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Abstract

We present a new class of modified logarithmic Sobolev inequality, interpolating between
Poincaré and logarithmic Sobolev inequalities, suitable for measures of the type exp(—|z|*) or
exp(—|z|* log®(24]z|)) (a €]1,2[ and 8 € R) which lead to new concentration inequalities. These
modified inequalities share common properties with usual logarithmic Sobolev inequalities, as
tensorisation or perturbation, and imply as well Poincaré inequality. We also study the link
between these new modified logarithmic Sobolev inequalities and transportation inequalities.

1 Introduction

A probability measure u on R™ satisfies a logarithmic Sobolev inequality if there exists C < oo such
that, for every smooth enough functions f on R",

But, (%) < C [ 194Pdu (1)

where

Bnt,(12) = [ 110 P~ [ Pdutog [ £
and where |V f| is the Euclidean length of the gradient V f of f.

Gross in [Gro75] defines this inequality and shows that the canonical Gaussian measure with density
(27r)’"/2€"""3‘2/2 with respect to the Lebesgue measure on R" is the basic example of measure
w satisfying (1) with C = 2. Since then, many results have presented measures satisfying such
an inequality, among them the famous Bakry-Emery 'y criterion, we refer to Bakry [Bak94] and
Ledoux [Led99] for further references and details on various applications of these inequalities.

Let a > 1 and define the probability measure u, on R by

1 o
po(dz) = ——e” " da, (2)

o



where Z, = [ e 1"I"dz. Tt is well-known that the probability measure p, satisfies a logarithmic
Sobolev inequality (1) if and only if « > 2. But for a € [1,2[, even if the measure u, does not
satisfy (1), it satisfies a Poincaré inequality (or spectral gap inequality) which is for every smooth
enough function f,

var,, (1) < C [ 11Fdo 3)

where Var,,, (f) = [ f2dpo — ([ fdpa)® and C < cc.

Recall, see for example Section 1.2.6 of [ABCT00], that if a probability measure on R" satisfies a
logarithmic Sobolev inequality with constant C then it satisfies a Poincaré inequality with a constant
less that C/2.

The problem is then to interpolate between logarithmic Sobolev and Poincaré inequalities, which
will help us to study further properties, such as concentration, of measures p&" for a € [1,2] and
n € N*.

A first answer was brought by Latala-Oleszkiewicz in [LO00] and recently extended by Barthe-
Roberto in [BRO3]. Let i be a probability measure on R", p satisfies inequality I,(a) (for a € [0, 1])
with constant C' > 0 if for all p € [1, 2],

| - ( / f”du>2/p <c@-p) [ 1977 (4)

A significant result of [LOO00] is that they prove that the measure u®" (for a € [1,2], n € N¥)
satisfies such an inequality for a constant C' (independent of n) and with a = 2(aw — 1)/a. And
in [BR0O3] the authors present a simple proof of the result of Latala-Oleszkiewicz and describe the
measures on the line which enjoy the same inequality.

Our main purpose here will be to establish another type of interpolation between logarithmic Sobolev
and Poincaré inequalities, more directly linked to the structure of the usual logarithmic Sobolev
inequalities, i.e. an inequality “entropy-energy” where we will modify the energy to enable us to
consider p1, measure. Note that this point of view was the one used by Bobkov-Ledoux [BL97] when
considering double sided exponential measure. Let us describe further these modified logarithmic
Sobolev inequalities.

Let @ € [1,2], a > 0 and 8 > 2 satisfying 1/a+ 1/8 = 1, we note

2
% if |z <a
_ g -2
Hyo(z) = (L?*ﬂm + (J,Qﬁ if |z >aand a #1
p 20
+00 if |z > aand a = 1.

In Section 2 we give definition and general properties of the following inequality

Ent,(f%) <C / Hoa (%f)deu- (LSIaa(C))

In particular we prove that inequality LSI, , satisfies some of the properties shared by Poincaré
or Gross logarithmic Sobolev inequalities ((1) or (3)), namely tensorisation and perturbation. Note
that in the case a = 1, it is exactly the inequality used by Bobkov-Ledoux [BL97] and a = 2 is
exactly the Gross logarithmic Sobolev inequality.

We present also a concentration property which is adapted to this inequality. More precisely, if a
measure £ satisfies the inequality LSI, (C), we have that if f is a Lipschitz function on R" with
[ £l < 1 (with respect to the Euclidean metric) then, there is B > 0 such that for every A > 0
one has

[ia (f — /fdua > A) < exp (=B min (A%, A?)). (5)



This inequality was proved, for a = 1, by Maurey with the so called property (7) and Bobkov-
Ledoux in [Mau91, BL97]. Let us note that the cases o > 2 are studied by Bobkov-Ledoux
in [BLOO], relying mainly on Brunn-Minkowski inequalities, and by Bobkov-Zegarlinski in [BZ04]
which refine the results presenting, via Hardy’s inequality, some necessary and sufficient condition
for measures on the real line. Let us note to finish that they use, for the case a > 2, Hg(z) = z|?
with 1/a+1/8 = 1.

In Section 2.2, we extend Otto-Villani’s theorem (see [OV00]) for the relation with logarithmic
Sobolev inequality and transportation inequality. Let us define L, o by Lso = Hj 4, the Legendre
transform of H, .. We prove that if a probability measure ; on R” satisfies the inequality LS, o(C)
then there are ' > 0 and D > 0 such that it satisfies also a transportation inequality: for all function
F on R", density of probability with respect to p,

Ty, , (Fdp,dp) < DEnt,(F), (Ty (D))

a’ o

where
Ty, (Fdu,dp) = inf{/La’,a(m - y)dﬁ(m,y)},

where the infimum is taken over the set of probabilities measures m on R"” x R” such that = has two
margins F'dy and dyp. This inequality was introduced by Talagrand in [Tal96] for the case o = 2
and o = 1. Let us note that the case @ = 1 was also studied in [BGLO01] with exactly this form and
the case a > 2 was studied in [Gen01].

