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Abstract. We present a method of localised control of chaos in Hamiltonian systems.

The aim is to modify the perturbation locally by a small control term which makes the

controlled Hamiltonian more regular. We provide an explicit expression for the control

term which is able to recreate invariant (KAM) tori without modifying other parts of

phase space. We apply this method of localised control to a forced pendulum model,

to the delta-kicked rotor (standard map) and to a non-twist Hamiltonian.
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1. Introduction

Controlling chaotic transport is a key challenge in many branches of physics like for

instance, in particle accelerators, free electron lasers or in magnetically confined fusion

plasmas. One way to control transport would be that of reducing or suppressing chaos.

There exist numerous attempts to control chaos (see Refs. [1, 2] for a rather extended

list of references). Most of the methods for controlling chaotic systems is done by

tilting targeted trajectories. However, for many body experiments like the magnetic

confinement of a plasma or the control of turbulent flows, such methods are hopeless

due to the high number of trajectories to deal with simultaneously. For these systems,

it is desirable to control transport properties without significantly altering the original

system under investigation nor its overall chaotic structure. Here we focus on another

strategy which is based on building barriers by adding a small apt perturbation which

is localised in phase space, hence confining all the trajectories.

The main motivations for a localised control are the following ones : Very often the

control of a physical system can only be performed in some specific regions of phase

space. This is in particular the case in thermonuclear fusion devices where the electric

potential can only be modified near the border of the plasma. For some purposes it is

sometimes desirable to stabilize only a given region of phase space without modifying the

major part of phase space in order to preserve some specific features of the system. This

method can be used to bound the motion of particles without changing the perturbation

inside (and outside) the barrier. Also, using a localised control means that one needs

to inject much fewer energy than a global control in order to create isolated barriers of

transport.

In this article, we consider the class of Hamiltonian systems that can be written in

the form H = H0 + εV i.e. an integrable Hamiltonian H0 (with action-angle variables)

plus a small perturbation εV . The idea is to slightly and locally modify the perturbation

and create regular structures (like invariant tori) : The aim is to devise a control term

f such that the dynamics of the controlled Hamiltonian Hc = H0 + εV + f has more

regular trajectories or less diffusion than the uncontrolled one. For practical purposes,

the control term should be small with respect to the perturbation εV , and localised in

phase space (i.e. the subset of phase space where f is non-zero is finite and small).

In Refs. [3, 4, 5], an explicit method of control was provided in order to construct a

control term f of order ε2 such that the controlled Hamiltonian H0+εV +f is integrable.

The main drawback of this approach is that the control term has to be applied on all the

phase space. Here we provide a method to construct control terms f of order ε2 with a

finite support in phase space, such that the controlled Hamiltonian Hc = H0 + ǫV + f

has isolated invariant tori. For Hamiltonian systems with two degrees of freedom, these

invariant tori act as barriers in phase space. For higher dimensional systems KAM tori

act as effective barriers of diffusion.

The main result of the paper is stated as follows : For a Hamiltonian system

written in action-angle variables with L degrees of freedom, the perturbed Hamiltonian
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is H(A, θ) = ω · A + V (A, θ) where (A, θ) ∈ R
L × T

L and ω is a non-resonant vector

of R
L. We consider a region near A = 0 and the perturbation V has constant and

linear parts in actions of order ε, i.e. V (A, θ) = εv(θ) + εw(θ) · A + Q(A, θ) where

Q is of order O(‖A‖2). We notice that for ε = 0, the Hamiltonian H has an invariant

torus with frequency vector ω at A = 0 for any Q not necessarily small. The controlled

Hamiltonian we construct is

Hc(A, θ) = ω · A + V (A, θ) + f(θ)Ω(‖A‖), (1)

where Ω is a smooth characteristic function of a region around a targeted invariant torus

(the size of its support is of order ε). It is sufficient to have Ω(‖A‖) = 1 for ‖A‖ ≤ ε.

For instance, Ω = 1 would be a possible and simpler candidate, however representing

a long-range control. We notice that the control term f we construct only depends on

the angle variables and is given by

f(θ) = V (0, θ) − V (−Γ∂θV (0, θ), θ) , (2)

where Γ is a linear operator defined below as a pseudo-inverse of ω · ∂θ. Note that f

is of order ε2. For a sufficiently small perturbation, Hamiltonian (1) has an invariant

torus with frequency vector close to ω. After proving this result, we check numerically

that the controlled Hamiltonian is more regular than the uncontrolled one, i.e. the

invariant tori of the controlled Hamiltonian persist to higher values of the amplitude of

the perturbation than in the uncontrolled case.

