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tWe present a new 
lass of modi�ed logarithmi
 Sobolev inequality, interpolating betweenPoin
ar�e and logarithmi
 Sobolev inequalities, suitable for measures of the type exp(�jxj�) orexp(�jxj� log�(2+jxj)) (� 2℄1; 2[ and � 2 R) whi
h lead to new 
on
entration inequalities. Thesemodi�ed inequalities share 
ommon properties with usual logarithmi
 Sobolev inequalities, astensorisation or perturbation, and imply as well Poin
ar�e inequality. We also study the linkbetween these new modi�ed logarithmi
 Sobolev inequalities and transportation inequalities.1 Introdu
tionA probability measure � on Rn satis�es a logarithmi
 Sobolev inequality if there exists C <1 su
hthat, for every smooth enough fun
tions f on Rn ,Ent��f2� � C Z jrf j2d�; (1)where Ent��f2� = Z f2 log f2d�� Z f2d� log Z f2d�and where jrf j is the Eu
lidean length of the gradient rf of f .Gross in [Gro75℄ de�nes this inequality and shows that the 
anoni
al Gaussian measure with density(2�)�n=2e�jxj2=2 with respe
t to the Lebesgue measure on Rn is the basi
 example of measure� satisfying (1) with C = 2. Sin
e then, many results have presented measures satisfying su
han inequality, among them the famous Bakry-Emery �2 
riterion, we refer to Bakry [Bak94℄ andLedoux [Led99℄ for further referen
es and details on various appli
ations of these inequalities.Let � > 1 and de�ne the probability measure �� on R by��(dx) = 1Z� e�jxj�dx; (2)



where Z� = R e�jxj�dx. It is well-known that the probability measure �� satis�es a logarithmi
Sobolev inequality (1) if and only if � > 2. But for � 2 [1; 2[, even if the measure �� does notsatisfy (1), it satis�es a Poin
ar�e inequality (or spe
tral gap inequality) whi
h is for every smoothenough fun
tion f , Var��(f) � C Z jrf j2d��; (3)where Var��(f) = R f2d�� � �R fd���2 and C <1.Re
all, see for example Se
tion 1.2.6 of [ABC+00℄, that if a probability measure on Rn satis�es alogarithmi
 Sobolev inequality with 
onstant C then it satis�es a Poin
ar�e inequality with a 
onstantless that C=2.The problem is then to interpolate between logarithmi
 Sobolev and Poin
ar�e inequalities, whi
hwill help us to study further properties, su
h as 
on
entration, of measures �
n� for � 2 [1; 2℄ andn 2 N� .A �rst answer was brought by Lata la-Oleszkiewi
z in [LO00℄ and re
ently extended by Barthe-Roberto in [BR03℄. Let � be a probability measure on Rn , � satis�es inequality I�(a) (for a 2 [0; 1℄)with 
onstant C > 0 if for all p 2 [1; 2[,Z f2d���Z fpd��2=p � C(2� p)a Z jrf j2d�: (4)A signi�
ant result of [LO00℄ is that they prove that the measure �
n� (for � 2 [1; 2℄, n 2 N� )satis�es su
h an inequality for a 
onstant C (independent of n) and with a = 2(� � 1)=�. Andin [BR03℄ the authors present a simple proof of the result of Lata la-Oleszkiewi
z and des
ribe themeasures on the line whi
h enjoy the same inequality.Our main purpose here will be to establish another type of interpolation between logarithmi
 Sobolevand Poin
ar�e inequalities, more dire
tly linked to the stru
ture of the usual logarithmi
 Sobolevinequalities, i.e. an inequality \entropy-energy" where we will modify the energy to enable us to
onsider �� measure. Note that this point of view was the one used by Bobkov-Ledoux [BL97℄ when
onsidering double sided exponential measure. Let us des
ribe further these modi�ed logarithmi
Sobolev inequalities.Let � 2 [1; 2℄, a > 0 and � > 2 satisfying 1=�+ 1=� = 1, we noteHa;�(x) = 8>>>><>>>>: x22 if jxj � aa2�� jxj� � + a2� � 22� if jxj > a and � 6= 1+1 if jxj > a and � = 1:In Se
tion 2 we give de�nition and general properties of the following inequalityEnt��f2� � C Z Ha;��rff �f2d�: (LSIa;�(C))In parti
ular we prove that inequality LSIa;� satis�es some of the properties shared by Poin
ar�eor Gross logarithmi
 Sobolev inequalities ((1) or (3)), namely tensorisation and perturbation. Notethat in the 
ase � = 1, it is exa
tly the inequality used by Bobkov-Ledoux [BL97℄ and � = 2 isexa
tly the Gross logarithmi
 Sobolev inequality.We present also a 
on
entration property whi
h is adapted to this inequality. More pre
isely, if ameasure � satis�es the inequality LSIa;�(C), we have that if f is a Lips
hitz fun
tion on Rn withkfkLip � 1 (with respe
t to the Eu
lidean metri
) then, there is B > 0 su
h that for every � > 0one has ���f � Z fd�� > �� � exp ��Bmin ���; �2��: (5)
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This inequality was proved, for � = 1, by Maurey with the so 
alled property (�) and Bobkov-Ledoux in [Mau91, BL97℄. Let us note that the 
ases � > 2 are studied by Bobkov-Ledouxin [BL00℄, relying mainly on Brunn-Minkowski inequalities, and by Bobkov-Zegarlinski in [BZ04℄whi
h re�ne the results presenting, via Hardy's inequality, some ne
essary and suÆ
ient 
onditionfor measures on the real line. Let us note to �nish that they use, for the 
ase � > 2, H�(x) = jxj�with 1=�+ 1=� = 1.In Se
tion 2.2, we extend Otto-Villani's theorem (see [OV00℄) for the relation with logarithmi
Sobolev inequality and transportation inequality. Let us de�ne La;� by La;� = H�a;�, the Legendretransform of Ha;�. We prove that if a probability measure � on Rn satis�es the inequality LSIa;�(C)then there are a0 > 0 andD > 0 su
h that it satis�es also a transportation inequality: for all fun
tionF on Rn , density of probability with respe
t to �,TLa0;�(Fd�; d�) � DEnt�(F ) ; (Ta0;�(D))where TLa0;�(Fd�; d�) = inf �Z La0;�(x� y)d�(x; y)�;where the in�mum is taken over the set of probabilities measures � on Rn �Rn su
h that � has twomargins Fd� and d�. This inequality was introdu
ed by Talagrand in [Tal96℄ for the 
ase � = 2and � = 1. Let us note that the 
ase � = 1 was also studied in [BGL01℄ with exa
tly this form andthe 
ase � > 2 was studied in [Gen01℄.In Se
tion 3 we prove, as in [LO00℄, that the measure �� de�ned in (2) satis�es the inequalityLSIa;�(C). More pre
isely we prove that there is A;B > 0 su
h that �� satis�es for all smoothfun
tion su
h that f > 0 and R f2d�� = 1,Ent���f2� � AVar��(f) +B Zf>2 ����f 0f �����f2d��:Due to the fa
t that �� enjoys Poin
ar�e inequality, �� satis�es also inequality LSIa;�(C) for some
onstants C > 0 and a > 0.Our method relies 
ru
ially on Hardy's inequality (see for example [ABC+00, BG99, BR03℄) were
all now: let �; � be Borel measures on R+ . Then the best 
onstant A so that every smoothfun
tion f satis�es Z 10 (f(x)� f(0))2d�(x) � AZ 10 f 02d� (6)is �nite if and only if B = supx>0 �([x;1[) Z x0 �d�a
d� ��1dt (7)is �nite, where �a
 is the absolutely 
ontinuous part of � with respe
t to �. Moreover, when A is�nite we have B � A � 4B:Finally in Se
tion 4 we will present some inequalities satis�ed by other measures. More pre
isely,let ' be twi
e 
ontinuously di�erentiable and note the probability measure �' by,�'(dx) = 1Z e�'(x)dx: (8)Among them is 
onsidered'(x) = jxj�(log(2 + jxj))� ; with � 2℄1; 2[; � 2 R;whi
h exhibits a modi�ed logarithmi
 Sobolev inequality of fun
tion H (di�erent in nature fromHa;�), and whi
h is not 
overed by Lata la-Oleskiewi
kz inequality. We also present examples whi
hare unbounded perturbation of ��. We then derive new 
on
entration inequalities in the spirit ofMaurey [Mau91℄ or Bobkov-Ledoux [BL97℄. 3



