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Weak convergence of positive self-similar Markov
processes and overshoots of Lévy processes.

M.E. Caballero and L. Chaumont

February 9, 2005

Short title: Convergence of self-similar processes

Abstract: Using Lamperti’s relationship between Lévy processes and positive self-similar Markov
processes (pssMp), we study the weak convergence of the law IPx of a pssMp starting at x > 0, in the
Skorohod space of càdlàg paths, when x tends to 0. To do so, we first give conditions which allow
us to construct a càdlàg Markov process X(0), starting from 0, which stays positive and verifies the
scaling property. Then we establish necessary and sufficient conditions for the laws IPx to converges
weakly to the law of X(0) as x goes to 0. In particular, this answers a question raised by Lamperti
[11] about the Feller property for pssMp at x = 0.

1 Introduction

An IR+–valued self-similar Markov process X, under the family of probabilities (IPx, x ≥
0) is a càdlàg Markov process which fulfills a scaling property, i.e., there exists a con-
stant α > 0 such that

the law of (kXk−αt, t ≥ 0) under IPx is IPkx, for all k > 0. (1.1)

Self-similar Markov processes are involved in various parts of probability theory such
as branching processes and fragmentation theory. They also arise as limit of re-scaled
Markov processes. Their properties have been deeply studied by the early sixties, espe-
cially through Lamperti’s work on one dimensional branching processes. In this paper,
we focus on positive self-similar Markov processes to which we will refer as pssMp.
Some particularly well known examples which are discussed in Section 4 are Bessel
processes, stable subordinators or more generally, stable Lévy processes conditioned to
stay positive.

0

Key words and phrases: Self-similar Markov process, Lévy process, Lamperti representation, over-
shoot, weak convergence, first passage time.
MSC 2000 subject classifications: 60 G 18, 60 G 51, 60 B 10.
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From a straightforward argument using (1.1), it is easily seen that the family of
measures (IPx) defined on the Skorohod’s space of càdlàg functions is weakly continuous
in x on the open half-line (0,∞). The question of the existence of a weak limit when
x goes towards 0 is much less obvious. This is the main object of our paper.

Let ρ
(def)
= inf{t : Xt = 0}, then it appears from Lamperti’s study [11] that any

positive self-similar Markov process X is such that either: ρ < ∞ and Xρ− = 0 a.s.,
or ρ < ∞ and Xρ− > 0 a.s., or ρ = +∞ a.s., and this trichotomy does not depend on
the starting point x > 0. In the two first cases, the Markov property implies that the
process (Xρ+t, t ≥ 0) is independent of the process (Xt, t ≤ ρ) and its law does not
depend on x. Moreover, the scaling property implies that limx→0 ρ = 0 a.s., hence, this
shows that the family of measures (IPx) converges weakly, as x goes to 0, towards the
law of the process (Xρ+t, t ≥ 0). Let us mention that in these cases, Rivero [12] and [13]
studied the different ways to construct an entrance law for the process (Xρ+t, t ≥ 0).
So we shall focus on the last case, that is when ρ = +∞, a.s. Then the state space
of (X, IPx), x > 0 is (0,∞) and 0 is a boundary point. It is then natural to wonder if
the semigroup of (X, IPx) can be extended to the nonnegative half-line [0,∞); in other
words, can an entrance law at 0 for (X, IPx) be defined ? This problem has first been
raised by Lamperti [11] who observed in the proof of his Theorem 2.1 that “...the Feller
property may fail at x = 0”. It has been partially solved by Bertoin and Caballero [2]
and Bertoin and Yor [4] who gave sufficient conditions for the weak convergence of
IPx to hold when x tends to 0, in the sense of finite dimensional distributions. In this
paper, in the case when ρ = +∞, we characterize the self-similar families of laws (IPx)
which converges weakly as x tends to 0, on the Skorohod space of càdlàg functions.
We also describe their limit law IP0 by constructing the paths of a self-similar Markov
process whose law is IP0.

A crucial point in our arguments is the famous Lamperti representation of self-
similar IR+–valued processes. This transformation enables us to construct the paths of
any such self-similar process X from those of a Lévy process. More precisely, Lamperti
[11] found the representation

Xt = x exp ξτ(tx−α), t ≥ 0 , (1.2)

under IPx, for x > 0, where

τt = inf{s : As > t} , As =
∫ s

0
exp αξu du ,

and where ξ is either a real Lévy process such that limt ξt = −∞, if ρ < +∞ and
Xρ− = 0, or ξ is a Lévy process killed at an independent exponential time if ρ < +∞
and Xρ− > 0, or ξ is a Lévy process such that lim supt ξt = +∞, if ρ = +∞. Note that
for t < A∞, we have the equality τt =

∫ t
0

ds
Xα

s
, so that (1.2) is invertible and yields a one

to one relation between the class of pssMp and the one of Lévy processes.
The conditions of weak convergence of the family (IPx) and the construction of

the limit process which are presented hereafter will naturally bear on the features of
the underlying Lévy process in the Lamperti transformation. The rest of the paper is
organized in three sections. In Section 2, the main results are stated and discussed.
The proofs are given in Section 3 and some examples are presented in Section 4.
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2 Main results

2.1 Preliminaries on overshoots

On the Skorohod space D of càdlàg trajectories we consider a reference probability
measure P under which ξ will always denote a real Lévy process such that ξ0 = 0. We
now give some preliminaries on overshoots of Lévy processes, that is (ξTz − z, z ≥ 0)
with Tz = inf{t : ξt ≥ z}. The condition of weak convergence of the overshoot process
(ξTz−z, z ≥ 0) when z tends to +∞ will appear naturally in our main results (Theorems
1 and 2) to be necessary for the probability measures (IPx) to converge weakly as x → 0.
The asymptotic behaviour of the overshoot process of Lévy processes has strongly been
studied by Doney and Maller [10]; let us briefly recall one of their main results. Let Π
be the Lévy measure of ξ, that is the measure satisfying

∫
(−∞,∞)(x

2 ∧ 1) Π(dx) < ∞
and such that the characteristic exponent Ψ (defined by E(eiuξt) = e−tΨ(u), t ≥ 0) is
given, for some b ≥ 0 and a ∈ IR, by

Ψ(u) = iau +
1

2
b2u2 +

∫

(−∞,∞)
(1− eiux + iux1I{|x|≤1}) Π(dx) , u ∈ IR .

Define for x ≥ 0,

Π
+
(x) = Π((x,∞)) , Π

−
(x) = Π((−∞,−x)) and J =

∫

[1,∞)

xΠ
+
(x) dx

1 +
∫ x
0 dy

∫∞
y Π

−
(z) dz

.

Then according to Doney and Maller [10], a necessary and sufficient condition for the
overshoot ξTz − z to converge weakly towards the law of a finite r.v. as z goes to +∞
is

(H) ξ is not arithmetic and

{
either 0 < E(ξ1) ≤ E(|ξ1|) < ∞,
or E(|ξ1|) < ∞, E(ξ1) = 0 and J < ∞.

(Actually, the case where ξ has no negative jumps and the case where ξ is arithmetic
are not considered in [10]. This makes our expression of the integral J slightly different
from the one which is given in [10]). The discrete time case has been treated in [8].

