′ starting from the left: by
Proposition 9.4, we have ŵ3(yα) = xi, and, therefore, ŵ3(yα0) = xi,1, i.e., ŵ3(xs) = xi,1, where
xs is the name of yα0 in the x-basis (using yα0 instead of yα is necessary only when α does not
end with 0).

We now consider ŵ2(ŵ3(xs)), i.e., ŵ2(xi,1). Let us display the occurrences of σi in w2 and
write w2 = w2,0σiw2,1σi . . . σiw2,r, where w2,k contains no letter σ±1

j with j � i. Then ŵ2,r

fixes xi,1, while σi maps it to xixi+1,ix
−1
i , a reduced word ending with x−1

i . Applying Lemma 9.6
repeatedly, we then deduce that the final x−1

i cannot disappear, and, so, ŵ2(ŵ3(xs)) is a reduced
word ending with x−1

i .
It remains to consider the action of ŵ1

−1. Now every reduced word ending with x−1
i is a

special word, hence, by Lemma 9.7, its image under ŵ1
−1 is still a special word. We deduce

that ŵ(xs) is a special word. As xs itself is not a special word, we conclude that ŵ cannot be
the identity mapping.

9.4. Back to twisted commutativity. In Section 8, we introduced the notion of twisted
(semi)-commutativity and showed that, for each left cancellative LD-system S, associativity
together with S-twisted semi-commutativity gives rise to a geometry group G(A, ΣS) which is
a quotient of the group FB∞. A natural example of left cancellative LD-system is provided by
conjugacy in a group, in particular in a free group, and we raised the question of determining
the corresponding group G(A,ΣS). The results of the current section enable us to answer the
question:

Proposition 9.8. Assume that G is a free group of rank at least 2. Then the geometry group
of associativity together with G-twisted semi-commutativity is FB∞.

Proof. As every free group of rank at least 2 contains a free group of countable rank, we
can assume that G is FN∗ without loss of generality. We know that G(A,ΣFN∗ ) is a quotient
of FB∞, and the question is to prove that, if w is a word in W (a, σ) representing a non-trivial
element of FB∞, then the corresponding FN∗ -twisted semi-commutativity operator on FN∗ -
labeled trees, say w̃, is not the identity. Now Proposition 9.5 shows that the automorphism ŵ
is not the identity mapping, so, in order to prove that w̃ is not trivial, it is sufficient to show
that ŵ can be constructed from w̃. But this is precisely what Proposition 9.4 asserts.

Finally, we proved in Section 7 that the multiscaled braid group is isomorphic to FB∞
using FB∞-colourings. This result can also be deduced from the results of the current section.
Indeed, it is sufficient to prove that, if w is a word in W (a,σ), then the automorphism ŵ is
determined by the diagram associated with w, and, in particular, that a non-trivial diagram
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leads to a non-trivial automorphism. Indeed, as we know that ŵ is non-trivial whenever w
does not represent 1 in FB∞, we deduce that, in this case, the diagram associated with w is
not trivial, i.e., the morphism from FB∞ to the multiscaled braid group is injective. So it
just remains to explain how to compute ŵ from the diagram associated with w. This can be
done using FN∗ -coloured multiscaled diagrams following the same scheme as in the proof of
Proposition 9.4. Assuming that D is a t strand diagram for w, we attribute to each position α
the colour yα, and we propagate the colours using conjugacy of FN∗ for the crossings; then ŵ
is determined by the property that the image of yα is the final label of the strand finishing at
position α in the diagram. The details are easy.

9.5. Further questions. There are so many interesting results about Thompson’s group F
and Artin’s group B∞, and the group FB∞ seems to be so well suited to extend most of them
that the list of potential problems about FB∞ is virtually infinite, and we shall mention only
very few here.

Firstly, the group similar to FB∞ but involving twisted commutativity instead of semi-
commutativity was not addressed here, thus a torsion-free version of Thompson’s group V .
The presentations of V described in Section 4 clearly indicate the candidate group—which is
the group BV of [2]. The details should be easy, although probably tedious.