2 Modi�ed logarithmi
 Sobolev inequalities: de�nition and gen-eral properties2.1 De�nitions and 
lassi
al propertiesLet � 2 [1; 2℄ and � > 2 satisfying 1=� + 1=� = 1 and let a > 0. Let de�ne the fun
tions La;� andHa;�.If � 2℄1; 2℄ we note La;�(x) = 8><>: x22 if jxj � aa2�� jxj� � + a2�� 22� if jxj > aand Ha;�(x) = 8>><>>: x22 if jxj � aa2�� jxj� � + a2� � 22� if jxj > aIf � = 1 we noteLa;1(x) = 8><>: x22 if jxj � aajxj � a22 if jxj > a and Ha;1(x) = 8<: x22 if jxj � a1 if jxj > aLet n 2 N� and x = (x1; � � � ; xn) 2 Rn , we noteL(n)a;�(x) = nXi=1 La;�(xi) and H(n)a;�(x) = nXi=1 Ha;�(xi):Note that when there is no ambiguity we will drop the dependen
e in n and note La;� instead ofL(n)a;�.Let us de�ne the logarithmi
 Sobolev inequality of fun
tion Ha;�.De�nition 2.1 Let � be a probability measure on Rn , � satis�es a logarithmi
 Sobolev inequalityof fun
tion Ha;� with 
onstant C, noted LSIa;�(C), if for every C1 and L2 fun
tion f on Rn onehas Ent��f2� � C Z Ha;��rff �f2d�; (LSIa;�(C))where Ent��f2� = Z f2 log f2R f2d�d� and Ha;��rff � = nXi=1 Ha;�� �f�xi 1f�:It is supposed that 0=0 = 1We detail some properties of La;� and Ha;� in the following lemma.Lemma 2.2 Fun
tions La;� and Ha;� satis�es:i: If � 2℄1; 2℄, La;� and Ha;� are C1 on R.ii: L�a;� = Ha;�, where L�a;� is the Fen
hel-Legendre transform of La;�. Of 
ourse we have tooH�a;� = La;�.iii: For all t > 0 one has for all x 2 RLa;�(tx) = t2Lat ;�(x); Ha;�(tx) = t2Hat ;�(x):
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iv: Let 0 � a � a0, one has for all x 2 R+La;�(x) � La0;�(x); Ha0;�(x) � Ha;�(x):v: If � 2℄1; 2℄, La;� and Ha;� are stri
tly 
onvex andlimjxj!1 Ha;�(x)x = limjxj!1 La;�(x)x = 1:The assumptions given on � and � are signi�
ant only for 
ondition iv, and 
ondition v is signi�
antfor Brenier-M
Cann-Gangbo's theorem, whi
h is 
ru
ial for the study of the link between modi�edlogarithmi
 Sobolev inequalities and transportation inequalities of the next se
tion.Here are some properties of the inequality LSIa;�(C).Proposition 2.3 i. This property is known under the name of tensorisation.Let �1 and �2 two probability measures on Rn1 and Rn2 . Suppose that �1 (resp. �2) satis�esthe inequality LSIa;�(C1) (resp. LSIa;�(C2)) then the probability �1
 �2 on Rn1+n2, satis�esinequality LSIa;�(D), where D = max fC1; C2g.ii. This property is known under the name of perturbation.Let � a measure on Rn satisfying LSIa;�(C). Let h a bounded fun
tion on Rn and de�ned ~�as d~� = ehZ d�;where Z = R ehd�.Then the measure ~� satis�es the inequality LSIa;�(D) with D = Ceos
(h), where os
(h) =sup(h)� inf(h).iii. Link between LSIa;�(C) inequality with Poin
ar�e inequality.Let � a measure on Rn . If � satis�es LSIa;�(C), then � satis�es a Poin
ar�e inequality withthe 
onstant C=2. Let us re
all that � satis�es a Poin
ar�e inequality with 
onstant C ifVar�(f) � C Z jrf j2d�; (9)for all smooth fun
tion f .ProofC One 
an �nd the details of the proof of the properties of tensorisation and perturbation and theimpli
ation of the Poin
ar�e inequality in the 
hapter 1 and 3 of [ABC+00℄ (Se
tion 1.2.6., Theo-rem 3.2.1 and Theorem 3.4.3). BRemark 2.4 We may of 
ourse de�ne logarithmi
 Sobolev inequality of fun
tion H, where H(x)is quadrati
 for small values of jxj and with 
onvex, faster than quadrati
, growth for large jxj.See Se
tion 4 for su
h examples. Note that Proposition 2.3 is of 
ourse still valid for this kind ofinequality. These inequalities are also studied in a general 
ase in [Led99℄ in Proposition 2.9.As in [LO00, BL97℄, by using the argument of Herbst, one 
an give pre
ise estimates about 
on
en-tration. 5