As noted in [10], the above condition may also be expressed in terms of the upward
ladder height process, say σ, associated with ξ. (We refer to [1], Chap. VII for
a definition of the ladder process.) Indeed, we easily see that for each level x, the
overshoots of the processes ξ and σ across x are the same, hence (H) can be stated
as: σ is not arithmetic and E(σ1) < ∞. Let us also mention that the latter result is
proved for any subordinator in [3] where the authors also give the explicit law of the
limit of the overshoots. In the rest of this paper, under hypothesis (H), θ will denote
a r.v. whose law is the weak limit of the overshoots of ξ, that is:

ξTz − z
(w)−−−−−→

z→∞
θ . (2.3)

Then from [3], the law of θ is given by

P (θ > t) = E(σ1)
−1

∫

(t,∞)
sν(ds) , t ≥ 0 , (2.4)
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where ν is the Lévy measure of the subordinator σ.

In the sequel, we will need on a multidimensional version of the convergence which is
stated in (2.3). As the next proposition shows, it is equivalent to the stationarity of
the process (ξTz−θ

− (z − θ), z ≥ 0).

Proposition 1 If the overshoot process (ξTz − z, z ≥ 0) converges weakly at infinity
towards the law of an a.s. finite r.v. θ, then the multidimensional overshoot converges
weakly. More precisely, for every increasing sequence of nonnegative reals 0 ≤ z1 ≤
. . . ≤ zk:

(ξTz+z1
− (z + z1), . . . , ξTz+zk

− (z + zk))

(w)−−−−−→
z→∞

(ξTz1−θ
− (z1 − θ), . . . , ξTzk−θ

− (zk − θ)) ,

where θ is independent of ξ. In particular (ξTz−θ
−(z−θ), z ≥ 0) is a strictly stationary

Markov process, i.e. for any nonnegative real r, (ξTz+r−θ
− (z + r − θ), z ≥ 0)

(d)
=

(ξTz−θ
− (z − θ), z ≥ 0).

Conversely, if there exists an a.s. finite r.v. θ, independent of ξ such that (ξTz−θ
−

(z−θ), z ≥ 0) is strictly stationary, then the overshoot process (ξTz−z, z ≥ 0) converges
weakly at infinity towards the law of θ.

Then an important point in the construction of a weak limit for (IPx) is the following
definition of a random sequence of (D × IR+)IN.

Proposition 2 Let x1 ≥ x2 ≥ . . . > 0 be an infinite decreasing sequence of positive
real numbers which converges towards 0. Under condition (H), there exists a random
sequence (θn, ξ(n)) of (IR+ × D)IN such that for each n, θn and ξ(n) are independent,

θn
(d)
= θ, ξ(n) (d)

= ξ, and for any i, j such that 1 ≤ i ≤ j:

ξ(i) (a.s.)
=

(
ξ(j)(T

(j)

log(xie
−θj /xj)

+ t)− ξ(j)(T
(j)

log(xie
−θj /xj)

), t ≥ 0
)

, (2.5)

θi
(a.s.)
= ξ(j)(T

(j)

log(xie
−θj /xj)

)− log(xie
−θj/xj) . (2.6)

where T (j)
z = inf{t : ξ

(j)
t ≥ z}, z ∈ IR. The above statement determines the law of the

sequence (ξ(n), θn). Furthermore, for any n, ξ(n) is independent of (θk)k≥n and (θn) is
a Markov chain.

A particularity of the above definition is the ’backward’ inductive construction of the
law of (θn, ξ(n)). More specifically, we see from (2.5) and (2.6) that for any n, the
couples (θn−1, ξ

(n−1)), (θn−2, ξ
(n−2)), . . . (θ1, ξ

(1)) are functionals of (θn, ξ
(n)).

As will be seen in the next subsection, for each n, (θn, ξ(n)) is used to construct our
limit process between its first passage time above xn and its first passage time above
xn−1. Then the result of Proposition 2 will allow us to describe the joint law of the
values of this process at its first passage times above xn, n ≥ 1.
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We emphasize that if ξ has no positive jumps, then θi = 0 a.s. and the results of
this paper, as well as their proofs are much simpler. Note also that in any other case,
it may happen that the event

{T (j)

log(xie
−θj /xj)

= 0} = {log(xie
−θj/xj) ≤ 0}

has positive probability. On this event, we have xie
θi = xje

θj , and ξ(i) = ξ(j).

2.2 The process issued from 0

We recall that P is our reference probability measure and we denote by X the canonical
process on D.

Consider any self-similar Markov process (X, IPx), x > 0 as defined in (1.2), with
ρ = inf{t : Xt = 0} = +∞, IPx-a.s. As we recalled in the introduction, there exists
a unique Lévy process ξ with lim supt→+∞ ξt = +∞, a.s. and such that the repre-
sentation (1.2) holds. Observe that since the time change t 7→ τ(tx−α) is continuous
with limt→+∞ τ(tx−α) = +∞, a.s., and since x 7→ ex is increasing, we have IPx-a.s.,
lim supt→+∞ Xt = +∞.

Note that from (1.1), the process (Xα, IPx), x > 0 is a pssMp whose scaling coef-
ficient is equal to 1. Moreover, the power function is a continuous functional of the
càdlàd trajectories, hence we do not loose any generality in our convergence type results
by assuming that α = 1.

In the next theorems, we first give the construction of a Markov process X(0) which
starts from 0 continuously, stays positive and fulfills the scaling property with index
α = 1. We shall then see that the law of the process X(0) is the weak limit on D of X,
as x tends to 0.

From the sequence (θn, ξ(n)) defined in Proposition 2, we first introduce the sequence
of processes

X
(xn)
t = xn exp ξ

(n)

τ (n)(t/xn)
, t ≥ 0 , n ≥ 1, (2.7)

where xn = xne
θn and with the natural definition τ

(n)
t

(def)
= inf{s :

∫ s
0 exp ξ(n)

u du > t}.
Let also

S(n−1) = inf{t ≥ 0 : X
(xn)
t ≥ xn−1} , n ≥ 2 , (2.8)

which is a.s. finite from our assumptions. Under an additional condition which ensures
that Σn =

∑+∞
k=n S(k) < +∞, a.s., in the next theorem we define the process X(0) on

the positive halfline as the concatenation of the processes (X
(xn)
t−Σn

, Σn ≤ t ≤ Σn−1),

n ≥ 2, and (X
(x1)
t−Σ1

, t ≥ Σ1).
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Theorem 1 Assume that (H) holds and that E
(
log+ ∫ T1

0 exp ξs ds
)

< ∞. Let Σn =
∑∞

k=n S(k), then for any n, 0 < Σn < ∞, a.s., so that the following construction

X
(0)
t =





X
(x1)
t−Σ1

, t ∈ [Σ1,∞)

X
(x2)
t−Σ2

, t ∈ [Σ2, Σ1)
...

X
(xn)
t−Σn

, t ∈ [Σn, Σn−1)
...

, X
(0)
0 = 0 (2.9)

makes sense and it defines a càdlàg stochastic process on the real halfline [0,∞) with
the following properties:

(i) The law of X(0) does not depend on the sequence (xn).

(ii) The paths of the process X(0) are such that lim supt X
(0)
t = +∞, a.s. and X

(0)
t >

0, a.s. for any t > 0.

(iii) The process X(0) satisfies the scaling property, that is for any k > 0,

(kX
(0)
k−1t, t ≥ 0) has the same law as X(0). (2.10)

(iv) The process X(0) is strong Markov and has the same semi-group as (X, IPx) for
x > 0.

We will denote by IP0 the law of this process.

Note that Σn is the first passage time above xn by the process X(0), i.e.

Σn = inf{t : X
(0)
t ≥ xn},

and that the r.v. xn = xne
θn represents the value of this process at time Σn. In

particular, when ξ has no positive jumps, the above construction of X(0) says that
(X

(0)
Σn+t, t ≥ 0) has law IPxn .