In Section 3 we prove, as in [LO00], that the measure u, defined in (2) satisfies the inequality
LS1,,(C). More precisely we prove that there is A, B > 0 such that pu, satisfies for all smooth
function such that f > 0 and [ f?du, = 1,

7P

Ent,,, (fQ) < AVar,_(f)+ B/ fdue.

fz2
Due to the fact that p, enjoys Poincaré inequality, u, satisfies also inequality LS1, ,(C) for some
constants C' > 0 and a > 0.

Our method relies crucially on Hardy’s inequality (see for example [ABCT00, BG99, BR03]) we
recall now: let u,v be Borel measures on RT. Then the best constant A so that every smooth
function f satisfies

[ U@ s e <a [ (6)
0] 0

is finite if and only if

B = sup u([z, ) /U (d;jc)]dt (7)

>0
is finite, where v is the absolutely continuous part of v with respect to p. Moreover, when A is
finite we have
B < A<LA4B.

Finally in Section 4 we will present some inequalities satisfied by other measures. More precisely,
let ¢ be twice continuously differentiable and note the probability measure ., by,

1
pp(dx) = Eef‘p(“:)dm. (8)
Among them is considered

o(z) = |z|*(log(2 + |z|))?, with « €]1,2[, 8 € R,

which exhibits a modified logarithmic Sobolev inequality of function H (different in nature from
H, ), and which is not covered by Latala-Oleskiewickz inequality. We also present examples which
are unbounded perturbation of u,. We then derive new concentration inequalities in the spirit of
Maurey [Mau91] or Bobkov-Ledoux [BL97].



2 Modified logarithmic Sobolev inequalities: definition and gen-
eral properties

2.1 Definitions and classical properties

Let a € [1,2] and 8 > 2 satisfying 1/a 4+ 1/8 =1 and let a > 0. Let define the functions L, , and
H, ..
If « €]1, 2] we note

2
(2) ( % if |z| <a
Loo(z) = «
’ y — 2
a2Hlm +a2a if |z| > a
« 2c0
and o
% if || <a
H, a(x) B
’ —2
a276m +a2'6— if || > a
g p 2
If &« =1 we note
2
z ) 2
— if || <a x .
- — rl <a
L“wl(m) = 2 a2 and H(I,,l(m) = 9 lf ‘T| > a
a|m\f? if 2] > a 00 if |z| > a
Let n € N* and = = (z1,--- ,z,) € R”, we note
n n
LI(z) =Y Laalzs) and H{ (z) = Hoalz).
i=1 i=1

Note that when there is no ambiguity we will drop the dependence in n and note L, , instead of
a,q-

Let us define the logarithmic Sobolev inequality of function H, 4.

Definition 2.1 Let i be a probability measure on R", u satisfies a logarithmic Sobolev inequality

of function H, o with constant C, noted LS1,(C), if for every C*> and L? function f on R one
has

Ent,(f?) <C / H, a(w ) f2du (LSI,4(C))

Vf - of 1
Ent, /fQIOg 27 du (deao,( f) ZH <8xlf>

i=1

where

It is supposed that 0/0 = oo
We detail some properties of L, , and H, , in the following lemma.
Lemma 2.2 Functions L, and H,, satisfies:

i: If « €]1,2], Lo and Hy o are C' on R.

i: Ly o = Haa, where Ly , is the Fenchel-Legendre transform of Lao. Of course we have too
H; = Loa.

1i: For all t > 0 one has for oll z € R

Loa(tz) = t’La o(2),  Ha(te) = t?Ha o(x).



iv: Let 0 < a < d’, one has for all z € RT

La,a(x) < La’,a(x)a H, a(x) <H, a($)-

" — 3

v: If @ €]1,2], Ly and H, o are strictly conver and

. Ha,a(x) T La,a(x) o
lim ———— = lim ——~ =

The assumptions given on « and § are significant only for condition iv, and condition v is significant
for Brenier-McCann-Gangbo’s theorem, which is crucial for the study of the link between modified
logarithmic Sobolev inequalities and transportation inequalities of the next section.

Here are some properties of the inequality LS1, (C).

Proposition 2.3 . This property is known under the name of tensorisation.

Let pq and po two probability measures on R and R™ . Suppose that p1 (resp. uo) satisfies
the inequality LS1, o(C1) (resp. LSI, o(C2)) then the probability pi @ po on RM 12 satisfies
inequality LSI, o(D), where D = max {Cy,Cs}.

1. This property is known under the name of perturbation.

Let p a measure on R™ satisfying LSI, o(C). Let h a bounded function on R" and defined fi

as
h

e
dip = —d
= —dp,
where 7 = feh‘du.

Then the measure ji satisfies the inequality LSI,o(D) with D = Ce®M) where osc(h) =
sup(h) — inf(h).

iti. Link between LS1, (C) inequality with Poincaré inequality.

Let p a measure on R". If p satisfies LS1, (C), then p satisfies a Poincaré inequality with
the constant C/2. Let us recall that p satisfies a Poincaré inequality with constant C if

Var,(f) < C / V1 dp, (9)

for all smooth function f.