Next, we did not discuss much the geometry of the Cayley graph of FB∞ here. Both in terms
of the infinite sequences of generators ai, σi. or in terms of the finite subfamily a1, a2, σ1, σ2,
or even of the extended families Aα, Σα, this study is certainly interesting.

Then, the study of the homological properties both of the braid groups and of Thompson’s
groups led to deep results, and extending the study to FB∞ is an obvious task. The methods
of [6] or [17] should be relevant there.

Finally, tensor braided categories should provide an alternative framework for the compu-
tations developed in this paper. Establishing that the pentagon relations make a presentation
for the geometry group of associativity is another way of proving a coherence theorem for
monoidal categories [28]. Is there a similar counterpart for the results established in this paper,
for instance the embeddability of FB∞ into a group of automorphisms of free groups, or the
FB∞-evaluability of FB∞-decorated trees by means of the self-distributive structure on this
set?

10. Appendix: The cube condition for the presentation (a,σ; raσ)

The algebraic results of Section 6 mainly rely on the fact that the presentation (a,σ; raσ)
satisfies the so-called left and right cube conditions. There are combinatorial properties whose
verification involves systematically considering all possible triples of letters. The alphabet we
use here, namely the union of a and σ, is infinite, but it is easy to see that only finitely many
different patterns may appear, so that the needed verifications are finite in number. Here we
give these verifications.

The left cube condition. We recall from Section 3 that checking the left cube condition for a
triple of letters (x, y, z) means proving that, whenever the word xy−1yz−1 can be left reversed
to some word v−1u with u, v containing no negative letter, then the word vxz−1u−1 can be left
reversed to the empty word.

In the specific case of (a,σ; raσ), we observed that left reversing is a deterministic process,
i.e., there exists at most one way to reverse a given word w to a word of the form v−1u with
u, v positive.

Definition. For u, v in W+(a,σ), we denote by u/v the unique positive word u′ such that
uv−1 is left raσ-reversible to v′−1u′ for some positive word v′, if such words exist.
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If w is left reversible to w′, then w−1 is left reversible to w′−1, and it follows that, if uv−1 is
left reversible to some word v′−1u′, then the latter word is (v/u)−1(u/v). So, for instance, we
have σ1/σ2 = σ2σ1 and σ2/σ1 = σ1σ2, and Lemma 6.5 can be rephrased as the equalities

σi/aj = dj(σi), aj/σi = aσi[j].(10.1)

In the case of the a-generators, the formulas always take the form ai/aj = ai′ , and the involved
index i′ will be simply denoted i/j, so that we always have ai/aj = ai/j . For instance, one has
1/2 = 1 and 2/1 = 3. We shall appeal to two easy auxiliary formulas.

Lemma 10.1. For all i, j, k, we have

dk(σi)/dk(σj) ≡ dσj [k](σi/σj),(10.2)

σk[i]/σk[j] = dj(σk)[i/j].(10.3)

Proof. As for (10.2), the only critical case is when i and j are neighbours, and k is either i
or j. So it is sufficient to consider the cases i = 1, j = 2, and k = 1 or 2 and to simultaneously
consider dk(σi)/dk(σj) and dk(σj)/dk(σi). We start with σ1/σ2 = σ2σ1 and σ2/σ1 = σ1σ2. For
k = 1, we obtain

d1(σ1)/d1(σ2) = σ1σ2/σ3 = σ2σ1σ3σ2, d2(σ2σ1) = σ2σ3σ1σ2,

which are equivalent braid words, and, similarly, d1(σ2)/d1(σ1) = σ1σ2σ3 = d2(σ1σ2). For
k = 2, we find d2(σ1)/d2(σ2) = σ2σ1 = d3(σ2σ1) and d2(σ2)/d2(σ1) = σ1σ2σ3 = d1(σ1σ2).