Proposition 2.5 Assume that the probability measure � on R satis�es the inequality LSIa;�(C).Let F be Lips
hitz fun
tion on R, then we get for � > 0,�(jF � �(F )j > �) � 8>>><>>>: 2 exp��K�(�� aCkFkLip(2� �))� � a2 2� �2� � if � > aCkFkLip2 ;2 exp � 2�2CkFk2Lip! otherwise,where K� = 2�(�� 1)1��a2���C��1kFk�Lip .Consider now �
n and F : Rn ! R, C1, su
h that Pni=1 ��� �F�xi ���2 � 1, then there exists ~K� (indepen-dent of n) su
h that �
n���F � �
n(F )�� > �� � 2 exp�� ~K� min ��2; ���� : (10)ProofC Assume that R Fd� = 0. Let us re
all brie
y Herbst's argument (see [ABC+00℄ for more details).Denote �(t) = R etFd�, and remark that LSIa;�(C) applied to f2 = etF , using basi
 properties ofHa;�, yields to t�0(t)� �(t) log �(t) � CHa;�� tkFkLip2 ��(t) (11)whi
h, denoting K(t) = (1=t) log �(t), entailsK 0(t) � Ct2Ha;�� tkFkLip2 � :Then, integrating, and using K(0) = R Fd� = 0, we obtain�(t) � exp�CtZ t0 1s2Ha;��skFkLip2 � ds� : (12)The Lapla
e transform of F is then bounded by�(t) � 8>>><>>>: exp�Ct�kFk�Lip a2��2��(� � 1) + CtakFkLip � � 22(� � 1) � Ca2� � 22� � if t > 2akFkLip ;exp C kFk2Lipt28 ! if 0 � t � 2akFkLip :For the n-dimensional extension, use the tensorisation property of LSIa;� andnXi=1 Ha;�� t2 �F�xi� � Ha;�� t2�:Then we 
an use the 
ase of dimension 1. BRemark 2.6 For general logarithmi
 Sobolev of fun
tion H, we may obtain 
rude estimation ofthe 
on
entration, at least for large �. Indeed, using inequality (12), we have dire
tly that the
on
entration behavior is given by the Fen
hel-Legendre transform of H for large values, see Se
tion 4for more details. 6



2.2 Link between inequality LSIa;�(C) and transportation inequalityDe�nition 2.7 Let � be a probability measure on Rn , � satis�es a transportation inequality offun
tion La;� with 
onstant C, noted Ta;�(C), if for every fun
tion F , density of probability withrespe
t to �, one has TLa;�(Fd�; d�) � CEnt�(F ) ; (Ta;�(C))where TLa;�(Fd�; �) = inf�Z La;�(x� y)d�(x; y)�;where the in�mum is taken over the set of probabilities measures � on Rn �Rn su
h that � has twomargins Fd� and �.Otto and Villani proved that a logarithmi
 Sobolev inequality implies a transportation inequalitywith a quadrati
 
ost (this is the 
ase � = � = 2), see [OV00, BGL01℄. With the notations of thispaper they prove that if � satis�es the inequality LSI�;2(C), (when � = 2 the 
onstant a is not anymore a parameter in this 
ase), then � satis�es the inequality T�;2(4C). In [BGL01℄ another 
aseis studied, when � = 1 and � = 1. In this �rst theorem we give an extension for the other 
ases,where � 2 [1; 2℄.Theorem 2.8 Let � be a probability measure on Rn and suppose that � satis�es the inequalityLSIa;�(C).Then � satis�es the transportation inequality TaC2 ;�(C=4).ProofC As in [BGL01℄, we use Hamilton-Ja
obi equations. Let f be a Lips
hitz bounded fun
tion onRn , and set Qtf(x) = infy2R�f(y) + tLaC2 ;��x� yt ��; t > 0; x 2 Rn ; (13)and Q0f = f . The fun
tion Qtf is known as the Hopf-Lax solution of the Hamilton-Ja
obi equation( �v�t (t; x) = HaC2 ;�(rv)(t; x); t > 0; x 2 Rnv(0; x) = f(x); x 2 Rnsee for example [Bar94, Eva98℄.For t > 0, de�ne the fun
tion  by  (t) = Z e 4tC Qtfd�:Sin
e f is Lips
hitz and bounded fun
tion one 
an prove that Qtf is also a Lips
hitz and boundedfun
tion on t for almost every x 2 Rn , then  is a C1 fun
tion on R+ . One gets 0(t) = Z 4CQtfe 4tC Qtfd�� Z 4tC HaC2 ;�(rQtf)e 4tC Qtfd�= 1tEnt��e 4tC Qtf�+ 1t  (t) log  (t)� Z 4tC HaC2 ;�(rQtf)e 4tC Qtfd�Let use inequality LSIa;�(C) to the fun
tion exp �2tCQtf� to get 0(t) � 1t  (t) log (t) + Ct �Z Ha;��2tCrQtf�e 4tC Qtfd�� Z 4t2C2HaC2 ;�(rQtf)e 4tC Qtfd��:Due to the property of Ha;� (see Lemma 2.2),Ha;��2tCrQtf� = 4t2C2HaC2t ;�(rQtf):
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Then for all t 2 [0; 1℄, one has Ha;��2tCrQtf� � 4t2C2HaC2 ;�(rQtf):Then 8t 2 [0; 1℄; t 0(t)�  (t) log  (t) � 0After integration on [0; 1℄, we have  (1) � exp  0(0) (0) ;from where Z e 4CQ1fd� � eR 4C fd�: (14)Sin
e Ent�(F ) = sup�Z Fgd�; Z egd� � 1�;we have with g = 4CQ1f � R 4C fd�,Z F�Q1f � Z fd��d� � C4 Ent�(F ) :Let take the supremum on the set of Lips
hitz fun
tion f , the Kantorovi
h-Rubinstein's theoremapplied to the distan
e TLa;�(Fd�; d�), see [Vil03℄, implies thatTLaC2 ;�(Fd�; d�) � C4 Ent�(F ) :BAs it is also the 
ase in quadrati
 