For the description of the law IP0 of the process X(0) to be complete it is worth to
describe its entrance law. As we will see in Theorem 2, IP0 is the weak limit of (IPx) as
x tends to 0. So, in the case where 0 < E(ξ1) ≤ E(|ξ1|) < ∞, (i.e. ξ has positive drift)
the entrance law under IP0 has been computed by Bertoin, Caballero [2] and Bertoin,
Yor [4] and can be expressed as follows: for every t > 0 and for every measurable
function f : IR+ → IR+,

IE0(f(Xt)) =
1

m
E(I−1f(tI−1)) , (2.11)

where m = E(ξ1) and I =
∫∞
0 exp(−ξs) ds. When E(ξ1) = 0, we have no explicit

computation for the entrance law of X(0) in terms of the underlying Lévy process.
However, in the following result, we see that it can be obtained as the weak limit of
the entrance law for the positive drift case, when the drift tends towards 0.
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Proposition 3 Under conditions of Theorem 1, suppose that E(ξ1) > 0, then the
entrance law under IP0 is given by (2.11). Suppose that E(ξ1) = 0, then for any
bounded and continuous function f ,

IE0(f(Xt)) = lim
λ→0

1

λ
E(I−1

λ f(tI−1
λ )) , (2.12)

where Iλ =
∫∞
0 exp(−ξs − λs) ds.

The next theorem gives necessary and sufficient conditions bearing upon ξ, for a family
of pssMp (X, IPx) described by (1.2) to converge weakly in the Skorohod space D of
càdlàg trajectories, as x goes towards 0. Recall that the first passage time process of
ξ is defined by Tz = inf{t : ξt ≥ z} , z ∈ IR. In the sequel, by degenerate probability
measure on D, we mean the law of a constant process which is finite or infinite.

Theorem 2 Let (X, IPx), x > 0 be defined as in (1.2) and such that ρ = +∞ (or
equivalently lim supt ξt = +∞).

The family of probability measures (IPx) converges weakly in D, as x → 0, towards a
non degenerate probability measure if and only if the overshoot process (ξTz − z, z ≥ 0)
converges weakly towards the law of a finite r.v. as z → +∞ (that is (H) holds) and

E
(
log+ ∫ T1

0 exp ξs ds
)

< +∞. Under these conditions, the limit law of (IPx) is IP0.

A consequence of Theorem 2 is that under these conditions, the semigroup Ptf(x)
(def)
=

IEx(f(Xt)) is Fellerian on the space C0(IR+) of continuous functions f : IR+ → IR with
limx→+∞ f(x) = 0. It will appear along the proofs in the next section that when (H)

holds but E
(
log+ ∫ T1

0 exp ξs ds
)

= ∞, the process (X, IPx) actually converges weakly

towards the process which is identically nought (see the remark at the end of section
3). It is noticed in [4] that when E(ξ1) exists but is infinite, the convergence of (X, IPx)
towards a non degenerate process in the sense of finite dimensional distributions does
not hold. The problem of finding necessary and sufficient conditions for the conver-
gence in the sense of finite dimensional distributions remains open. More precisely, we
do not what happen when E(ξ1) does not exist.

Before we prove the above results, let us discuss about the condition

E

(
log+

∫ T1

0
exp ξs ds

)
< ∞ (2.13)

which is involved in Theorems 1 and 2. This condition is rather weak in the sense that
it is satisfied by a very large class of Lévy processes. It contains at least the cases
which are described hereafter.

First of all, if 0 < E(ξ1) ≤ E(|ξ1|) < ∞ then it is well known that E(T1) < ∞ and
hence condition (2.13) is satisfied.

Condition (2.13) also holds when ξ satisfies the Spitzer condition, i.e.

1

t

∫ t

0
1I{ξs≥0} ds → ρ ∈ (0, 1).
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Indeed, in that case it is known, see [1], Theorem VI.18, that E(T γ
1 ) < +∞, for

0 < γ < ρ. Hence
∫ T1
0 exp ξs ds (≤ eT1) has a finite logarithmic moment.

Another instance when this condition is satisfied is when ξ has an exponential
moment, i.e. E(exp ξ1) < ∞. Under this condition, there exists α > 0 such that the
process exp(ξt∧T1 − α(t ∧ T1)) is a martingale and we have E(exp(ξT1 − αT1)) = 1.
(These conditions are satisfied for example whenever ξ has no positive jumps). Then
we can write

E(1I{t<T1} exp ξt) = E(1I{t<T1} exp[ξT1 − α(T1 − t)])

so that, integrating with respect to t, we obtain the stronger condition:

E

(∫ T1

0
exp ξt dt

)
=

1

α
(E(exp ξT1)− 1) < ∞ . (2.14)

It will appear in the proof of Lemma 2, (iii) that condition (2.13) is equivalent to
the following:

E

(
log+

∫ Tx

0
exp ξs ds

)
< ∞ , for any x > 0. (2.15)

To end this section, we emphasize that we do not have any example of a Lévy process
ξ for which (2.13) is not satisfied and this problem remains open.

3 Proofs.

Proof of Proposition 1. Put θ(z) = ξTz − z and ξ = (ξTz+t − ξTz , t ≥ 0) and note the
path by path identity:

(ξTz+z1
− (z + z1), . . . , ξTz+zn

− (z + zn)) =

(ξ(Tz1−θ(z))− (z1 − θ(z)), . . . , ξ(Tzn−θ(z))− (zn − θ(z))) .

As mentioned above, under hypothesis (H), θ(z) converges weakly towards θ. Moreover,
the process ξ is distributed as ξ, so the weak convergence follows from the independence
between ξ and θ(z). The process (ξTz−θ

− (z − θ), z ≥ 0) is obviously càdlàg and
its Markov property follows from general properties of Lévy processes and from the
independence between θ and ξ.

Now suppose that there exists an a.s. finite r.v. θ which is independent of ξ and
such that the process (ξTz−θ

−(z−θ), z ≥ 0) is strictly stationary. Let σ be the upward
ladder height process associated to ξ, then as we already observed in section 2.1, the
overshoot of σ and the overshoot of ξ at any level z are equal. Define the first passage
process νz = inf{t : σt ≥ z}, then (σνz−θ

− (z − θ), z ≥ 0) is strictly stationary. But
it is shown in [10], at the end of the proof of Lemma 7, that if E(σ1) = +∞ then
σνz − z tends to +∞ in probability as z goes to +∞. This is in contradiction with the
stationarity of (σνz−θ

− (z− θ), z ≥ 0), hence E(σ1) < +∞, which is equivalent to (H)
as mentioned in Section 2.1.

We emphasize that the stationary property of the process (ξTz−θ
− (z − θ), z ≥ 0) is a

crucial point in the proofs of our results, so we will often make use of Proposition 1 in
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the sequel.

Proof of Proposition 2. Let x1 ≥ x2 ≥ . . . > 0 be an infinite decreasing sequence of
positive real numbers which converges towards 0 and for fixed k ≥ 2, consider θk and
ξ(k) be independent and respectively distributed as θ and ξ. Then we construct the
sequence (θk−1, ξ

(k−1)), . . . , (θ1, ξ
(1)) as follows: for j = k, k − 1, . . . , 2,

T (j)
z

(def)
= inf{t : ξ

(j)
t ≥ z} , (3.16)

ξ(j−1) (def)
= (ξ(j)(T

(j)

log(xj−1e−θj /xj)
+ t)− ξ(j)(T

(j)

log(xj−1e−θj /xj)
), t ≥ 0) , (3.17)

θj−1
(def)
= ξ(j)(T

(j)

log(xj−1e−θj /xj)
)− log(xj−1e

−θj/xj) . (3.18)

So, this defines the law of ((θ1, ξ
(1)), . . . , (θk, ξ

(k))) on (IR+ × D)k. We can check by
induction and from (3.17), (3.18) and Proposition 1 that for any j = 1, . . . , k, θj and
ξ(j) are independent and respectively distributed as θ and ξ.