The argument is similar for (10.3),

We are ready to consider all possible triples of letters. We sort them according to the
numbers of σ’s and a’s. First, in the case of three σ’s or of three a’s, it is already known that
the left (and right) cube condition is satisfied. So, we have only to consider the cases involving

two letters of one family and one of the other family. We shall use the notation v′ v�
u

u′

to

express that uv−1 is left reversible to v′−1u′. Then checking the left cube condition at (x, y, z)

means that, when we reverse xy−1yz−1 to v−1
1 v−1

2 u2u1 by filling the diagram
v1

v2

y y

z

�

� �

x

u2 u1

,

then the word v1v2xz−1u−1
1 u−1

2 is left reversible to the empty word, i.e., filling the following

diagram ends with ε edges on the left and the top:

ε

ε

ε

ε ε ε

v2 v1 x

u2

u1

z�

�

�

�

�

�

�

�

�
So, in each case, it is

sufficient to give the corresponding two diagrams, and we are left with four cases, corresponding
to the patterns (σ, σ, a), (σ, a, σ), (a, a, σ), and (a, σ, a) respectively. Figures 39 to 42 give the
details.

The right cube condition. The verifications for the right cube condition are similar, except
that we use right reversing, denoted �, instead of left reversing, i.e., we push the negative letters
to the right. Again, right reversing is a deterministic process in the case of the presentation
(W (a,σ), raσ), so it leads to at most one final word of the from uv−1 with u, v positive. For
u, v in W+(a,σ), we shall denote by u\v and v\u the unique positive words such that u−1v is
right reversible to (u\v)(v\u)−1, if such words exist. Observe that, in contrast to the case of
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aσi/σj [σj [k]]

σj/σi

σi

σi/σj

σj

σj

ak

dσj [k](σi/σj) dk(σj)

aσj [k]

aσi/σj [σj [k]] σj/σi σi

dσj [k](σi/σj)

dk(σj)

ak

dk(σi)

dk(σj)/dk(σi)

dk(σi)/dk(σj)
dσi[k](σj/σi)

aσj/σi[σi[k]] aσi[k]ε

ε

ε

ε

ε

ε

�

� � �

��

�

Figure 39. The (σ, σ, a) case: we start from σiσ
−1
j σja

−1
k , let reverse

it to (σj/σi)
−1(aσi/σj [σj [k]])

−1(dσj [k](σi/σj))((dk(σj)), then restart from

(aσi/σj [σj [k]]) (σj/σi) (σi) (σk)−1 (dk(σj))
−1 (dσj [k](σi/σj))

−1 and check that the

latter word left reverses to the empty word using (10.2) and the fact that the
permutations associated with (σi/σj)σj and (σj/σi)σi coincide, as both come from
the left lcm of the involved braid (once ε is obtained everywhere, there is no need to
complete the last three squares.
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ε
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Figure 40. The (σ, a, σ) case: a similar method, using the same auxiliary results.
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Figure 41. The (a, a, σ) case: again the same method, but using (10.3).

left reversing, right reversing need not converge in every case: indeed, raσ contains no relation
of the form ai . . . = ai+1 . . . or σi . . . = ai . . . , which means that the patterns a−1

i ai+1 and
σ−1

i ai cannot be reversed on the right.
It is possible to establish general formulas similar to (10.1) to (10.3). In particular, it is easy

to inductively establish the following:
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σdk(j)

ai

aσj [i]
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Figure 42. The (a, σ, a) case: similar to the (a, a, σ) case, using (10.3) again.

Lemma 10.2. For u, v in W+(σ), the word u\(vaj), when it exists, is obtained from u\(vσj)
by replacing the last letter σk with the corresponding letter ak. The word aj\u, when it exists,
is obtained from u by erasing the j-th strand (in the braid diagram coded by u).

However, using such formulas is uneasy as one has to carefully check that the considered
words do exist. Although seemingly longer, it is actually easier to systematically consider all
possible cases, which are not so many owing to the symmetries—and to double-check using a
computer program. As in the case of left reversing, we can forget about the cases involving
three σ’s or three a’s; also, the cases when two letters coincide automatically hold.