ase, when the measure is log-
on
ave one 
an prove that atransportation inequality implies a logarithmi
 Sobolev inequality.For the next theorem we suppose that the fun
tion of transport given by the theorem of Brenier-Gangbo-M
Cann is a C2 fun
tion. Su
h a regularity result is outside the s
ope of this paper andwe refer to Villani [Vil03℄ for further dis
ussions around this problem. However we show here,that on
e this result assumed, the methodology presented in Bobkov-Gentil-Ledoux [BGL01℄, for theexponential measure, still works.Theorem 2.9 Let � be a probability measure on Rn . Assume that�(dx) = e�'(x)dxwhere ' is a 
onvex fun
tion on Rn .If � satis�es the inequality Ta;�(C) then for all � > C, � satis�es the logarithmi
 Sobolev inequalityLSI a2� ;�� 4�2��C�.ProofC Let note F density of probability with respe
t to �. Assume that F is C2, the general 
ase 
anresult by density.By the Brenier-Gangbo-M
Cann's theorem, see [Bre91, GM96℄, there exists a fun
tion � su
h thatS = Id�rHa;� Æ r�;8



transports Fd� to the measure �, for every measurable bounded fun
tion gZ g(S)Fd� = Z gd�:The fun
tion � is a La;�-
on
ave fun
tion and if � is C2, a 
lassi
al argument of 
onvexity (see
hapter 2 of [Vil03℄), one has D [rHa;� Æ r�(x)℄ is diagonalizable with real eigenvalues, all lessthan 1.A

ording to the assumption made on fun
tion �, one 
an assume that S is suÆ
iently smooth andwe obtain for x 2 Rn , F (x)e�'(x) = e�'ÆS(x) det (rS(x)): (15)Moreover this fun
tion gives the optimal transport, i.e.TLa;�(Fd�; d�) = Z La;�(rHa;� Æ r�)Fd�:Then by (15), one has for x 2 Rn ,logF (x) = '(x) � '(x�rHa;� Æ r�(x)) + log det (Id�D [rHa;� Æ r�(x)℄):Then sin
e D [rHa;� Æ r�(x)℄ is diagonalizable with real eigenvalues, all less than 1, we getlog det (Id�D [rHa;� Æ r�(x)℄) � �div(rHa;� Æ r�(x)):Sin
e ' is 
onvex we have '(x)� '(x�rHa;� Æ r�(x)) � rHa;� Æ r�(x) � r'(x) and we obtainEnt�(F ) � Z frHa;� Æ r�(x) � r'(x)� div(rHa;� Æ r�(x))gF (x)d�(x);after integration by parts Ent�(F ) � Z rF � rHa;� Æ r�d�:Let � > 0 and let use Young inequality for the 
ombined fun
tions La;� and Ha;��rFF � rHa;� Æ r� � Ha;���rFF �+ La;�(rHa;� Æ r�):Thus Ent�(F ) � 1� Z Ha;���rFF �Fd�+ 1� Z La;�(rHa;� Æ r�)Fd�� �Z H a� ;��rFF �Fd�+ 1�TLa;�(Fd�; d�):Thus if � satis�es the inequality Ta;�(C) we get for all � > CEnt�(F ) � �2�� C Z H a� ;��rFF �Fd�:Let us note now f2 = F , we getEnt��f2� � �2�� C Z H a� ;��2rff �f2d�� 4�2�� C Z H a2� ;��rff �f2d�:Then � satis�es, for all � > C inequality LSI a2� ;�� 4�2��C�. B
9



Remark 2.10 One 
an summarizes Theorem 2.8 and 2.9 by the following diagram (under assump-tion of Theorem 2.9): LSIa;�(C) ! TaC2 ;�(C=4)Ta;�(C) ! �LSI a2� ;�� 4�2�� C���>C :Noti
e, as it is the 
ase for the traditional logarithmi
 Sobolev inequality, than there is a loss on thelevel of the 
onstants in the dire
tion transportation inequality implies logarithmi
 Sobolev inequality.When � = � = 2, we get as in [OV00℄, T�;2(C) ! LSI�;2(16C). As in [OV00℄, Theorem 2.9 
an bemodi�ed in the 
ase Hess(') > �Id, where � 2 R.Also let us noti
e that as in the quadrati
 
ase we do not know if these two inequalities are equivalent.As in Proposition 2.3, here are some properties of the inequality TLa;�(C).Proposition 2.11 i. Let us re
all Marton's theorem on 
on
entration inequality.Assume that � satis�es a transportation inequality TLa;�(C) then � satis�es the following
on
entration inequality8A � Rn; with �(A) > 12 ; �((Ar)
) � 2e(� 1CLa;�(r));where (Ar)
 = fx 2 Rn ; d(A; x) > rg.ii. As in Proposition 2.3, the properties of tensorisation are also valid for transportation inequalityTa;�(C).Let �1 and �2 be two probability measures on Rn1 and Rn2 . Suppose that �1 (resp. �2)satis�es the inequality Ta;�(C1) (resp. Ta;�(C2)) then the probability �1 
 �2 on Rn1+n2,satis�es inequality Ta;�(D), where D = max fC1; C2g.iii. If the measure � veri�es Ta;�(C), then � satis�es a Poin
ar�e inequality (9) with the 
onstant C.ProofC The demonstration of i, ii of these results is a simple adaptation of the traditional 
ase, wereturn to the referen
es for proofs (for example 
hapters 3, 7 and 8 of [ABC+00℄).The proof of iii is an adaptation of the quadrati
 
ase. Suppose that � satis�es a Ta;�(C). By a
lassi
al argument of Bobkov-G�otze, the measure � satis�es the dual form of Ta;�(C) whi
h is theinequality (14), Z e 1CQ1fd� � eR 1C fd�; (16)where Q1f is de�ned as in (13) with the fun
tion La;�.Let note f = �g with g, C1 and bounded, we getQ1f(x) = Q1(�g)(x) = � infz2Rn ng(x� �z) + �La� ;�(z)o= �g(x)� �22 jrgj2 + o(�2)Then we obtain by (16),1 + �C Z gd�� �22C Z jrgj2d�+ �22C2Z g2d� � 1 + �C Z gd�+ �22C2�Z gd��2 + o(�2);imply that Var�(g) � C Z jrgj2d�:
10