Proof

<1 One can find the details of the proof of the properties of tensorisation and perturbation and the
implication of the Poincaré inequality in the chapter 1 and 3 of [ABCT00] (Section 1.2.6., Theo-
rem 3.2.1 and Theorem 3.4.3). >

Remark 2.4 We may of course define logarithmic Sobolev inequality of function H, where H(x)
is quadratic for small values of |x| and with convez, faster than quadratic, growth for large |x|.
See Section 4 for such examples. Note that Proposition 2.3 is of course still valid for this kind of
inequality. These inequalities are also studied in a general case in [Led99] in Proposition 2.9.

As in [LOO00, BL97], by using the argument of Herbst, one can give precise estimates about concen-
tration.



Proposition 2.5 Assume that the probability measure p on R satisfies the inequality LSI, o(C).
Let F' be Lipschitz function on R, then we get for A > 0,

2« SClLE
2exp (= KalX = aCl1 P12 = ) = 222 ) i a > 20l
(67
p(lF = p(F)| 2 A) < ( 012 )
p

——— otherwise,
ClF i

20‘(0[ _ 1)17aa27oz
aC [ Fg,,

where K, =

OF

2 .
oo <L, then there exists K, (indepen-

Consider now pu®" and F : R* — R, C', such that Y,
dent of n) such that

,u®"(‘F - u®"‘(F)‘ > ) < 2exp (—f(a min ()\2,)\“)> . (10)

Proof

< Assume that [ Fdp = 0. Let us recall briefly Herbst’s argument (see [ABCT00] for more details).
Denote ®(t) = [ e''du, and remark that LSI, ,(C) applied to f? = €', using basic properties of
H, ., yields to

10’ (t) — @ (t) log ®(t) < CHypq <%> (1) (11)

which, denoting K (t) = (1/t) log ®(¢), entails

= t2 a,x 2

Then, integrating, and using K (0) = [ Fdu = 0, we obtain

b s||F|| i
B(t) < exp <Ct/ —Hon <w> ds) . (12)
0 S

The Laplace transform of F' is then bounded by

2-8 -9 -2
Spf. & o n Lt T
exXp (Ct ||F||sz2ﬁﬁ(18 _ 1) + CtaHFHLin(IB _ 1) Ca Qﬁ ift > ||FHaLv:p’
() < IF|17,,2 2
4 1 a
exp 078 it0<t< £ ip

For the n-dimensional extension, use the tensorisation property of LSI, , and
n

t OF t
>t (53,) < o (3)

Then we can use the case of dimension 1. >

Remark 2.6 For general logarithmic Sobolev of function H, we may obtain crude estimation of
the concentration, at least for large X. Indeed, using inequality (12), we have directly that the
concentration behavior is given by the Fenchel-Legendre transform of H for large values, see Section 4
for more details.



2.2 Link between inequality LS/, ,(C) and transportation inequality

Definition 2.7 Let u be a probability measure on R™, u satisfies a transportation inequality of
function L, o with constant C, noted Ty o(C), if for every function F, density of probability with

respect to u, one has
Ty, . (Fdp,dp) < CEnt,(F), (Ta,a(C))

where

Ty, . (Fdp, p) = inf {/ Loalz — y)dn(z, y)},

where the infimum is taken over the set of probabilities measures m on R x R"™ such that © has two
margins Fdy and p.

Otto and Villani proved that a logarithmic Sobolev inequality implies a transportation inequality
with a quadratic cost (this is the case @ = § = 2), see [OV00, BGL01]. With the notations of this
paper they prove that if u satisfies the inequality LS. »(C), (when o = 2 the constant a is not any
more a parameter in this case), then p satisfies the inequality 7' 2(4C). In [BGLO1] another case
is studied, when o = 1 and 8 = oo. In this first theorem we give an extension for the other cases,
where « € [1,2].

Theorem 2.8 Let p be a probability measure on R" and suppose that u satisfies the inequality
LS1,4(C).
Then i satisfies the transportation inequality Toc  (C/4).

2

Proof
< As in [BGLO1], we use Hamilton-Jacobi equations. Let f be a Lipschitz bounded function on
R™, and set

Quf (z) = inf{f(y)+tLaca(ﬂ>}, t>0, z € R, (13)
yeR 2 t

and Qo f = f. The function @, f is known as the Hopf-Lax solution of the Hamilton-Jacobi equation

{ %(t, ) =Hu (V0)(t2), t>0, 2 € R"
2 2 ¢
v(0,z) = f(z), z€R"

see for example [Bar94, Eva98|.
For ¢ > 0, define the function 1 by

o(t) = [ ¥y,

Since f is Lipschitz and bounded function one can prove that (), f is also a Lipschitz and bounded
function on t for almost every z € R”, then 1 is a C' function on R*. One gets

V(o) :/%Qt’fe%@fdﬂ/%Hﬂa(thf)e%Qtfdﬂ
2
! & 1 4t i
= ~Ent, (eoQtf) + (1) log (1) — / aH%o,a(VQtf)eoQtfd,u

Let use inequality LSI, (C) to the function exp (%Q,f) to get

, 1 C 2t at 442 at
W(t) < S log p(t) + ( / Hyo <5VQtf>eCQ” dp / oz Hag o(VQuf)e@ du)-

Due to the property of H, , (see Lemma 2.2),

2t 4¢?
Ha,a (Ethf) = WH(LT?@(VQL]{).



Then for all ¢ € [0, 1], one has

2t 4t2
Ha,a (Ethf) < WH“TC@(VQL]{)'
Then
vt €[0,1], t'(t) —(t)logy(t) <0

After integration on [0, 1], we have

from where
/eé‘Qlfdu < el clin (14)

Ent,(F) = sup{/ngu, /e-qdu < 1},

we have with g = Q1 f — [ & fdp,

/F<Q1f - /fdu>du < %Entu(F).