In Sec. 2, we explain the theory of the localised control of Hamiltonian systems

and in particular we prove Eqs. (1)-(2). In Sec. 3, we give some applications of the

localised control on the following models: a forced pendulum Hamiltonian, the delta-

kicked rotor (standard map) and a non-twist Hamiltonian model. For these systems,

we show numerically that the localised control is able to create isolated invariant tori

beyond the values of the parameters for which there are no invariant tori in the absence

of control.

2. Localised control for Hamiltonian systems

2.1. Global control : toward a localised control theory

We first recall the global control theory as explained in Refs. [5, 4] in order to define

the main operators that will be used for the localised control.

Let us fix a Hamiltonian H0. We define the linear operator {H0} by

{H0}H = {H0, H},

where {·, ·} is the Poisson bracket. The operator {H0} is not invertible, e.g., {H0}H0 =

0. We consider a pseudo-inverse of {H0}, denoted by Γ, satisfying

{H0}2 Γ = {H0}. (3)
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If the operator Γ exists, it is not unique in general. We define the resonant operator R
as

R = 1 − {H0}Γ, (4)

We notice that Eq. (3) becomes {H0}R = 0. A consequence is that any element RV is

constant under the flow of H0.

Notation : In what follows, we will use the notation ab for an operation between

a and b which can be vectors or covectors. For instance, if a is a covector and b a

vector, ab is the usual scalar product a · b. If a is a vector and b a covector, ab is

the matrix whose elements are [ab]ji = aib
j . For a vector a and a matrix M , Ma is a

vector. In the same way, if a is a covector, aM is a covector. Also we denote a′ the

matrix ∂θa with elements [∂θa]ji = ∂aj/∂θi. For clarity we also denote ∂ the operator ∂θ.

Let us now assume that H0 is integrable with action-angle variables (A, θ) ∈
R

L × T
L where T

L is the L-dimensional torus. Here, A is a L-dimensional vector

and θ is a L-dimensional covector. The Poisson bracket between two functions H and

V is given in the usual form

{H, V } =
∂H

∂A

∂V

∂θ
− ∂V

∂A

∂H

∂θ
.

We assume that H0 is linear in the actions variables, so that H0 = ωA, where the

frequency vector ω is any co-vector of R
L. In this paper, we assume that ω is non-

resonant, i.e. there is no vector k ∈ Z
L \ {0} such that ωk = 0. The operator {H0} acts

on V given by

V =
∑

k∈ZL

Vk(A)eiθk,

as

({H0}V )(A, θ) =
∑

k∈ZL

iωk Vk(A)eiθk.

A possible choice of Γ is

(ΓV )(A, θ) =
∑

k∈ZL

ωk6=0

Vk(A)

iωk
eiθk.

We notice that this choice of Γ commutes with {H0}.
The operator R is the projector on the resonant part of the perturbation:

RV =
∑

ωk=0

Vk(A)eiθk = V0(A), (5)

since ω is non-resonant. We also define the projector on the non-resonant part of the

perturbation

NV =
∑

ωk 6=0

Vk(A)eiθk = V − V0. (6)
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The global control follows directly from the definition of these operators Γ, R and

N : We construct a global control term for the perturbed Hamiltonian H0 + V , i.e.

we construct f such that the controlled Hamiltonian Hc = H0 + V + f is canonically

conjugate to H0 + RV . This conjugation is given by the following equation

e{ΓV }(H0 + V + f) = H0 + RV, (7)

where

f(V ) =

∞
∑

n=1

(−1)n

(n + 1)!
{ΓV }n(nR + 1)V. (8)

We notice that if V is of order ε, the control term f is of order ε2. In general, the control

term depends on all the variables A and θ, and acts globally on all phase space.

Since ω is non-resonant, RV = V0(A) only depends on the actions and thus

H0 + RV is integrable. The derivation of Eqs. (7)-(8) is given in Refs. [5, 4].

Starting from this global control, we derive a localised control such that the control

term only acts in a given region of phase space around a selected invariant torus. We

consider a nearly integrable Hamiltonian system :

H(A, θ) = H0(A) + V (A, θ). (9)

We assume that H0 has the invariant torus with a non-resonant frequency vector ω at

A = A0. For V sufficiently small, the KAM theorem ensures that this invariant torus

is preserved under suitable hypothesis. We expand Hamiltonian (9) around A = A0

and we translate the actions such that the invariant torus with frequency ω is located

at A = 0 for H0, and around A = 0 for the perturbed Hamiltonian. Hamiltonian (9)

becomes (up to a constant)

H(A, θ) = ωA + εv(θ) + εw(θ)A + Q(A, θ), (10)

where Q is of order O(‖A‖2), i.e., Q(0, θ) = 0 and ∂AQ(0, θ) = 0. Without any

restriction, we assume that Hamiltonian (10) is such that Rv = 0 and Rw = 0 : The

mean value of v is absorbed into the total energy and the mean value of w into the

frequency vector ω.