BUnfortunately, as in the traditional 
ase of the transportation inequality, we do not know if this onehas property of perturbation as for inequality LSIa;�(C).3 An important example on R , the measure ��Let � > 1 and de�ne the probability measure �� on R by��(dx) = 1Z� e�jxj�dx;where Z� = R e�jxj�dx.Theorem 3.1 Let � 2℄1; 2℄. There exists A;B > 0 su
h that the measure �� satis�es the followingmodi�ed logarithmi
 Sobolev inequality, for any smooth fun
tion f on R su
h that f > 0 andR f2d�� = 1 we have Ent���f2� � AVar��(f) +B Zf>2 ����f 0f �����f2d��; (17)where 1=� + 1=� = 1 andEnt���f2� = Z f2 log f2R f2d�� d�� and Var��(f) = Z f2d�� ��Z fd���2:In the extreme 
ase, � = 1, we obtain the following inequality: for all f smooth enough su
h thatjf 0j � 1, Ent���f2� � AVar��(f) : (18)Corollary 3.2 Assume that f is a smooth fun
tion on R. Then we obtain the following estimationEnt���f2� � AVar��(f) +B Z
 ����f 0f �����f2d��; (19)where 
 = (f+ > 2sZ f2+d��) [(f� > 2sZ f2�d��);f+ = max(f; 0) and f� = max(�f; 0).ProofC We have f2 = f2+ + f2�. ThenEnt���f2� = sup�Z f2gd�� with Z egd�� � 1�= sup�Z f2+gd�� + Z f2�gd�� with Z egd�� � 1�� Ent���f2+�+Ent���f2�� :By Theorem 3.1 there exists A;B > 0 independent of f su
h thatEnt���f2+� � AVar��(f+) +B Z
+ ����f 0+f+ �����f2+d��;11



Ent���f2�� � AVar��(f�) +B Z
� ����f 0�f� �����f2�d��;where 
+ = nf+ > 2qR f2+d��o and 
� = nf� > 2qR f2�d��o.To 
on
lude, it is enough to noti
e thatVar��(f+) +Var��(f�) = Z f2d�� � �Z f+d���2 +�Z f�d���2!� Var��(f) ;and Z
+ ����f 0+f+ �����f2+d�� + Z
� ����f 0�f� �����f2�d�� = Z
 ����f 0f �����f2d��:BIt implies there are a� > 0 and C� <1, su
h that �� satis�es a logarithmi
 Sobolev inequality offun
tion Ha�;� with 
onstant C�.Indeed, this is 
lear that �� satis�es a Poin
ar�e inequality, (see 
hapter 6 of [ABC+00℄), with
onstant �� <1, Var��(f) � �� Z f 02d��:Then, by inequality (17), we obtain for any smooth fun
tion f on R,Ent���f2� � A�� Z f 02d�� +B Z ����f 0f �����f2d��:Let us give a few hint on the proof of the Theorem 3.1, whi
h will enable us to present key auxiliarylemmas. We �rst use the following inequalityZ f2 ln f2d�� � 5Z (f � 1)2d�� + Z (f � 2)2+ ln(f � 2)2+d�� (20)where it is obvious that trun
ation arguments are 
ru
ial. We will then need the following lemma:Lemma 3.3 Let � be a probability measure on R and let f > 0 su
h that R f2d� = 1 then we obtaini: Z (f � 1)2 � 2Var�(f) :ii: Zf�2 f2d� � 8Var�(f) :iii: Zf>2 f2 ln f2d� � ln 4ln 4� 1Ent��f2� < 4Ent��f2� :ProofC i. We have Z (f � 1)2d� = Var�(f) +�1� Z fd��2:R f2d� = 1 imply that 0 � R fd� � 1, then �R fd��2 � R fd�. ThenZ (f � 1)2d� � Var�(f) + (Var�(f))2;
12



but sin
e R f2d� = 1, Var�(f) � 1, thenZ (f � 1)2d� � 2Var�(f) :ii. One veri�es trivially that when x � 2, x2 � 4(x� 1)2 and apply i.iii. Let us give the proof given in [CG04℄.If x > 0 we have x lnx+ 1� x > 0 whi
h yieldsZf�2 f2 ln f2d�+ �(f � 2)� Zf�2 f2d� > 0;hen
e Ent��f2� > Zf>2 f2 ln f2d�� Zf>2 f2d�:Sin
e Zf>2 f2d� � 1ln 4 Zf>2 f2 ln f2d�;we obtain Ent��f2� > �1� 1ln 4�Zf>2 f2 ln f2d�:BRe
all the Hardy's inequality presented in the introdu
tion: let �; � be Borel measures on R+ , thebest 
onstant A so that every smooth fun
tion f satis�esZ 10 (f(x)� f(0))2d�(x) � AZ 10 f 02d� (21)is �nite if and only if B = supx>0 �([x;1[) Z x0 �d�a
d� ��1dt (22)is �nite and when A is �nite we have B � A � 4B:We then present di�erent proof of the desired inequality, starting from (20), a

ording to the valueof Ent��f2�, in whi
h Hardy's inequality plays a 
ru
ial role. First, when the entropy is large wewill needLemma 3.4 Let h de�ned as follow.h(x) = � 1 if jxj � 1jxj2�� if jxj > 1Then there exists Ch > 0 su
h that for every smooth fun
tion g we haveEnt���g2� � Ch Z g02hd��: (23)
13