Let take the supremum on the set of Lipschitz function f, the Kantorovich-Rubinstein’s theorem
applied to the distance Ty, , (Fdpu,dp), see [Vil03], implies that

Since

C
T o o(Fdu,dp) < ZEntu(F)'

aC >
2
>

As it is also the case in quadratic case, when the measure is log-concave one can prove that a
transportation inequality implies a logarithmic Sobolev inequality.

For the next theorem we suppose that the function of transport given by the theorem of Brenier-
Gangbo-McCann is a C* function. Such a regqularity result is outside the scope of this paper and
we refer to Villani [Vil03] for further discussions around this problem. However we show here,
that once this result assumed, the methodology presented in Bobkov-Gentil-Ledoux [BGLO1], for the
exponential measure, still works.

Theorem 2.9 Let p be a probability measure on R". Assume that
p(dz) = e *@dyg

where @ is a convez function on R™.
If p satisfies the inequality Ty o (C) then for all X > C, p satisfies the logarithmic Sobolev inequality

422

Proof

< Let note F' density of probability with respect to u. Assume that F' is C2, the general case can
result by density.

By the Brenier-Gangbo-McCann’s theorem, see [Bre91, GMY96], there exists a function ® such that

S=1d—VH,, oV,



transports F'dy to the measure u, for every measurable bounded function ¢

'/g(S)qu = /gdu-

The function ® is a L, ,-concave function and if @ is C?, a classical argument of convexity (see
chapter 2 of [Vil03]), one has D[VH,,o V®(z)] is diagonalizable with real eigenvalues, all less
than 1.
According to the assumption made on function ®, one can assume that S is sufficiently smooth and
we obtain for z € R”,

F(z)e #@) = ¢=9°5() qet (VS (). (15)

Moreover this function gives the optimal transport, i.e.
Tr,o(Fdp, dp) = /La,a(VHa,a o V®)Fdpu.

Then by (15), one has for z € R",
log F(z) = ¢(z) — ¢(x — VH, o 0 VO(z)) + logdet (Id — D[VH, , o V&(z)]).
Then since D [VH, o o V®(z)] is diagonalizable with real eigenvalues, all less than 1, we get
logdet (Id — D[VH, 40 V®(z)]) < —div(VH,,, 0 VO(z)).
Since ¢ is convex we have p(z) — p(z — VHy o0 V®(z)) < VH, o0 V®(z) - Vy(z) and we obtain
Ent,(F) < /{VHa,a oV&(z) - Vy(z) —div(VHg o 0 VO®(2)) }F(x)du(z),
after integration by parts
Ent,(F) < / VF - VH,q o0 Vody.

Let A > 0 and let use Young inequality for the combined functions L, , and H, ,
VF VF
)\? VH,0oV® < H,, (A?> + Lyo(VHgq 0 VD).

Thus
VF
A

1 1
Ent, (F) < 1 / HQ< = )Fdﬂ +5 / Lao(VH, oo V®)Fdy

VF 1
<A [ He o = ) Fdu+ < Fdu, dp).
< / X,a< F) ot T o (Fdp, du)

Thus if p satisfies the inequality T, o(C) we get for all A > C

2?2 VF

Let us note now f? = F, we get

A2 v
But, (/) < s / He, (2%)f2du
4)\? VN .o
< )\—C/HZ(ZA’C“(T)f dp.

Then p satisfies, for all A > C' inequality LSI%@(A‘?‘Z).



Remark 2.10 One can summarizes Theorem 2.8 and 2.9 by the following diagram (under assump-
tion of Theorem 2.9):

LS14,0(C) = Teg ,(C/4)

2
Toa(C) — {LSI% <>\4)\C>} |
N A>C

Notice, as it is the case for the traditional logarithmic Sobolev inequality, than there is a loss on the
level of the constants in the direction transportation inequality implies logarithmic Sobolev inequality.
When o = 8 =2, we get as in [OV00], T. 2(C) — LSI 5(16C). As in [OV00], Theorem 2.9 can be
modified in the case Hess(p) > Ad, where A € R.

Also let us notice that as in the quadratic case we do not know if these two inequalities are equivalent.

As in Proposition 2.3, here are some properties of the inequality 77, , (C).

Proposition 2.11 1. Let us recall Marton’s theorem on concentration inequality.

Assume that p satisfies a transportation inequality Ty, ,(C) then p satisfies the following
concentration inequality

VACR", with p(A)>=, p((4,)°) < 26(*%’%@(”)’

1
2
where (A;)" = {z € R", d(A,z) >r}.

1. Asin Proposition 2.8, the properties of tensorisation are also valid for transportation inequality

To,a(C).

Let py and po be two probability measures on R™ and R". Suppose that py (resp. pa)
satisfies the inequality Ty o(C1) (resp. Taa(C2)) then the probability pn @ pg on R T72
satisfies inequality T, (D), where D = max {Cy, Ca}.

iii. If the measure p verifies T, o(C), then p satisfies a Poincaré inequality (9) with the constant C.

Proof

< The demonstration of 4, i4 of these results is a simple adaptation of the traditional case, we
return to the references for proofs (for example chapters 3, 7 and 8 of [ABC™00]).

The proof of iii is an adaptation of the quadratic case. Suppose that p satisfies a T, o(C). By a
classical argument of Bobkov-Gotze, the measure p satisfies the dual form of T, ,(C) which is the
inequality (14),

/E%Qlfdu < el ol (16)

where Q1 f is defined as in (13) with the function Lg 4.
Let note f = eg with g, C' and bounded, we get

Q1f (@) = Qieg) (@) = ¢ inf {g(w — e2) + eLe o(2) |
= eg(x) ~ %\vm? +o(e?)