For instance, we shall consider here the case (ai, σj , ak). By symmetry, we may assume
i � k, and even i < k as the case when two letters coincide automatically holds, and, then, i <.
Assume first k = i+1. Then considering the possible j’s, namely j = i+1, and j � i+2, shows
that no right reversing terminates as one always reaches some pattern a−1

i′+1ai′ . Next assume
k = i+2. The cases j � i+3 are straightforward due to commutation relations, j = i+2 leads
to nothing, so the only non-trivial case is j = i + 1 = k − 1. Then one checks that a−1

i σjσ
−1
j ak

right reverses to σiσi+1aia
−1
i+1σ

−1
i σi+1, from where the result is easy. Assume now k = i + 3.

Then the cases j = i + 1 and j = i + 2 are similar to the case j = i + 1 with k = i + 2 (actually
simpler), while j � i + 4 is trivial owing to commutation relations. Finally, k � i + 4 is trivial,
and aj then commutes with each factor. This completes the case of the triples (ai, σj , ak).

The three other kinds of triples are treated similarly—with no possible use of symmetry for j
in the case of the non-symmetric triples (σi, σj , ak) and (ai, aj , σk). Almost all cases are trivial.
As one can expect, the only more complicated cases are those where i, j, k are neighbours.
Lemma 10.2 explains that no word of length more than 6 appears in the diagrams, as all words
appearing here are substitutes of words involved in the cube condition for braids, and the latter
essentially are divisors of the fundamental braid ∆4, which has length 6 with respect to the
generators σi. We give in Figure 43 an typical example.

References

[1] J. Birman, Braids, links, and mapping class groups, Annals of Math. Studies 82, Princeton Univ. Press
(1975).

[2] M. Brin, The algebraic structure of the braided Thompson group, Preprint (2003).
[3] K. Brown & R. Geoghegan, An infinite-dimensional torsion-free F∞ group, Invent. Math. 77 (1984) 367–

381.
[4] G. Burde & H. Zieschang, Knots, de Gruyter, Berlin (1985).
[5] J.W. Cannon, W.J. Floyd, & W.R. Parry, Introductory notes on Richard Thompson’s groups, Ens. Math.

42 (1996) 215–257.
[6] R. Charney, J. Meier & K. Whittlesey, Bestvina’s normal form complex and the homology of Garside

groups, Geom. Dedicata; to appear.



76 PATRICK DEHORNOY

σ2

σ1

σ1

a3

σ1σ2 σ3σ2a1

σ2σ1 σ2σ1

σ1

ε

ε

ε

ε

ε

εσ2

σ1σ2

σ3σ2a1

a3 σ1 σ2σ1

σ2

σ1σ2

σ2σ1
σ3a2

σ3σ2a1

σ1σ2

� � �

� �

�
� �

�

Figure 43. An example of verification of the right cube condition, here
the triple (σ2, σ1, a3): one first reverses σ−1

2 σ1σ
−1
1 a3 to a positive–negative

word, here σ1σ2σ3σ2a1σ
−1
1 σ−1

2 σ−1
1 , and, then, one checks that right reversing

a−1
1 σ−1

2 σ−1
3 σ−1

2 σ−1
1 σ−1

2 a3σ1σ2σ1 leads to the empty word.

[7] J. Crisp & L. Paris, Representations of the braid group by automorphisms of groups, invariants of links,
and Garside groups, Pac. J. Maths, to appear.

[8] P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345-1 (1994) 115–151.

[9] P. Dehornoy, Groups with a complemented presentation, J. Pure Appl. Algebra 116 (1997) 115–137.
[10] P. Dehornoy, The structure group for the associativity identity, J. Pure Appl. Algebra 111 (1996) 59–82.
[11] P. Dehornoy, Gaussian groups are torsion free, J. of Algebra 210 (1998) 291–297.
[12] P. Dehornoy, Braids and Self-Distributivity, Progress in Math. vol. 192, Birkhäuser.
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