ProofC We use Theorem 3 of [BR03℄ whi
h is a re�nement of the 
riterion of a Bobkov-G�otze theorem(see Theorem 5.3 of [BG99℄).The 
onstant Ch satis�es max(b�; b+) � C � max(B�; B+) whereb+ = supx>0 ��([x;+1[) log�1 + 12��([x;+1[)�Z x0 Z� ejtj�h(t)dt;b� = supx<0 ��(℄�1; x℄) log�1 + 12��(℄�1; x℄)�Z 0x Z� ejtj�h(t)dt;B+ = supx>0 ��([x;+1[) log�1 + e2��([x;+1[)�Z x0 Z� ejtj�h(t)dt;B� = supx<0 ��(℄�1; x℄) log�1 + e2��([�1; x[)�Z 0x Z� ejtj�h(t)dt:An easy approximation prove that for large positive x��([x;1[) = Z 1x 1Z� e�jtj�dt �1 1Z��x��1 e�x� (24)Z x0 Z� ejtj�h(t)dt �1 Z�x ex� ;and one may prove same equivalent for negative x. A simple 
al
ulation then yields that 
onstantsb+, b�, B+ and B� are �nite and the lemma is proved. BNote that the fun
tion h is the smallest fun
tion su
h that the 
onstant Ch in the inequality (23) is�nite, it \saturates" the inequality on in�nity.In the 
ase of small entropy, we will use so-
alled �-Sobolev inequalities (even if our 
ontext is lessgeneral), see Chafa�� [Cha04℄ for a 
omprehensive review, and Barthe-Cattiaux-Roberto [BCR04℄ fora general approa
h in the 
ase of measure ��.Lemma 3.5 Let g be de�ned on [T;1[ with T 2 [T1; T2[ for some �xed T1; T2,g(T ) = 2; g > 2 and Z 1T g2d�� � 13;then Z 1T (g � 2)2+�(g2)�� � Cg Z[T;1[\fg>2g g02d��; (25)where �(x) = ln 2(��1)� (x). The 
onstant Cg depend on the measure �� but does not depend on thevalue of T 2 [T1; T2℄.ProofC Let use Hardy's inequality as explained in the introdu
tion. We have g(T ) = 2. We applyinequality (6) with the fun
tion (g � 2)+ and the following measuresd� = �ln g2�2(��1)� d�� and � = ��:Then the 
onstant C in inequality (25) is �nite if and only ifB = supx>T Z xT Z�ejtj�dtZ 1x �ln g2�2(��1)� d��;
14



is �nite.Sin
e 2(�� 1)=� < 1 the fun
tion x ! (lnx) 2(��1)� is 
on
ave on [4;1[. By Jensen inequality weobtain for all x > T , Z 1x �ln g2�2(��1)� d�� � ln 2(��1)� � R1x g2d����([x;1[)���([x;1[):Then by the property of g we haveB � supx>T Z xT Z�ejtj�dt ln 2(��1)� � 13��([x;1[)���([x;1[)� supx>T1 Z xT1 Z�ejtj�dt ln 2(��1)� � 13��([x;1[)���([x;1[):Using the approximation given in equality (24) we prove that B is �nite, bounded by a 
onstant Cgwhi
h does not depend on T . BAs said before, we divide the proof of Theorem 3.1 in two parts: large and small entropy, both inthe 
ase of positive fun
tion. Let us now present the proof in the 
ase of large entropy.Large entropy 
ase.Proposition 3.6 Suppose that � 2℄1; 2℄. There exists A;B > 0 su
h that for any fun
tions f > 0satisfying Z f2d�� = 1 and Ent���f2� > 1we have Ent���f2� � AVar��(f) +B Zf>2 ����f 0f �����f2d��: (26)If � = 1, when jf 0j � 1, then Ent���f2� � AVar��(f).Proof of Proposition 3.6C Let f > 0 satisfying R f2d�� = 1.A 
areful study of the fun
tionx! �x2 lnx2 + 5(x� 1)2 + x2 � 1 + (x� 2)2+ ln(x� 2)2+proves that for every x 2 Rx2 lnx2 � 5(x� 1)2 + x2 � 1 + (x� 2)2+ ln(x� 2)2+:Then we obtain by Lemma 3.3.i, re
alling that R f2d�� = 1 and f > 0,Z f2 ln f2d�� � 5Z (f � 1)2d�� + Z (f2 � 1)d�� + Z (f � 2)2+ ln(f � 2)2+d��� 10Var��(f) + Z (f � 2)2+ ln(f � 2)2+d��whi
h is the announ
ed starting point inequality (20).Sin
e R f2d�� = 1, one 
an easily prove thatZ (f � 2)2+d�� � 1;
15



then R (f � 2)2+ ln(f � 2)2+d�� � Ent���(f � 2)2+� ; andEnt���f2� � 10Var��(f) +Ent���(f � 2)2+� :Hardy's inequality of Lemma 3.4 with g = (f � 2)+ givesEnt���(f � 2)2+� � Ch Z (f � 2)02+hd�� = Ch Zf>2 f 02hd��: (27)For p 2℄1; 2[ and q > 2 su
h that and 1=p + 1=q = 1 and we have for every x; y > 0 by Younginequality, xy � xpp + yqq : (28)If � = 1, then if jf 0j � 1, then there exists C > 0 su
h thatCh Zf>2 f 02hd�� � CVar��(f) + 12Ent���f2�where we used Lemma 3.3.ii and the large entropy 
ase. We then dedu
e the result when � = 1.Consider then � 2℄1; 2℄ and � = �=(�� 1). Let p = �=2 and q = �=(�� 2). Let " > 0 and let applyinequality (28) to the right term of (27), we obtain1"(��2)=��f 0f �2"(��2)=�h � 2�"(��2)=2 ����f 0f ����� + � � 2� "h�=(��2);then Ent���(f � 2)+2� � 2Ch�"(��2)=2 Zf>2 ����f 0f �����f2d�� + � � 2� Ch"Zf>2 h�=(��2)f2d��Let � a probability measure, then we have for every fun
tion f su
h that R f2d� = 1, and for everymeasurable fun
tion g Z f2gd� � Ent��f2�+ log Z egd�:Let � > 0 and we apply the previous inequality with g = �h�=(��2),Ent���(f � 2)+2� �2Ch�"(��2)=2 Zf>2 ����f 0f �����f2d�� + (� � 2)Ch"�� �Ent���f2�+ log Z exp��h�=(��2)�d���: (29)Sin
e � = �=(� � 1), let note that h(x)�=(��2) = x� if jxj > 1. Then we �x � = 1=2. And noteA = log Z exp�12h�=(��2)�d�� <1:Then we now �x " = inf f�=(A(� � 2)4Ch); �=((� � 2)4Ch)g. We obtainEnt���(f � 2)+2� � Ch"(��2)=2 Zf>2 ����f 0f �����f2d�� + 14Ent���f2�+ 14 :Ent���f2� > 1, impliesEnt���f2� � 20Var��(f) + 2Ch"(��2)=2 Zf>2�f 0f ��f2d��:B 16