Then we obtain by (16),

2 2 2 2
1 dp — d 2du <1 d d 2
+C/qu Vg? u+202/ I +C/qu+202</gu> + o(€),

imply that
var,(g) < C [ [Vgdn

10



>

Unfortunately, as in the traditional case of the transportation inequality, we do not know if this one
has property of perturbation as for inequality LSI, (C).

3 An important example on R, the measure pu,

Let a > 1 and define the probability measure u, on R by
po(dx) = Lf’f‘”""a(h'
oldz 7 ¢ 1z,

where Z, = fe"“j‘adm.

Theorem 3.1 Let o €]1,2]. There exists A, B > 0 such that the measure o satisfies the following
modified logarithmic Sobolev inequality, for any smooth function f on R such that f > 0 and

[ f?dpe =1 we have
f’

d s
7 FPdu (17)

Ent,, (f?) < AVar,, (f)+ B /f>2

where 1/a+ 1/ =1 and

/f210g T ————dj, and Var,,( /f dpg — (/ fdp(,> .

In the extreme case, a = 1, we obtain the following inequality: for all f smooth enough such that
If'I <1,
Ent,, (f*) < AVar,, (f). (18)

Corollary 3.2 Assume that f is a smooth function on R. Then we obtain the following estimation

i B

7 Fdpa, (19)

Ent,, (f*) < AVar,, (f) + B/
Q

Q= {f+ > 2 /fidua} U {f > 2/ /deua},

f+ = max(f,0) and f = max(f,0).

Proof
< We have f? = f2 4+ f2. Then

where

Ent, (f2) = Sup{/fQQdua with /e-qdua < 1}

= sup{/figdu(l —I—/fQ_qd,ua with /e-"du(l < 1}

Ent,, (fi) +Ent,, (fE) .

By Theorem 3.1 there exists A, B > 0 independent of f such that

IN

ik

ra deMa
fol OO

nt,,, (ff_) < AVar, (fy)+ B/

Q4

11



B

Ent,, (f>) < AVar,,(f-) +B/ f—l fdp,
Jo_ | T-

where Oy = {1 > 2,/ fdpa} and @ = {f >2,/[ fdpa }.
To conclude, it is enough to notice that
2 2
[ #dua - (( [ o) + ([ 1-dua) )

S Varua (f) )

B
[ P = [
. Q+ . Q

It implies there are a, > 0 and C, < oc, such that p, satisfies a logarithmic Sobolev inequality of
function H,, o, with constant C,.

Indeed, this is clear that pu, satisfies a Poincaré inequality, (see chapter 6 of [ABC*00]), with
constant A\, < oo,

Var,, (f+) + Var,, (f-)

and

7'’

f

i

S dpa.
I+

B '
fiduwr/ "—
Ja_ | f-

>

Var,, (f) < Aa / dpg.

Then, by inequality (17), we obtain for any smooth function f on R,

B

Ent,, () < A\, /f'Qdua—i—B/‘f?’ dug.

Let us give a few hint on the proof of the Theorem 3.1, which will enable us to present key auxiliary
lemmas. We first use the following inequality

[ 710 e <5 [ (8 = V0Pda+ [ (7= 202 07 = 202 (20)
where it is obvious that truncation arguments are crucial. We will then need the following lemma:

Lemma 3.3 Let u be a probability measure on R and let f > 0 such that [ f?du = 1 then we obtain
i: /(f —1)? < 2Var,(f).

i f2du < 8Var,(f).
Jf>2

In 4
i / f2In f2du < 1 Ent, (f*) < 4Ent,(f?) .
Jrso Ind -1

Proof
< 4. We have

/(f —1)%dp = Var,(f) + (1 - / fdu>2.

[ f?dp =1 imply that 0 < [ fdu < 1, then (ffd,u)2 < [ fdu. Then

/ (f — 1)%du < Var,(f) + (Var,(f))

12



but since [ f2du =1, Var,(f) < 1, then

/(f —1)%dp < 2Var,(f).

i. One verifies trivially that when z > 2, 22 < 4(z — 1)? and apply i.
iii. Let us give the proof given in [CGO04].
If £ > 0 we have zlnz + 1 — z > 0 which yields

fInfdp+p(f <2)— [ fPdu>0,
J <2 Jf<2
hence
Ent, (f?) > f21n f2du —/ f2dp.
f>2 f>2
Since
1
frdp < — £2In f2dp,
2 Ind Jr>o
we obtain
2 1 2 2
Entu(f)> 1-— f“In fdu.
1H4 f22
>

Recall the Hardy’s inequality presented in the introduction: let yu,r be Borel measures on R*, the
best constant A so that every smooth function f satisfies

[ (e) = 10 duw) <A [ 7a (21)
JO J0
is finite if and only if
T dyac 71
=gt [ (5) 2

is finite and when A is finite we have
B < A<4B.

We then present different proof of the desired inequality, starting from (20), according to the value
of Ent, ( f 2), in which Hardy’s inequality plays a crucial role. First, when the entropy is large we
will need

Lemma 3.4 Let h defined as follow.

1 if 2] < 1
h — o —
© = e i 51

Then there exists Cp > 0 such that for every smooth function g we have

But,, (¢%) < Cn [ ohid. (23)

13



Proof

< We use Theorem 3 of [BR03] which is a refinement of the criterion of a Bobkov-Gé&tze theorem
(see Theorem 5.3 of [BGY99]).