Now let k′ > k and θk′ and ξ
(k′)

be independent and respectively distributed as θ

and ξ. Then let us construct the sequence ((θ1, ξ
(1)

), . . . , (θk′ , ξ
(k′)

)) on (IR+ ×D)k′ as

above. Since θk and ξ
(k)

are independent and since (θk−1, ξ
(k−1)

), . . . , (θ1, ξ
(1)

) are con-

structed from (θk, ξ
(k)

) through the same way as the sequence (θk−1, ξ
(k−1)), . . . , (θ1, ξ

(1))
is constructed from (θk, ξ

(k)), both sequences

((θ1, ξ
(1)

), . . . , (θk, ξ
(k)

)) and ((θ1, ξ
(1)), . . . , (θk, ξ

(k)))

have the same law. For any k ≥ 1, call µ(k) the law of ((θ1, ξ
(1)), . . . , (θk, ξ

(k))) on
the space (IR+ × D)k. Then we proved that (µ(k)) is a projective family, that is, for
any k < k′, the projection of the law µ(k′) on (IR+ × D)k corresponds to µ(k). From
Kolmogorov’s Theorem, there exists a unique probability law, say µ, on (IR+ × D)IN

such that for each k, µ(k) is the projection of µ on (IR+ ×D)k. This defines the law of
the sequence (θn, ξ

(n)).
The relations (2.5) and (2.6) for i = j are obvious, and for i = j−1, they correspond

to (3.17) and (3.18). The case i < j − 1 is easily obtained by induction. Let us check
it for i = j − 2. From (3.17),

ξ(j−2) = (ξ(j)(T
(j)

log(xj−1e−θj /xj)
+ T

(j−1)

log(xj−2e−θj−1/xj−1)
+ t)−

ξ(j)(T
(j)

log(xj−1e−θj /xj)
+ T

(j−1)

log(xj−2e−θj−1/xj−1)
), t ≥ 0) ,

and it is easy to see that

T
(j)

log(xj−1e−θj /xj)
+ T

(j−1)

log(xj−2e−θj−1/xj−1)
= T

(j)

log(xj−2e−θj /xj)
.

This gives (2.5), for i = j − 2 and Identity (2.6) follows.
Let m ≥ n ≥ 1. Since ξ(m) is independent of θm, from (2.5) for i = n and j = m,

the process ξ(n) is independent of {θm, (ξ
(m)
t , t ≤ T

(m)

log(xne−θm/xm))}. But from (2.6)
for i = m − 1,m − 2, . . . , n and j = m, the variables θm−1, . . . , θn are functionals

9



of {θm, (ξ
(m)
t , t ≤ T

(m)

log(xne−θm/xm))}. We deduce that ξ(n) is independent of (θk)k≥n.

Moreover, it follows directly from (2.6) that for any n and m such that n < m,

(θm, . . . , θn, θn−1, . . . , θ1)
(a.s.)
= (3.19)

(θm, . . . , θn, ξ
(n)

T (n)(log
xn−1

xn
−θn)

− (log
xn−1

xn

− θn)), . . . , ξ
(n)

T (n)(log
x1
xn
−θn)

− (log
x1

xn

− θn)) .

This shows that (θn) is a Markov chain, since in the right hand side of (3.19), ξ(n) is
independent of (θm, θm−1 . . . , θn).

We shall see later that the tail sigma field G = ∩nσ{θn, θn+1, . . .} is trivial. Although,
there should be more direct arguments, our proof bears on the construction of X(0), see
Lemma 3. Note also that the Markov chain (θn) is homogeneous if and only if xn−1/xn

is constant, and in this case, it is stationary.

Let ξ and the canonical process X be related by (1.2) and define the first passage time
process of X by:

Sy = inf{t : Xt ≥ y} , y ≥ 0.

Observe that from our assumptions (see the beginning of Section 2.2), for any level
y ≥ x, IPx(Sy < ∞) = 1.

Lemma 1 Let x ≤ y and set z = log(y/x). Then under IPx, the process (XSy+t, t ≥ 0)
admits the following (path by path) representation

(X(Sy + t), t ≥ 0) =
(
yeθ(z)

exp ξ(τ(te−θ(z)

/y)), t ≥ 0
)

, (3.20)

where ξ
(def)
= (ξTz+t − ξTz , t ≥ 0) has the same law as ξ and is independent of θ(z) (def)

=
ξTz − z and τ t = inf{s :

∫ s
0 exp ξu du > t}.

In particular, when ξ has no positive jumps, the overshoot θ(z) is zero and (XSy+t, t ≥
0) has law IPy.

Proof. First observe that Sy = xATz and XSy = x exp ξTz , where z = log(y/x) and
Tz = inf{t : ξt ≥ z}. Now, from (1.2), we have

(X(Sy + t), t ≥ 0) = (x exp ξτ(ATz +t/x), t ≥ 0) .

Then we can rewrite the time change as follows:

τ(ATz + t/x) = inf{s ≥ 0 : As ≥ ATz + t/x}
= inf{s ≥ Tz :

∫ s

Tz

exp(ξu − ξTz) du ≥ (t/x) exp(−ξTz)}
= Tz + τ(t/XSy) ,

where τ is the right continuous inverse of the exponential functional
∫ t
0 exp(ξs) ds, i.e.

τ t = inf {s :
∫ s
0 exp(ξu) du > t}, and ξ = (ξTz+t − ξTz , t ≥ 0). Now we may write

(X(Sy + t), t ≥ 0) = (x exp ξTz+τ(t/XSy ), t ≥ 0)

= (XSy exp ξτ(t/XSy ), t ≥ 0) .
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Finally, it follows from standard properties of Lévy processes that ξ has the same law
as ξ and is independent of ξTz .

Corollary 1 Let (θn, ξ(n)), n = 1, 2, . . . be the sequence which is defined by Proposi-
tion 2 and recall the definition (2.7), of the sequence X(xn):

X
(xn)
t = xn exp ξ

(n)

τ (n)(t/xn)
, t ≥ 0 , n ≥ 1 ,

with xn = xneθn and τ
(n)
t

(def)
= inf{s :

∫ s
0 exp ξ(n)

u du > t}. Recall also that S(n−1) = inf{t :

X
(xn)
t ≥ xn−1}, then for every n ≥ 1,

(X(xn)(S(n−1) + t), t ≥ 0) = X(xn−1) , a.s.

Proof. Replacing x by xn = xne
θn and y by xn−1 in the (path by path) identity of

Lemma 1, we obtain (θ(z) being defined in this lemma):

θ(z) = ξ(n)(T
(n)
log(xn−1/xn))− log(xn−1/xn) , a.s.,

where T (n)
z = inf{t : ξ

(n)
t ≥ z}. The right hand side of this inequality is the r.v. θn−1

which is defined in (2.6). We can also check that ξ defined in Lemma 1 is nothing but
ξ(n−1) defined in (2.5) and the conclusion follows.

The next result will be used in the sequel to check the fact that the construction (2.9)
does not depend on the sequence (xn).