Remark 3.7 As we 
an note it in the demonstration: the 
onstant A is universal and the 
onstantB depends on the measure studied. We will see in se
tion 4 that one 
an adapt the demonstrationfor other measures.Remark 3.8 With the same method as developed in Proposition 3.6 we 
an prove the inequality (26)without Var��(f). Suppose that � 2℄1; 2℄. There exists A > 0 su
h that for any fun
tions f satisfyingZ f2d�� = 1 and Ent���f2� > 1we have Ent���f2� � AZ ����f 0f �����f2d��:Small entropy 
ase.Let us now give the result when Ent���f2� is small.Proposition 3.9 Let � 2 [1; 2℄. There exists A;A0 > 0 su
h that for any fun
tions f > 0 satisfyingZ f2d�� = 1 and Ent���f2� � 1we have Ent���f2� � 34Var��(f) +AZf>2 ����f 0f �����f2d��:when � 2℄1; 2℄, and if � = 1 we get Ent���f2� � A0Var��(f) :Proof of Proposition 3.9C Let f > 0 satisfying R f2d�� = 1. Like in Proposition 3.6, we start with inequality (20), whi
hreadily impliesEnt���f2� = Z f2 ln f2d�� � 10Var��(f) + Z (f � 2)2+ lnf2d��: (30)We will now 
ontrol the se
ond term of the right hand side of this last inequality via the use of�-Sobolev inequalities, namely Lemma 3.5. Therefore we have to 
onstru
t a fun
tion g, greaterthan 2, whi
h satis�es (for a well 
hosen T ), when Ent���f2� � 1,(g1) Z 1T g2d�� � 12;(g2) Z 1T (g � 2)2+�(g2)d�� � C Z (f � 2)2+ ln f2d��;(g3)Z 1T g02d�� � C Z[T;1[[ff�2g 	�����f 0f ����� f2d�� +D Ent���f2�,with �(x) = ln 2(��1)� (x), 0 < D � 1=2 and 	(x) = x�:Let now de�ne T1 < 0 and T2 > 0 su
h that��(℄1; T1℄) = 38 ; ��([T1; T2℄) = 14 and ��([T2;+1[) = 38 :Sin
e R f2d�� = 1 there exists T 2 [T1; T2℄ su
h that f(T ) � 2.17



Let us de�ne g on [T1;1℄ as followg = 2 + (f � 2)+ ln
 f2 on [T;1[;where 
 = (2� �)=(2�).Fun
tion g satis�es g(T ) = 2 and g(x) > 2 for all x > T . Let now 
ompute R1T g2d��. We haveZ 1T g2d�� � 2Z 1T1 4d�� + 2Z 1T1 (f � 2)2+ ln2
 f2d��� 4 + 2Z[T2;1[\ff>2g f2 ln2
 f2d��:Sin
e 2
 2 [0; 1℄ we have ln2
 f2 � ln f2 on ff > 2g. Then we obtain by Lemma 3.3.iiiZ 1T g2d�� � 5 + 2Zf>2 f2 ln2
 f2d��� 5 + 8Ent���f2�� 13;sin
e Ent���f2� � 1.Assumptions on Lemma 3.5 are satis�ed, we obtain by inequality (25)Z 1T (g � 2)2+ ln2(��1)� g2d�� � Cg Z[T;1[\fg>2g g02d��:Let us 
ompare the various terms now.Firstly let note u = 2(� � 1)=�, we have(g � 2)2+ lnu g2 = (f � 2)2+ ln2
 f2 lnu �2 + (f � 2)+ ln
 f2�2:On ff > 2g we have 2 + (f � 2)+ ln
 f2 > 2 + (f � 2)+K; where K = ln
 4. Sin
e K > 1 andu+ 2
 = 1 one has (g � 2)2+ lnu g2 > (f � 2)2+ ln2
+u f2 = (f � 2)2+ ln f2:Then we obtain Z 1T (f � 2)2+ ln f2d�� � Z 1T (g � 2)2+ ln2(��1)� g2d��: (31)Se
ondly one has on ff > 2g g0 = f 0 ln
 f2�1 + 
2
 f � 2f ln f2�;then using ln f2 > ln 4 one obtain��g0��2 � ��f 0��2 ln2
 f2�1 + 
2
ln 4�2:Let note D = (1 + 
2
=ln 4)2, one hasZ[T;1[\ff>2g g02d�� � D Z[T;1[\ff>2g f 02 ln2
 f2d��; (32)on [T;1[\ff > 2g:Then, using inequalities (31) and (32), there exists C > 0 (independent of T 2 [T1; T2℄), su
h thatZ 1T (f � 2)2+ ln f2d�� � C Z[T;1[\ff>2g f 02 ln2
 f2d��:
18