The constant C}, satisfies max(b_,by) < C < max(B_, B1) where

. ol
by = sup pq(|x, +00l) lo (1+—)/ Jio——dt,
+ = suppalle, FocDlog \ 1+ 5 e =25 ) o Zen

1 0
b_ = sup pa(] — o0, z]) lo l—l-—)/ Lo ——dt,
up al] — oo.7) g( 2all o)) S o h

o2 x
By = sup pq([z, +00|) log <1+7>/ Zo——dt,
+ = Sup pa[z, Foo) RN 0

o2 0l
B_ = sup puqa(] — o0, z]) log (1 + 7[)) / Zo——dt.
T

<0 pra([ 00,z h(t)

An easy approximation prove that for large positive z

> 1 o 1
_ —It] ~ 24
o ([T, 00]) / 7¢ dt ~eo 7 (24)

e
Jz fe! aaxai]
T lt” Zay o
Zig——dt ~oo —e*
/0 “h(t) <

and one may prove same equivalent for negative . A simple calculation then yields that constants
by, b_, B4 and B_ are finite and the lemma is proved. >

Note that the function A is the smallest function such that the constant Cj, in the inequality (23) is
finite, it “saturates” the inequality on infinity.

In the case of small entropy, we will use so-called ®-Sobolev inequalities (even if our context is less
general), see Chafai [Cha04] for a comprehensive review, and Barthe-Cattiaux-Roberto [BCR04] for
a general approach in the case of measure p,.

Lemma 3.5 Let g be defined on [T, 00| with T € [Ty, Ty[ for some fized Ty, Ty,

9(T)=2, g=>2and / 9’ dpa < 13,
JT
then ~
/ (9— 22 0(g")a < C, / ¢, (25)
T [T,00[N{g>2}

2(a—1)
where ®(z) = In"a (). The constant Cy depend on the measure ju, but does not depend on the

value of T € [Ty, T].

Proof
< Let use Hardy’s inequality as explained in the introduction. We have ¢(T)) = 2. We apply
inequality (6) with the function (g — 2)4 and the following measures

2(a—1)

du = (lng2) * dug and v = .

Then the constant C' in inequality (25) is finite if and only if

T a e} 2(a—1)
B = Sup/ Zaelll dt/ (lngQ) * dig,
z>TJT Jx

14



is finite.
2(a—1)

Since 2(a — 1) /a < 1 the function £ — (Inz)” = is concave on [4,00[. By Jensen inequality we
obtain for all z > T,

o0 2a-1) 20ty ([ gPdpg
/ (Ing*)™ " dpe <In" = (m fia([z, 00[).

Then by the property of g we have

T |t 2(a—1) 13
B < sup | Zype" ditln” @ —————— ) pa([x, 00)
2>1 )7 pra ([, 00])

v 1t 2(a—1) 13
< sup Zoe" dtln a ————— | pa([x, 00]).
o>T 7y pa ([2, 00])

Using the approximation given in equality (24) we prove that B is finite, bounded by a constant Cy
which does not depend on T'. >

As said before, we divide the proof of Theorem 3.1 in two parts: large and small entropy, both in
the case of positive function. Let us now present the proof in the case of large entropy.

Large entropy case.

Proposition 3.6 Suppose that a €]1,2]. There exists A, B > 0 such that for any functions f > 0
satisfying

/f2dua =1 and Ent,,_ (f2) >1

we have

7P

[ de,ua- (26)

Ent,, (fQ) < AVar, (f)+ B /f>2

If o =1, when |f'| <1, then Ent,_ (f*) < AVar,_(f).

Proof of Proposition 3.6
< Let f > 0 satisfying [ f?du, = 1.
A careful study of the function
z— —r?lnz® +5(z - 1)+ 22 = 1 + (z — 2)2 In(z — 2)2
proves that for every « € R

’Inz® <5(z —1)° +2* - 14 (z - 2)% In(z — 2)7.

Then we obtain by Lemma 3.3.i, recalling that [ f?du, =1 and f > 0,
[ s < 5 (7= 1w+ [ = D+ [ (7= 2010l = 20,
< 10Var, (1) + [(7 - 23 (f - D duo

which is the announced starting point inequality (20).
Since [ f2dp, =1, one can easily prove that

/ (f ~ 2%dpo < 1.

15



then [(f —2)3 In(f — 2)3dua < Enty, ((f —2)3), and
Ent,, (f*) < 10Var,, (f)+ Ent,, ((f —2)2).

Hardy’s inequality of Lemma 3.4 with g = (f — 2); gives

Bat,, (/= 2}) < Oy [ (7 = 2)Phduo = O [ "hdpa (27)

JF>2
For p €]1,2[ and ¢ > 2 such that and 1/p + 1/¢ = 1 and we have for every z,y > 0 by Young
inequality,
ry < — 4 =—. (28)
p q
If @ =1, then if |f'| < 1, then there exists C' > 0 such that

1
C, . f?hdu, < CVar, (f)+ iEntua (%)

where we used Lemma 3.3.ii and the large entropy case. We then deduce the result when o = 1.
Consider then « €]1,2] and 8 = a/(a—1). Let p= /2 and g = /(8 —2). Let € > 0 and let apply
inequality (28) to the right term of (27), we obtain

L ('Y e-2s
REEDYE (7) eV S S

f

b 59
+ P2 i),
f B

then
B

!

2 2C F'17 o p—2 B/(5-2) 2
Ent,, ((f —2)4 ) < W/fﬂ 7 fodpa + TChﬁ - h [rdpa

Let p a probability measure, then we have for every function f such that [ f2du = 1, and for every
measurable function g

/fQ,qdu < Ent, (fQ) +10g/egdﬂ.