Corollary 2 Let (yn) be another real decreasing sequence which tends to 0. For any

j, let n such that xn ≤ yj and let Vj = inf{t : X
(xn)
t ≥ yj}, then we may write

(X(xn)(Vj + t), t ≥ 0) = (yje
θ̃j exp ξ̃

(j)

τ̃ (j)(te−θ̃j /yj)
, t ≥ 0) , (3.21)

where ξ̃(j) = (ξ(n)(T
(n)
log(yj/xn) + t) − ξ(n)(T

(n)
log(yj/xn)), t ≥ 0), θ̃j = ξ(n)(T

(n)
log(yj/xn)) −

log(yj/xn) and τ̃
(j)
t = inf{s :

∫ s
0 exp ξ̃(j)

u du > t}.
The sequence (θ̃j, ξ̃

(j)), j ≥ 1 may be defined by the same way as in Proposition 2
with respect to the sequence (yn). That is θ̃j and ξ̃(j) are independent and respectively
distributed as θ and ξ, and for 1 ≤ i ≤ j,

ξ̃(i) = (ξ̃(j)(T̃
(j)

log(yie
−θ̃j /yj)

+ t)− ξ̃(j)(T̃
(j)

log(yie
−θ̃j /yj)

), t ≥ 0) , (3.22)

θ̃i = (ξ̃(j)(T̃
(j)

log(yie
−θ̃j /yj)

)− log(yie
−θ̃j/yj) , (3.23)

where T̃ (j)
z = inf{t : ξ̃

(j)
t ≥ z}. In particular, the law of (θ̃j, ξ̃

(j)), j ≥ 1 does not depend
on the sequence (xn).

11



Proof. The first part concerning the definitions of ξ̃(j), θ̃j and τ̃ (j) is a straightforward
consequence of Lemma 1.

Now we prove that the sequence (θ̃j, ξ̃
(j)) may be defined as in Proposition 2. First

it is clear from the independence between θn and ξ(n) and from the stationarity of the
process (ξTz−θ

− (z − θ), z ≥ 0) that ξ̃(j) and θ̃(j) are independent and respectively

distributed as ξ and θ. It remains to check that (θ̃j, ξ̃
(j)) verifies (3.22) and (3.23). Let

i ≤ j so that yj ≤ yi, then from the statement, ξ̃(j) and ξ̃(i) are respectively defined

by ξ̃(j) = (ξ
(n)

T (n)(log(yj/xn))+t
− ξ

(n)

T (n)(log(yj/xn))
, t ≥ 0) and ξ̃(i) = (ξ

(n′)
T (n′)(log(yi/xn′ ))+t

−
ξ

(n′)
T (n′)(log(yi/xn′ ))

, t ≥ 0) for some indices n and n′ such that xn ≤ yj and xn′ ≤ yi. But

we can check from Corollary 1 that since xn ≤ yi and x′n ≤ yi, we have X
(xn)
Vi+· = X

(xn′ )
V ′i +· ,

where V ′
j = inf{t : X

(xn′ )
t ≥ yj}, so that ξ̃(i) may be defined with respect to X(xn), that

is
(X(xn)(Vi + t), t ≥ 0) = (yie

θ̃i exp ξ̃
(i)

τ̃ (i)(te−θ̃i/yi)
, t ≥ 0) ,

and in particular, we have:

ξ̃(i) = (ξ(n)(T
(n)
log(yi/xn) + t)− ξ(n)(T

(n)
log(yi/xn)), t ≥ 0).

On the other hand, one easily checks that

T
(n)
log(yi/xn) = T

(n)
log(yj/xn) + T̃

(j)

log(yie
−θ̃j /yj)

,

hence,

ξ̃(i) = (ξ(n)(T
(n)
log(yj/xn) + T̃

(j)

log(yie
−θ̃j /yj)

+ t)− ξ(n)(T
(n)
log(yj/xn) + T̃

(j)

log(yie
−θ̃j /yj)

), t ≥ 0)

= (ξ̃(j)(T̃
(j)

log(yie
−θ̃j /yj)

+ t)− ξ̃(j)(T̃
(j)

log(yie
−θ̃j /yj)

), t ≥ 0) ,

which is identity (3.22), and identity (3.23) follows.

Proof of Theorem 1. Since X(0) is obtained as the concatenation of the processes
(X

(xn)
Σn−t, Σn ≤ t ≤ Σn−1), we need conditions which insure that the sum Σn =

∑∞
k=n S(k)

is a.s. finite. Moreover, for X(0) to be issued from 0 in a ’continuous’ way, that is
otherwise than by a jump, it is also necessary to have limn xn = 0. These are the
objects of the next lemma.

Lemma 2 Assume that (H) holds.

(i) limn→+∞ xn = 0, a.s.

(ii) For any n ≥ 1, Σn > 0, a.s.

(iii) Σn < +∞, a.s. if and only if (2.13) holds.
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Proof. To prove part (i), it suffices to observe that (xn) = (xneθn) is a nonnegative
decreasing sequence (indeed, xn−1 = Xxn(S(n−1))), so it converges almost surely. More-
over, since the θn’s are identically distributed, the limit law of the sequence (xneθn) is
the Dirac mass at 0.

To prove (ii), first note that Σn = 0 a.s. if and only if for each k ≥ n, S(k) = 0,
which is also equivalent to Xxk

0 = xke
θk ≥ xk−1. Indeed, Xxk is right continuous, so it

has no jump at 0. Hence, we have

P (Σn = 0) = P (xje
θj ≥ xj−1, for all j ≥ n)

= lim
k→+∞

P (xje
θj ≥ xj−1, for all j = n, . . . , n + k) .

But from (3.19), {xje
θj ≥ xj−1, for all j = n, . . . , n + k} = {xn+ke

θn+k ≥ xn−1} so that

P (Σn = 0) = lim
k→+∞

P (xn+ke
θn+k ≥ xn−1) ,

and this limit is 0 since the θi’s have the same non degenerate law and (xn) tends to 0.
Now we prove (iii). We start by proving that the convergence of Σn =

∑
k≥n S(k)

does not depend on the choice of the sequence (xn). Let

X̃(yn) = (yne
θ̃n exp ξ̃

(n)

τ̃ (n)(te−θ̃n/yn)
, t ≥ 0),

with yn = yneθ̃n , be the processes which are defined in (3.21) of Corollary 2, with respect
to a sequence (yn) which decreases towards 0. Set S̃(n−1) = inf{t : X̃(yn) ≥ yn−1}, then
we see from the identity (3.21) that if xn ≤ yj ≤ yj−1 ≤ xk, then S(n−1) + . . . + S(k) ≥
S̃(j−1). More generally, for any i, j, there exist n,m such that

m∑
n

S(k) ≥
j∑

i

S̃(k) . (3.24)

Conversely, one can check exactly as in Corollary 2 that for yn ≤ xj, if Ṽj = inf{t :

X̃
(yn)
t ≥ xj}, then we have

(X̃(yn)(Ṽj + t), t ≥ 0) = (xje
θj exp ξ

(j)

τ (j)(te−θj /xj)
, t ≥ 0) ,

which shows that if yn ≤ xj ≤ xj−1 ≤ yk, then S̃(n−1) + . . . + S̃(k) ≥ S(j−1). Then as
above, for any i, j, there exist n,m such that

m∑
n

S̃(k) ≥
j∑

i

S(k) . (3.25)

Inequalities (3.24) and (3.25) prove that
∑

k≥n S̃(k) is finite if and only if
∑

k≥n S(k)

is finite. Hence the convergence of the sum Σn =
∑

k≥n S(k) does not depend on the
sequence (xn) and we can consider any particular sequence in the sequel of this proof.