When � = 1, one has trivially that the right hand side of this last inequality is bounded, whenjf 0j � 1, by C Rf�2 f2d�� whi
h is itself bounded, by Lemma 3.3.ii, by 8CVar��(f) whi
h 
on
ludesthe proof in this 
ase.When � 2℄1; 2℄, we apply Inequality (28) with q = �=(2 � �) and p = �=(2(� � 1)). We obtain forevery " > 0,Z[T;1[\ff>2g�f 0f �2�ln2
 f2�f2d�� �2(� � 1)�" 2��2(��1) Z[T;1[\ff>2g ����f 0f �����f2d�� + "2� �� Z[T;1[\ff>2g f2 ln f2d��:Fix " su
h that "C 2��� < 1=16, then there exists A > 0 su
h thatZ 1T (f � 2)2+ ln f2d�� � AZ[T;1[\ff>2g ����f 0f �����f2d�� + 116 Z[T;1[\ff>2g f2 ln f2d��:Using Lemma 3.3.iii we have,Z 1T (f � 2)2+ ln f2d�� � AZ[T;1[\ff>2g ����f 0f �����f2d�� + 14Ent���f2� :The same method 
an be used on ℄�1; T ℄ and then , there is A0 > 0 su
h thatZ T�1(f � 2)2+ ln f2d�� � A0 Z[�1;T ℄\ff>2g ����f 0f �����f2d�� + 14Ent���f2� :And then, we getZ (f � 2)2+ ln f2d�� � (A+A0)Zf>2�f 0f ��f2d�� + 12Ent���f2� :Note that 
onstants A and A0 don't depend on T .Then, by inequality (30), Proposition 3.9 is proved. BLet us give now a proof of the theorem.Proof of Theorem 3.1C The proof of the theorem is a simple 
onsequen
e of Propositions 3.6 and 3.9. B4 Extension to other measuresWe will present in this se
tion modi�ed logarithmi
 Sobolev inequality of fun
tion H for moregeneral measure than �� whi
h 
an be derived using the proof 
arried on in Se
tion 3: the largeentropy 
ase where the optimal Hardy fun
tion h is identi�ed and used to derive the optimal H, andthe small entropy 
ase where � and g (used on the proof of Proposition 3.8) have to be identi�edleading to the same H fun
tion.Let us �rst 
onsider the following probability measure ��;� for � 2 [1; 2℄ and � 2 R de�ned by��;�(dx) = 1Z e�'(x)dx where '(x) = jxj�(log jxj)� for jxj � 1and ' twi
e 
ontinuously di�erentiable. 19



Theorem 4.1 There exists A;B > 0 su
h that the measure ��;� satis�es the following logarithmi
Sobolev inequality: for any smooth f on R su
h that R f2d��� = 1 and f > 0, we haveEnt��;��f2� � AVar��;� (f) +B Zf>2H �����f 0f ����� f2d��;� ; (33)where H is positive smooth and given for x � 2 byH(x) = x ���1log ���1 x if � 2℄1; 2[; � 2 R;H(x) = x2ex1=� if � = 1; � 2 R+ and H(x) = x2 log��(x) if � = 2; � 2 R� :ProofC We will mimi
 
losely the proof given in the �� 
ase, 
onsidering large and small entropy 
ase.We will not present all the 
al
ulus but give the essential arguments.Let now treat the 
ase � 2℄1; 2[.Large entropy. We will �rst apply Lemma 3.4 to measure ��;�, one has then that b+, b�, B+, B�are �nite if one take h positive smoothh(x) = x2��log� x jxj � 2:One has then to determine H to 
onstru
t  su
h that there exists � > 0 with � (h) exponentiallyintegrable with respe
t to ��;� and H =  �(x2) where  � is the Fen
hel-Legendre transform of  .Considering the exponential integrability 
ondition leads us to 
onsider  (x) behaving asymptoti-
ally as x �2�� log 2�2�� x. One may thus derive the asymptoti
 behavior of  � and �nally H.Small entropy. One desires here to apply Lemma 3.5, evaluating � and then build the fun
tiong satisfying 
onditions (g1), (g2) and (g3). By Hardy's inequality and arguments in the proof ofLemma 3.5, one may 
hoose � for x large enough as�(x) = log2��1� (x) (log log x) 2�� :Setting then g = 2 + (f � 2)+ log 2��2� f2(log log f2)��� ;one may then verify (g1), (g2) and (g3) with 	 = H de�ned in the large entropy step.Now if � = 1 and � > 0, then the same arguments gives that for large enough x (x) = x log2� x;  �(x) = xex1=(2�) and H(x) = x2ex1=� :If � = 2 and � � 0, we have for large enough x. (x) = 1xe2x�1=� ;  �(x) = x log�� x and H(x) = x2 log�� x:BRemark 4.2 i. Using on
e again Herbst's argument, we may derive 
on
entration propertiesfor the measure ��;� of desired order, for every Lips
hitz fun
tion F with kFklip � 1, thereexists C > 0 su
h that, for all � > 0,��;� (jF � ��;�(F )j � �) � 2e�Cmin(�� log� �;�2):
20



ii. Note that the Lata la-Oleszkiewi
z inequalities I(r) (see [LO00℄) are not well adapted for thefamily of measures ��;�. Indeed, using Hardy's 
hara
terization of this inequalities obtainedby Barthe-Roberto [BR03, Th. 13 and Prop. 15℄, one may show that ��;� satis�es an I(�=2)inequality if � � 0 and an I(�=2 � �) (� being arbitrary small) for � < 0, whi
h entails
onsequently not optimal 
on
entration properties.iii. By the 
hara
terization of the spe
tral gap property on R, one obtains that ea
h measure ��;�satis�es a Poin
ar�e inequality and thus a modi�ed logarithmi
 Sobolev inequality.Following the previous proof, we may generalize the family ��;� adding an expli
it multipli
ativeterm to the potential jxj� log� jxj, as for example log log
 jxj whi
h will give us new modi�ed log-arithmi
 Sobolev inequality, but ea
h of this new measure has to be 
onsidered \one-by-one" (wehope some general results for ' 
onvex). We may now state a result enabling us to get the sta-bility of these modi�ed logarithmi
 Sobolev inequality by addition of an unbounded perturbation:
onsider the measuresd��(x) = exp ��jxj� � jxj��1 
os(x)� dxZ� ; � 2℄1; 2℄;d
�;b(x) = (1 + x)be�x� dxZ�;b 1x>0; � 2℄1; 2℄; b 2 R:Proposition 4.3 There exists a > 0 su
h that the measures �� and 
�;b satisfy a logarithmi
 Sobolevinequality of fun
tion Ha;�.ProofC Following the proof given in Se
tion 3 , one sees that the result hold true on
e one may verifythat the Hardy's inequalities of Lemma 3.4 and Lemma 3.5 hold with the h and � obtained for the
ase of ��. It is easily 
he
ked on
e remarked thatlog d��(x)dx �1 �jxj� and �log d��(x)dx �0 �1 �(�� 1)jxj��1and the same for 
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