Let n > 0 and we apply the previous inequality with g = nhﬂ/(ﬁ’m,

Ent,, ((f ~2):%) <
2C '\ —2)C )
ﬁg(g,’;)p /f>2 f7 de,Ua + % <Entu(M (fQ) + log/exp (nhﬂ/(ﬁ 2))dﬂa>- (29)

Since 8 = a/(a — 1), let note that h(z)?/(5=2) = £ if || > 1. Then we fix n = 1/2. And note
1
A= log/exp <§hﬁ/(52)>d,ua < 0.
Then we now fix ¢ = inf {#/(A(5 — 2)4C}), /(B — 2)4C})}. We obtain

fl

f

C A

) ,
EmM«f—%+><gﬁﬁﬁﬂn

Ent,, (fQ) > 1, implies

1 1
de,ua + ZEntua (f2) + i

QC}L / fl)ﬂ 9
Ent 2) <20V — — dibe,.
nt,, (f ) < arua(f) + ~(5-2)/2 - <f [rdpa
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Remark 3.7 As we can note it in the demonstration: the constant A is universal and the constant
B depends on the measure studied. We will see in section 4 that one can adapt the demonstration
for other measures.

Remark 3.8 With the same method as developed in Proposition 8.6 we can prove the inequality (26)
without Var, (f). Suppose that o €]1,2]. There exists A > 0 such that for any functions f satisfying

we have

1B
Bat,, (1) <4 [ ‘f7 Fdpa.

Small entropy case.
Let us now give the result when Ent,,, (f?) is small.

Proposition 3.9 Let « € [1,2]. There exists A, A’ > 0 such that for any functions f > 0 satisfying

/deua =1 and Ent,,_ (f2) <1

we have

Ent,, (f*) < 34Var,, (f) + A/
Jf>2

when « €]1,2], and if « = 1 we get
Ent,, () < A'Var,,(f).

Proof of Proposition 3.9
< Let f > 0 satisfying [ f?du, = 1. Like in Proposition 3.6, we start with inequality (20), which
readily implies

Ent,, (f2) = / 210 fdp, < 10Var,, (f) + / (f — 2)% In f2dpo. (30)

We will now control the second term of the right hand side of this last inequality via the use of
®-Sobolev inequalities, namely Lemma 3.5. Therefore we have to construct a function g, greater
than 2, which satisfies (for a well chosen T'), when Ent,,_ (fQ) <1,

o0
(1) / g2dpa <12
T

(2) /T (g 220" dua > C [ =220 P

!

@) [ oPdm<c | v (%
Jr T 00U >2} f

with ®(z) = In"% " (z), 0 < D < 1/2 and ¥(z) = 2

) f2dua + D Ent,, (fz),

Let now define T7 < 0 and 7% > 0 such that

pia(Joo, Th]) = % o ([Th, To)) = i and pio([Ty, +o00[) = g

Since [ f2dpo =1 there exists T € [T}, T3] such that f(T') < 2.
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Let us define g on [T}, 00| as follow
9=2+(f ~2)4 0" f2 on [T, 0],
where v = (2 — a)/(2a).
Function g satisfies g(7') = 2 and g(z) > 2 for all z > T. Let now compute fTOO g*dji,. We have

[dua < 2 [ adua2 [ (-2 00 P,
JT JTh J Ty

< 442 / 21027 f2du,.
b [Tg,oo[ﬁ{f}Q}
Since 2y € [0,1] we have In* f? <In f? on {f > 2}. Then we obtain by Lemma 3.3.iii

o0
/ Pdpe < 542 P Pdu,
T F>2

5+ 8Ent,, (f*)
13,

since Ent,,_ (f?) < 1.
Assumptions on Lemma 3.5 are satisfied, we obtain by inequality (25)

/ (9-22 " g2dua < C, / g dpra.
JT . - [T,OO[IF]{QZQ}

Let us compare the various terms now.
Firstly let note u = 2(« — 1)/, we have

(9-2)3 " g* = (f — 2)2 1 2" (2+ (f — 2)4 7 )",
On {f >2} we have 2+ (f —2).In? f2 > 2+ (f — 2), K, where K = In”4. Since K > 1 and
u + 2y =1 one has
(9 —2)32In"g* > (f —2)3 > f2 = (f —2)3 In 2

Then we obtain
2(a—1)

/T (f — 22 In fdpa < /T (9 22 ™5 PPdu,. (31)

Secondly one has on {f > 2}

-2
J —f’ln”f2(1+72”flnf2>,

then using In f? > In4 one obtain

12 127, 2y £2 ’7272
o <P (14 )

Let note D = (1 +427/In4)?, one has

i (g < D F2 1027 2, (32)
J[T00[N{f>2} J[T00[N{f>2}

on [T, 00[N{f > 2}.
Then, using inequalities (31) and (32), there exists C > 0 (independent of T' € [T, T3]), such that

/ T(f -2 In P < C / 2% g

Jr JIT 0[N {f>2}
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When a = 1, one has trivially that the right hand side of this last inequality is bounded, when
|f'| <1, by Cff>2 f?dyi, which is itself bounded, by Lemma 3.3.ii, by 8C'Var,,, (f) which concludes
the proof in this case.

When « €]1, 2], we apply Inequality (28) with ¢ = @/(2 — ) and p = a/(2(a — 1)). We obtain for
every € > (),

"\’
(7) (10" £2) Fdp, <

2((11)/
e a0 JITcoln{f22)

Fix e such that eC22 < 1/16, then there exists A > 0 such that

/[Tvoc[ﬂ{fZQ}

1B -
L g+ 22 / 210 Pdpa.
f @ Jirsoin{f=2}

oc 18
1
[ i, < a LV Py + = 7210 2.
T T,00in{f>2} | f 16 /7,000 {22}
Using Lemma 3.3.iii we have,
[ =2im < a | IV Pdye+ LEnt,, (7).
T (Tooln{f>2} | [ 4

The same method can be used on | — oc, T and then , there is A’ > 0 such that

£ B

7 due + lEntua (f2) .