For A sufficiently small, the perturbation

V (A, θ) = εv(θ) + εw(θ)A + Q(A, θ),

is small. We apply Eq. (8) in order to get the control term f . However, for larger A,

the control term is no longer small. Therefore we localise it in a region close to A = 0,

i.e. we consider the following controlled Hamiltonian :

Hc(A, θ) = ωA + V (A, θ) + f(A, θ)Ω(‖A‖),

where Ω is a smooth characteristic function such that Ω(x) = 0 if x ≥ 2ε, and Ω(x) = 1

if x ≤ ε. The main drawback of this approach is that the control term is a priori of

order ε even if it is small since it is localised in a region near A = 0. In the next section

we develop another approach where the control term f is of order ε2 and does no longer

depend on A.
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2.2. Localised control theory

As in the previous section, we consider the family of Hamiltonians (10). For ε = 0,

Hamiltonian (10) has an invariant torus with frequency vector ω located at A = 0. The

problem of control we address is to slightly modify Hamiltonian (10) near A = 0 in the

following way :

Hc(A, θ) = ωA + εv(θ) + εw(θ)A + Q(A, θ) + ε2f(θ)Ω(‖A‖), (11)

such that the invariant torus with frequency ω exists for the controlled Hamiltonian Hc

for higher values of the parameter ε than in the uncontrolled case. Here Ω denotes a

smooth step function, meaning that the control only applies in a small part of phase

space (of size ε) : For instance, Ω is a sufficiently smooth function such that Ω(x) = 1

if x ≤ ε and Ω(x) = 0 if x ≥ 2ε. Moreover, we notice that the control term f we apply

is only a function of the angles in the region around the invariant torus.

The main proposition of the localised control of Hamiltonian systems is the following

one :

Proposition 1: If v and w are sufficiently small and if v, w and Q are smooth, there

exists a control term f such that the controlled Hamiltonian

Hc(A, θ) = ωA + εv(θ) + εw(θ)A + Q(A, θ) + ε2f(θ)Ω(‖A‖), (12)

is canonically conjugate to

H̃c(A, θ) = ω̃A + Q̃(A, θ), (13)

where ω̃ = ω+εa with a constant covector a and Q̃ is of order O(‖A‖2), i.e. Q̃(0, θ) = 0

and ∂AQ̃(0, θ) = 0. The control term f is given by

f(θ) = N
[

wΓ∂v − ε−2Q(−εΓ∂v, θ)
]

, (14)

which can also be written as

f(θ) = ε−2N [V (0, θ) − V (−Γ∂V (0, θ), θ)] .

The important feature of the control term f is that it does only depend on the angle

variables. Since the Hamiltonian H̃c has an invariant torus with frequency ω̃ at A = 0,

the controlled Hamiltonian Hc has also this invariant torus in the region where A is

close to 0.

Proof: We consider the following transformations Tm,b acting on functions V (A, θ)

like

(Tm,bV )(A, θ) = e−m∂
[

V (e∂m̂A + b, θ)
]

,

where the covector m and the vector b are functions of θ from T
L into R

L. The operator

m̂ is the linear operator from R
L to R acting on a vector u ∈ R

L as m̂u = mu. Here

∂m̂ is the linear operator from R
L to R

L which is the product of the two linear operators

acting on a vector u ∈ R
L as

∂m̂u = m′u + mu′. (15)
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In Appendix A, we check that the transformations Tm,b are canonical if b derives

from a scalar function. We perform a transformation Tm,b on the controlled Hamiltonian

Hc given by Eq. (12) and we determine the functions m and b in the following ways :

(i) The function b is determined such that the order ε of the constant term in actions

vanishes.

(ii) The function m is determined such that the linear term in actions (which is of order

ε) vanishes.

(iii) The control term f is determined such that the constant term in actions [which is

now of order ε2 after (i)] vanishes.