Now observe that S(n−1) = xneθn
∫ T

(n)
νn

0 exp ξ(n)
s ds, where νn = log(xn−1e

−θn/xn) and

T (n)
z = inf{t ≥ 0 : ξ

(n)
t ≥ z}. Note also that T (n)

νn
= 0 whenever xneθn ≥ xn−1. Hence

xn

∫ T
(n)
νn

0
exp ξ(n)

s ds ≤ S(n−1) ≤ xn−1

∫ T
(n)
νn

0
exp ξ(n)

s ds , a.s.
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These inequalities imply that for any sequence (zn) of positive reals,

xn1I{xneθn<zn}
∫ T (n)(log

xn−1
zn

)

0
exp ξ(n)

s ds ≤ S(n−1) ≤ xn−1

∫ T (n)(log
xn−1

xn
)

0
exp ξ(n)

s ds , a.s.

(3.26)
Note also that for any r > 1,

E

(
log+

∫ T1

0
exp ξs ds

)
< ∞⇐⇒ ∑

P

(∫ T1

0
exp ξs ds > rn

)
< ∞ . (3.27)

By taking r = en/2 in (3.27), and from Borel-Cantelli’s lemma, we obtain that if

E
(
log+ ∫ T1

0 exp ξs ds
)

< ∞, then e−n
∫ T

(n)
1

0 exp ξ(n)
s ds < e−n/2, a.s. for n sufficiently

large. So by choosing xn = e−n in (3.26), we obtain that
∑

S(n) < ∞, a.s.

Conversely suppose that E
(
log+ ∫ T1

0 exp ξs ds
)

= +∞. Take r > 1, xn = r−n and

zn = (1− r−1/2)r−n + r−n+1/2 in (3.26) and set

An =

{∫ T (n)(log
xn−1

zn
)

0
exp ξ(n)

s ds > rn

}

Bn =

{
xn1I{xneθn<zn}

∫ T (n)(log
xn−1

zn
)

0
exp ξ(n)

s ds > 1

}
= An ∩ {xne

θn < zn} .

Let r > 1 be sufficiently large to have xn−1

zn
= r

(1−r−1/2)+r1/2 > e, then from (3.27),

∑
P

(∫ T (n)(log
xn−1

zn
)

0 exp ξ(n)
s ds > rn

)
= ∞, so that from the independence between θn

and ξ(n),
∑

P (Bn) =
∑

P (θ < log(1 − r−1/2 + r1/2))P (An) = +∞, since, from (2.4),
P (θ < η) > 0, for all η > 0. Moreover, for all n,m ≥ 1 such that n 6= m,

P (Bn ∩Bm) ≤ P (An ∩ Am) =
P (Bn)P (Bm)

P (θ < log(1− r−1/2 + r1/2))2
.

Hence, from a well know extension of Borel-Cantelli’s lemma, (see for instance [14], p.
317), we have: P (lim supn Bn) > P (θ < log(1 − r−1/2 + r1/2))2. Then for all ε > 0,
there exists r0 such that for any r > r0, P (lim supn Bn) > 1− ε (note that Bn depend
on r). But lim supn Bn ⊂ lim supn An ⊂ {∑n S(n) = +∞} and the probability of the
last event does not depend on r. Therefore P (

∑
n S(n) = +∞) = 1.

Lemma 2 shows that the definition of X(0), i.e.

X
(0)
t =





X
(x1)
t−Σ1

, t ∈ [Σ1,∞)

X
(x2)
t−Σ2

, t ∈ [Σ2, Σ1)
...

X
(xn)
t−Σn

, t ∈ [Σn, Σn−1)
...

makes sense. Indeed, since limn Σn = 0, the process X(0) is well defined on (0,∞).

Moreover since Σn > 0, a.s. for any n and limn xneθn = 0, a.s., we have limt→0 X
(0)
t = 0.
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Now we put X
(0)
0 = 0 so that X(0) is a càdlàg process on [0,∞), which is positive on

(0,∞).
As in the proof of the previous lemma, let

X̃(yn) = (yne
θ̃n exp ξ̃

(n)

τ̃ (n)(te−θ̃n/yn)
, t ≥ 0),

be the processes which are defined in Corollary 2 and recall S̃(n−1) = inf{t : X̃(yn) ≥
yn−1} and Σ̃n =

∑
k≥n S̃(k). Let yn = yneθ̃n , then we see from the construction (2.9)

and from (3.21) in Corollary 2 that X(0) may be represented as the concatenation of

the processes (X̃
(yn)

Σ̃n−t
, Σ̃n ≤ t ≤ Σ̃n−1) which are defined as (X

(xn)
Σn−t, Σn ≤ t ≤ Σn−1),

in the same way as in (2.9), but with respect to the sequence (yn). The law of these
processes does not depend on the sequence (xn), hence neither does the law of X(0).
This proves (i) of Theorem 1.

Part (ii) follows from the path properties of the processes X(xn) and is straightfor-
ward.

We see from the construction (2.9) of the process X(0) that the process (kX
(0)
k−1t, t ≥

0) is obtained from the concatenation of the processes (X̃
(yn)

Σ̃n−t
, Σ̃n ≤ t ≤ Σ̃n−1),

with the particular sequence yn = kxn (note that in this particular case, (θ̃n, ξ̃
(n)) =

(θn, ξ(n))). Hence, from (i) of this theorem, the process, (kX
(0)
k−1t, t ≥ 0) has the same

law as X(0) and (iii) is proved.
It remains to prove (iv) of Theorem 1, that is the Markov property of X(0). To do

so, we need the following lemma.

Lemma 3 The process X(0) is independent of the tail-sigma field of (θn), i.e. G (def)
=

∩nσ{θi, i ≥ n}. Consequently G is trivial.

Proof. As we already noticed, it follows from Corollary 1 and construction (2.9) that

X(xn) = (X
(0)
Σn+t, t ≥ 0). We derive from this identity that limn→∞ X(xn) = X(0),

a.s. on the space D of càdlàg trajectories. Let Gn = σ{θn, θn+1, . . .} and G = ∩nGn.
By construction, X(xn) is a functional of ξ(n) and θn, then from Proposition 1, it is
clear that the law of this process conditionally on (θn, θn+1, . . .) is the same as its law
conditionally on θn, so that from the Markov property, for any bounded and continuous
functional H on D, we have

E(H(X(xn)) | Gn) = E(H(X(xn)) | θn) = IExneθn (H)
(a.s.)−−−−−→
n→∞

E(H(X(0)) | G) . (3.28)

Now fix k ≥ 1 and let f1, . . . , fk be k bounded measurable functions, then it follows
from (3.28) that

E(f1(θ1) . . . fk(θk)E(H(X(0)) | G)) = lim
n

E(f1(θ1) . . . fk(θk)IExneθn (H)) . (3.29)

From our construction of θ1, . . . , θk, and more precisely, from (3.19), we have

E(f1(θ1) . . . fk(θk)IExneθn (H))

= E
(
f1

[
ξ

(n)

T (n)(log x1e−θn/xn)
− (log x1e

−θn/xn)
]

. . . fk

[
ξ

(n)

T (n)(log xke−θn/xn)
− (log xke

−θn/xn)
]
IExneθn (H)

)
,
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where we recall that ξ(n) and θn are independent. Denote by Ez the law of the process
ξ(n) + z, z ∈ IR. Then since the θn’s have the same law, the second member of the
above equality may be written as

E
(
Eθ

(
f1

[
ξ

(n)

T (n)(log x1/xn)
− (log x1/xn)

]
. . . fk

[
ξ

(n)

T (n)(log xk/xn)
− (log xk/xn)

])
IExneθ(H)

)
,

and from Proposition 1,

Eθ

(
f1

[
ξ

(n)

T (n)(log x1/xn)
− (log x1/xn)

]
. . . fk

[
ξ

(n)

T (n)(log xk/xn)
− (log xk/xn)

])

(a.s.)−−−−−→
n→∞

E(f1(θ1) . . . fk(θk)) . (3.30)

We then deduce from (3.28), (3.29), (3.30) and Lebesgue’s Theorem of dominated
convergence that

E(f1(θ1) . . . fk(θk)E(H(X(0))) | G)) = E(f1(θ1) . . . fk(θk))E(H(X(0))) .