/T (=2 fodpa < 4' [ :

J oo S0, TN {f>2}

And then, we get

"\’ o 1 2
<7> f dua—i-EEntua (f )

[ =2 < (4 a) |

Jf>2

Note that constants A and A’ don’t depend on T.
Then, by inequality (30), Proposition 3.9 is proved. >

Let us give now a proof of the theorem.
Proof of Theorem 3.1
< The proof of the theorem is a simple consequence of Propositions 3.6 and 3.9. >

4 Extension to other measures

We will present in this section modified logarithmic Sobolev inequality of function H for more
general measure than p, which can be derived using the proof carried on in Section 3: the large
entropy case where the optimal Hardy function A is identified and used to derive the optimal H, and
the small entropy case where ® and g (used on the proof of Proposition 3.8) have to be identified
leading to the same H function.

Let us first consider the following probability measure p, g for o € [1,2] and 8 € R defined by

1
Pa,p(dr) = Eef‘p(w)dm where ¢(z) = |z|*(log|2])? for |2 > 1

and ¢ twice continuously differentiable.
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Theorem 4.1 There exists A, B > 0 such that the measure jo g satisfies the following logarithmic
Sobolev inequality: for any smooth f on R such that fodMaﬁ =1 and f > 0, we have

/
Ent,, , (%) < AVar,, . (f) + B/ H <'— ) FPpa s, (33)
F>2 f
where H is positive smooth and given for © > 2 by
ga-T
H(‘T) -~ 3 Zf « 6]172[7/6 € Ra
loge-T x

H(z) = 22’ if a=1,8€eR" and H(z) = z*log ?(z) if a =2, € R,

Proof
<1 We will mimic closely the proof given in the u, case, considering large and small entropy case.
We will not present all the calculus but give the essential arguments.

Let now treat the case o €]1,2].
Large entropy. We will first apply Lemma 3.4 to measure p, g, one has then that b, b_, By, B_
are finite if one take h positive smooth

2—a
h(z)

One has then to determine H to construct 1 such that there exists > 0 with ni(h) exponentially

integrable with respect to p, g and H = ¢* (%) where 9* is the Fenchel-Legendre transform of .
Considering the exponential integrability condition leads us to consider 1 (z) behaving asymptoti-

a 26
cally as z?=o log?== z. One may thus derive the asymptotic behavior of * and finally H.
Small entropy. One desires here to apply Lemma 3.5, evaluating ® and then build the function

g satisfying conditions (gl), (g2) and (g3). By Hardy’s inequality and arguments in the proof of
Lemma 3.5, one may choose ® for z large enough as
28

O(x) = logQ%1 (z) (loglog )

Setting then
2—a —B
9=2+(f—2)4log> f*(loglog f?) =,

one may then verify (gl), (g2) and (g3) with ¥ = H defined in the large entropy step.
Now if @ =1 and g > 0, then the same arguments gives that for large enough 2

oo/ (28) 9 41/8

Y(z) = xlog? , *(z) == and H(x) = z°e”
If =2 and B <0, we have for large enough =z.

1 _
P(z) = —e*® 1/6, ¢*(z) = zlog %2 and H(z) = z2log P z.
x

Remark 4.2 i. Using once again Herbst’s argument, we may derive concentration properties
for the measure o 5 of desired order, for every Lipschitz function F with ||F|;, < 1, there
exists C > 0 such that, for all A > 0,

lha s (‘F - ,Ufa,ﬂ(F)| > )\) < Qemein(,\a logﬁ )\,)\2)‘

20



ii. Note that the Latata-Oleszkiewicz inequalities I1(r) (see [LOO00]) are not well adapted for the
family of measures o g. Indeed, using Hardy’s characterization of this inequalities obtained
by Barthe-Roberto [BR03, Th. 13 and Prop. 15], one may show that ji, g satisfies an I(co/2)
inequality if B > 0 and an I(a/2 — €) (e being arbitrary small) for < 0, which entails
consequently not optimal concentration properties.

iti. By the characterization of the spectral gap property on R, one obtains that each measure i, g
satisfies a Poincaré inequality and thus a modified logarithmic Sobolev inequality.

Following the previous proof, we may generalize the family p, s adding an explicit multiplicative
term to the potential |z|* log? |z|, as for example loglog” || which will give us new modified log-
arithmic Sobolev inequality, but each of this new measure has to be considered “one-by-one” (we
hope some general results for ¢ convex). We may now state a result enabling us to get the sta-
bility of these modified logarithmic Sobolev inequality by addition of an unbounded perturbation:
consider the measures

dx
dro(z) = exp (—|a|” — |z/* " cos(z)) Z—" a €]1,2],
[0
b g dT
dYap(z) = (1 +2)% 1a>0, a €]1,2],b e R
Zo/b

2]

Proposition 4.3 There exists a > 0 such that the measures 7, and v, satisfy a logarithmic Sobolev
inequality of function H, .

Proof

<1 Following the proof given in Section 3 , one sees that the result hold true once one may verify
that the Hardy’s inequalities of Lemma 3.4 and Lemma 3.5 hold with the h and ® obtained for the
case of u,. It is easily checked once remarked that

dro(z dro(z) '
1()ng~ —|z|® and (logL(T)) ~oo — (a0 — 1)zt

oo
dr dr

and the same for v,;. >
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