We perform a transformation Tεm,εb which is ε-close to the identity : The expression

of H̃c = Tεm,εbHc is

H̃c = e−εm∂
[

ωA + εωb + εv(θ)

+ εωµ′ A + εwA + Q((1 + εµ′)A + εb, θ)

+ ε2wµ′A + ε2wb + ε2f(θ)Ω(‖(1 + εµ′)A + εb‖)
]

, (16)

where the covector µ is defined by

µ =
eεm∂ − 1

εm∂
m =

∞
∑

n=0

(εm∂)n

(n + 1)!
m. (17)

The function µ is ε-close to m :

µ = m + εmm′ + · · · ,

and satisfies

eε∂m̂A = A + εµ′A,

so that

1 + εµ′ = eε∂m̂ · 1, (18)

where eε∂m̂ · 1 is a matrix, function of θ, which results from the action of the operator

eε∂m̂ on the constant function 1. First we notice that the scalar function

q(A, θ) = 1 − Ω (‖(1 + εµ′)A + εb‖) ,

is of order O(‖A‖2). This can be seen from the equations

q(0, θ) = 1 − Ω (ε‖b‖) ,

∂Aq(0, θ) = −Ω′ (ε‖b‖) b̄

‖b‖(1 + εµ′),

where b̄ is the transposed covector of b. The function b(θ) will be chosen such that

‖b‖ ≤ 1 for all θ. Therefore we have q(0, θ) = 0 and ∂Aq(0, θ) = 0, according to the

hypothesis on the smooth step function Ω.

Next, we expand the function Q((1 + εµ′)A + εb, θ) around A = 0 :

Q((1 + εµ′)A + εb, θ) = Q(εb, θ) + ∂AQ(εb, θ)(1 + εµ′)A + Q2(A, θ),
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where Q2 is of order O(‖A‖2), i.e. Q2(0, θ) = 0 and ∂AQ2(0, θ) = 0. We notice that

Q(εb, θ) is of order ε2 and the covector ∂AQ(εb, θ) is of order ε since Q is of order

O(‖A‖2). The Hamiltonian H̃c becomes

H̃c = e−εm∂
[

ωA + εωb + εv(θ)

+ εωµ′ A + εwA + ε2wµ′ A + ∂AQ(εb, θ)(1 + εµ′)A

+ Q(εb, θ) + ε2wb + ε2f(θ) + Q2(A, θ) − f(θ)q(A, θ)
]

. (19)

The canonical transformation is determined by two equations :

ωb + v = 0, (20)

N
[

(ω + εw + ∂AQ(εb, θ))µ′ + w + ε−1∂AQ(εb, θ)
]

= 0. (21)

The control term is chosen such that

f(θ) = −N
[

wb + ε−2Q(εb, θ)
]

.

Equations (20) is solved in Fourier space. We expand the function b :

b(θ) =
∑

k∈ZL

bke
iθk,

and the coefficients bk are given according to Eq. (20) :

bk =
k

ωk
vk,

when ωk 6= 0, and bk = 0 when ωk = 0. Thus the vectorial function b is chosen to be

b = −Γ∂v.

We recall that we require that ‖b‖ = supθ |b| ≤ 1 which is ensured if v is sufficiently

small and smooth and if ω satisfies a Diophantine condition (see the usual KAM proofs

like for instance in Ref. [6]). In particular, we notice that this choice of b satisfies

Rb = 0. Equation (21) is solved by choosing µ = Γµ̃, where µ̃ satisfies

µ̃ + (εw + ∂AQ(−εΓ∂v, θ))Γµ̃′ + w + ε−1∂AQ(−εΓ∂v, θ) = 0. (22)

It is straightforward to check that Eq. (21) is satisfied if µ̃ is a solution of Eq. (22). If

the operator 1 + (εw + ∂AQ(−εΓ∂v, θ))Γ∂, which is ε-close to the identity and then

invertible, Eq. (21) has a solution

µ = −Γ [1 + (εw + ∂AQ(−εΓ∂v, θ))Γ∂]−1 (w + ε−1∂AQ(−εΓ∂v, θ)).

The hypothesis on invertibility is fulfilled if w as well as v are small enough and smooth

and if ω satisfies a Diophantine condition (see again Ref. [6]). The covector µ which is

ε-close to m has the following expansion

µ = −Γw − ε−1Γ∂AQ(−εΓ∂v, θ) + O(ε).
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We notice that Rµ = 0 since Γ and R commute. The resulting Hamiltonian is then given

by Eq. (13) where ω̃ = ω + εRµ̃ and Q̃ = e−εm∂(Q2 − qf) which is of order O(‖A‖2).

Note that we have dropped some additive constants of order ε2, RQ(−εΓ∂v, θ) and

R(wΓ∂v) since we recall that R is the mean value with respect to the angles. The

equations of motion for H̃c are

θ̇ = ω̃ + ∂AQ̃(A, θ),

Ȧ = −∂θQ̃(A, θ).