As a consequence, we have E(E(H(X(0)) | G) |σ(θ1, . . . , θk)) = E(H(X(0))), for any
k, so that E(E(H(X(0)) | G) |σ(θ1, θ2 . . .)) = E(H(X(0))), hence E(H(X(0)) | G) =
E(H(X(0))) since G ⊂ σ(θ1, θ2 . . .). It proves that X(0) is independent of G. On

the other hand, since Σn = inf{t : X
(0)
t ≥ xn} and X

(0)
Σn

= X
(xn)
0 = xne

θn then the
sequence (θn) may be generated by the process X(0). In particular G is a sub-σ field of
the σ-field generated by X(0), hence it is trivial.

To prove that X(0) is a strong Markov process, note that from (3.28), and Lemma 3,
we obtain

IExn(H)
(a.s.)−−−−−→
n→∞

E(H(X(0))) , (3.31)

for any bounded, continuous functional H defined on D. So the Markov property of
the process X(0) is inherited from the same property for the family IPx, x > 0. This
proves part (iv) and ends the proof of Theorem 1.

Proof of Proposition 3. Suppose first that E(ξ1) > 0. It has been shown in [2] and [4]
that for fixed t ≥ 0, the law of Xt under IPx converges weakly as x → 0 towards a non
degenerate probability law. It is clear from (3.31) that this entrance law is the law of

X
(0)
t , so the result is due to [2] and [4] in that case.

Now suppose that E(ξ1) = 0 and consider the process X(0,λ) which is defined as in

(2.9), but relatively to the Lévy process ξ(λ) (def)
= (ξt + λt, t ≥ 0) and its corresponding

limit overshoot θ(λ). (Note that from section 2.1, conditions of Theorem 1 are satisfied
for (ξt + λt, t ≥ 0) so that such a construction is possible). Comparing (2.11) and
(2.12), it appears that to prove Proposition 3, we only have to check that for all µ ≥ 0
and for all t ≥ 0,

lim
λ→0

E(exp(−µX
(0,λ)
t )) = E(exp(−µX

(0)
t )) .
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Now, let (xn) be any sequence which is as in Proposition 2 and let, (θ(λ)
n , ξ(n,λ)),

X
(n,λ)
t = xne

θ
(λ)
n exp ξ

(n,λ)

τ (n,λ)(te−θ
(λ)
n /xn)

, t ≥ 0 , n ≥ 1,

τ (n,λ), and S(n,λ) be defined as in Proposition (2.5), (2.6), (2.7) and (2.8), but relatively
to the laws of ξ(λ) and its corresponding limit overshoot θ(λ). Put Σ(λ)

n =
∑

k≥n S(k,λ)

then it follows from the construction (2.9) which is stated in Theorem 1 and the Markov
property that

E(exp(−µX
(0,λ)
t )) =

∑

n≥1

E


exp

(
−µX

(n,λ)

t−Σ
(λ)
n

)
1I{

t∈[Σ
(λ)
n ,Σ

(λ)
n−1)

}



=
∑

n≥1

E
(
IE

(λ)

xneθ
(λ)
n

(
exp (−µXt) 1I{t<Sxn−1}

))
, (3.32)

where IP(λ)
x is the law of the process defined in (1.2), with respect to ξ(λ), X is the

canonical process on D and Sxn−1 is its first passage time above the state xn−1. On the
one hand, a result which is due to Doney [9] asserts that

θ(λ) (w)−→ θ, as λ tends to 0. (3.33)

On the other hand, it is not difficult to check from (1.2) that the family (IP(λ)
x ) is weakly

continuous in (λ, x), on the space [0,∞) × (0,∞), and that the set of discontinuities
of the functional Sxn−1 is negligible under any of the probability measures (IP(λ)

x ),
(λ, x) ∈ [0,∞)× (0,∞). Indeed, this set is

{ω ∈ D : ∃ε > 0, X(Sxn−1 + t)(ω) = xn−1, ∀t ∈ [0, ε]} ∪
{ω ∈ D : ∃ε > 0, X(Sxn−1)(ω) = xn−1, X(Sxn−1 + t)(ω) < xn−1, ∀t ∈ (0, ε]} ,

but the latter is negligible from (1.2) and the path properties of (non lattice) Lévy

processes. Hence, IE(λ)
x

(
exp (−µXt) 1I{t<Sxn−1}

)
is bounded and continuous in (λ, x),

on the space [0,∞)× (0,∞), and from (3.33), for any n ≥ 1, since xn > 0,

E
(
IE

(λ)

xneθ
(λ)
n

(
exp (−µXt) 1I{t<Sxn−1}

))
−→ E

(
IExneθn

(
exp (−µXt) 1I{t<Sxn−1}

))
,

as λ tends to 0, so that from (3.32) and Fatou’s lemma, we have for all µ ≥ 0,

lim
λ→0

E(exp(−µX
(0,λ)
t )) =

∑

n≥1

E
(
IExneθn

(
exp (−µXt) 1I{t<Sxn−1}

))

= E(exp(−µX
(0)
t )) ,

and the conclusion follows.

Proof of Theorem 2. We first suppose that (H) holds and that E
(
log

∫ T1
0 exp ξs ds

)
<

+∞. Let H be any bounded, continuous functional H which is defined on D. Since
the θn’s have the same law, we deduce from (3.31) that

IExneθ(H)
(P)−−−−−→

n→∞
E(H(X(0))) .
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It proves that IExineθ(H)
(a.s.)−−−−−→
n→∞

E(H(X(0))), for a sub sequence (xin). Let ω ∈ Ω be

such that k
(def)
= eθ(ω) satisfies IEkxin

(H) −→ E(H(X(0))), then from the scaling property
under IPx, x > 0 and under IP0 stated respectively in (1.1) and (2.10), we can replace

X(0) by (kX
(0)
k−1t, t ≥ 0) in the above convergence in order to obtain

IExin
(H) −→ E(H(X(0))) , as n → +∞.

We proved that for any decreasing sequence (xn) which converges towards 0, there
exists a subsequence (xin) such that the above convergence holds, hence it holds for
any decreasing sequence which converges towards 0.

Conversely suppose that the family of probability measures (IPx) converges weakly
as x → 0 towards a non degenerate probability measure IP0 on D. Necessarily, IP0 is
the law of a pssMp with index 1, which starts from 0 and never comes back to 0 and
whose limsup is infinite. We denote by X(0) a process on D whose law is IP0. (Here we
no longer suppose the validity of the construction (2.9)). Let (xn) be a real decreasing

sequence which tends to 0 and define Σn = inf{t : X
(0)
t ≥ xn}. We see from the Markov

property and (1.2) that for any n ≥ 1,

(X(0)(Σn + t), t ≥ 0)
(d)
= (X

(0)
Σn

exp ξ
(n)

τ (n)(t/X
(0)
Σn

)
, t ≥ 0) , (3.34)

where ξ(n) is distributed as ξ and is independent of X
(0)
Σn

, and τ (n) is as usual. Let

n ≥ 1; from Lemma 1, the value of the process (X
(0)
Σn

exp ξ
(n)

τ (n)(t/X
(0)
Σn

)
, t ≥ 0) at its first

passage time above x1 is

X
(0)
Σn

exp ξ(n)(T
log(x1/X

(0)
Σn

)
) = x1 exp(ξ(n)(T

log(x1/X
(0)
Σn

)
)− log(x1/X

(0)
Σn

)) .

So from (3.34), we deduce that

X(0)(Σ1)
(d)
= x1 exp(ξ(n)(T

log(x1/X
(0)
Σn

)
)− log(x1/X

(0)
Σn

)) . (3.35)

Indeed, since x1 ≥ xn, the value of the process X(0) at its first passage time above x1

is the same as the value of the process (X(0)(Σn + t), t ≥ 0) at its first passage time
above x1. On the other hand, the scaling property of the process X(0) implies that
the law of the r.v.’s x−1

n X
(0)
Σn

, n ≥ 1 is the same and does not depend on the sequence
(xn). Moreover these r.v.’s are a.s. positive. Let θ be a r.v. which is distributed

as log
(
x−1

n X
(0)
Σn

)
and independent of the sequence (ξ(n)), then we deduce from the

fact that the law of x−1
n X

(0)
Σn

does not depend on n and from (3.35) that the law of
ξ(n)(Tlog(x1/xn)−θ) − (log(x1/xn) − θ) does not depend on n and is the same as this of
θ. The same result is true for any sequence (xn) which decreases towards 0, hence we
have proved that the process (ξ(n)(Tz−θ)− (z−θ), z ≥ 0) is stationary and Proposition
1 allows us to conclude that ξ(n)(Tz) − z converges weakly as z tends to +∞ towards
the law of θ.
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Finally, recall that from (3.34) we have

(X(0)(Σn + t), t ≥ 0)
(d)
= (xneθn exp ξ

(n)

τ (n)(t/xneθn)
, t ≥ 0) ,

where θn = log
(
x−1

n X
(0)
Σn

)
has the same law as θ. Therefore X(0) may be constructed as

in (2.9) and the first passage time Σn admits the same decomposition as in Theorem 1.

This r.v. is obviously finite and Lemma 1 (iii) shows that E
(
log+ ∫ T1

0 exp ξ(n)
s ds

)
< ∞.

Remark: When (H) holds but E
(
log+ ∫ T1

0 exp ξs ds
)

= +∞, we see from Lemma 2
that Σn = +∞. Following the previous proofs, it shows that the first passage time of
the process (X, IPx) over y, (i.e. Sy = xATz in the notations of Lemma 1) tends almost
surely towards +∞, as x tends to 0. It means that the process (X, IPx) converges
almost surely towards the process X(0) ≡ 0.

4 Examples.

The aim of this section is to present some examples of pssMp for which the conditions
of Theorems 1 and 2 are satisfied.

Recall that the only positive self-similar Markov processes which are continuous
are Bessel processes raised to any nonnegative power and multiplied by any constant.
Indeed, since the only continuous Lévy processes are Brownian motions with drift
multiplied by any constant, this observation is a direct consequence of Lamperti rep-
resentation (1.2). Recall also that the Bessel process of dimension µ ≥ 0 and starting
from x ≥ 0 is the diffusion R whose square satisfies the stochastic differential equation

R2
t = x2 + 2

∫ t

0
Rs dBs + µt , t ≥ 0 , (4.36)

where B is the standard Brownian motion. Then R admits the following Lamperti
representation

Rt = x exp B
(ν)

τ (ν)(tx−1/2)
, t ≥ 0 ,

where B(ν) is a Brownian motion with drift ν = µ/2− 1, i.e. B(ν) = (Bt + νt, t ≥ 0),

and τ
(ν)
t = inf{s :

∫ s
0 exp B(ν)

s > t}. Since lim supt B
(ν)
t = +∞ if and only if ν ≥ 0,

the cases which are treated in this paper concerns the Bessel process with dimension
µ ≥ 2, raised to any positive power. (Note that the only case where the process R does
not drift to +∞ is when µ = 2.) Then it is well known that conditions of Theorems
1 and 2 are satisfied and that the limit process which is defined in Theorem 1 is the
unique strong solution of Equation (4.36), for x = 0.

The class of stable Lévy processes conditioned to stay positive provides another
interesting example. Let Y be any such process with index α ∈ (0, 2], and let Px be
the law of Y + x. The real function x 7→ xαρ defined on [0,∞), where ρ = P0(Y1 ≤ 0),
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is harmonic for the semi-group of the process Y killed at its first entrance time into
the negative half-line. Let τ = inf{t : Yt ≤ 0} be this time, and call (Ft) the usual
filtration on D, then the h-process whose law is defined as follows:

IPx(Λ) = x−αρEx(Y
αρ
t 1IΛ1I{t<τ}) , Λ ∈ Ft , t ≥ 0 , x > 0

is a strong Markov process which is called the Lévy process Y conditioned to stay
positive. A more intuitive way to define this process is to first condition Y to stay
positive on the time interval [0, s] and then to let s go to +∞:

IPx(Λ) = lim
s↑∞

Px(Λ | τ > s) , Λ ∈ Ft , t ≥ 0 , x > 0.

It is clear that (X, IPx) is a pssMp. We emphasize that when Y is the standard
Brownian motion, the process (X, IPx) corresponds to the three dimensional Bessel
process. We refer to [6] for a more complete study of Lévy processes conditioned to stay
positive. In particular, in [6], it is shown that (X, IPx) satisfies limt↑∞ Xt = +∞, IPx-a.s.
Moreover, (X, IPx) reaches its overall minimum only once and (X, IPx) converges weakly
on D, as x tends to 0, towards the law of the post-minimum process (Xm+t, t ≥ 0),
m = inf{t : Xt = infs≥0 Xs}, see also [7]. As a pssMp, (X, IPx) admits a Lamperti
representation. The law of the underlying Lévy process ξ in this representation has
been computed in [5] in terms of the law of Y . Suppose that α ∈ [1, 2). Let Φ be the
characteristic exponent of Y , i.e. Φ(u) = − log E(exp iuY1), then it is well known that
Φ admits the Lévy Khintchnie decomposition:

Φ(u) = imu +
∫

(−∞,∞)
(1− eiux + iux1I{|x|≤1}) µ(dx) ,

where m ∈ IR and

µ(dx) =
(
c+x−(α+1)1I{x>0} + c−|x|−(α+1)1I{x<0}

)
dx ,

c+ and c− being positive constants. According to [5], the characteristic exponent of ξ
introduced in subsection 2.1, admits the Lévy Khintchine decomposition

ψ(u) = iau +
∫

(−∞,∞)
(1− eiux + iux1I{|x|≤1}) π(dx) ,

with a ∈ IR and with Lévy measure

π(dx) =

(
c+e(αρ+1)x1I{x>0}

(ex − 1)α+1
+

c−e(αρ+1)x1I{x<0}
|ex − 1|α+1

)
dx .

Here again, it can be checked that the conditions of Theorems 1 and 2 are satisfied.
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[13] Rivero, V. (2005). Recurrent extensions of self-similar Markov processes and
Cramer’s condition. To appear in Bernoulli.

[14] Spitzer, F. (1964). Principles of random walks. Van Nostrand, Princeton, NJ.

M.E. Caballero
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