Since Q̃(0, θ) = 0 and ∂AQ̃(0, θ) = 0, we see that A = 0 is invariant, and that

the evolution of the angles is linear in time with frequency vector ω̃. Therefore, the

Hamiltonian H̃c has an invariant torus located at A = 0 with frequency vector ω̃. More

precisely, the flow of the controlled Hamiltonian Hc on A = 0 is

et{Hc}T−1
εm,εb

(

0

θ

)

= T−1
εm,εb

(

0

θ + ω̃t

)

,

where

T−1
εm,εb

(

A

θ

)

=

(

e−ε∂m̂(A − b)

θ + εm

)

.

The equation of the torus A = 0 is thus

T−1
εm,εb

(

0

θ

)

=

(

−e−ε∂m̂b

θ + εm

)

.

�

Remark 1 : We notice that if v = 0, the control term f given by Eq. (14) is zero.

In this case, the original Hamiltonian already has the invariant torus at A = 0.

Remark 2 : Addition property of the control term– In the case where more than

one invariant torus needs to be created, we can add the control terms localised in non-

overlapping regions of phase space. This is a straightforward extension to the previous

case. The controlled Hamiltonian becomes

H(A, θ) = H0(A) + εV (A, θ) + ε2
M
∑

i=1

fi(θ)Ω (‖A −Ai‖) ,

where fi is defined for each region of phase space by Eq. (14). We notice that in each

region of phase space, the operators Γ, R and N are different since they are defined

from the frequency vector of a given invariant torus.
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Figure 1. Poincaré surface of section of Hamiltonian (23) with ε = 0.034 (enlargement

in the inset).

3. Applications

3.1. Forced pendulum Hamiltonian

We consider the following forced pendulum model :

H(p, x, t) =
1

2
p2 + ε [cos x + cos(x − t)] . (23)

Figure 1 depicts a Poincaré section of Hamiltonian (23) for ε = 0.034. We notice that

for ε ≥ 0.02759 there are no longer any invariant rotational (KAM) torus [7]. First, this

Hamiltonian with 1.5 degrees of freedom is mapped into an autonomous Hamiltonian

with two degrees of freedom by considering that t mod 2π is an additional angle variable.

We denote E its conjugate action. The autonomous Hamiltonian is

H = E +
p2

2
+ ε [cos x + cos(x − t)] . (24)

The aim of the localised control is to modify locally Hamiltonian (24) in order to

reconstruct an invariant torus with frequency ω. We assume that ω is sufficiently

irrational in order to fulfill the hypotheses of the KAM theorem. First, the momentum

p is shifted by ω in order to define a localised control in the region p ≈ 0 since the

invariant torus is located near p ≈ ω for Hamiltonian (24) for ε sufficiently small. The

operators Γ and R are defined from the integrable part of the Hamiltonian which is

linear in the actions (E, p) :

H0(E, p) = E + ωp,

and Hamiltonian (24) is

H = H0 + V,

where

V (p, x, t) = ε [cos x + cos(x − t)] +
p2

2
. (25)
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The action of Γ, R and N on a function U of p, x and t given by

U(p, x, t) =
∑

(k1,k2)∈Z2

Uk1,k2
(p)ei(k1x+k2t),

are given by

ΓU =
∑

(k1,k2)6=(0,0)

Uk1,k2

i(ωk1 + k2)
ei(k1x+k2t), (26)

RU = U0,0(p), (27)

NU =
∑

(k1,k2)6=(0,0)

Uk1,k2
ei(k1x+k2t). (28)

3.1.1. Global control The actions of Γ, R and N on V given by Eq. (25) are

ΓV = ε
[sin x

ω
+

sin(x − t)

ω − 1

]

,

RV =
p2

2
,

NV = ε [cos x + cos(x − t)] .

Since ΓV depends only on x and t, and since V and RV are quadratic in p, it is

straightforward to check that only the first two terms of the series (8) are non-zero. The

global control term reduces to

f(p, x, t) = −1

2
{ΓV }(R + 1)V +

1

6
{ΓV }2(2R + 1)V.

Its explicit expression is given by

f(p, x, t) = εp

(

cos x

ω
+

cos(x − t)

ω − 1

)

+
ε2

2

(

cos x

ω
+

cos(x − t)

ω − 1

)2

. (29)

We notice that the control term is of order ε, i.e. of the same order as the perturbation.

However, the control term f acts only in a region where |p| . ε since it is multiplied

by a function Ω(|p|) such that Ω(|p|) = 1 when |p| ≤ ε, and Ω(|p|) = 0 when

|p| ≥ 2ε. Consequently, the controlled Hamiltonian H0(E, p)+V (p, x, t)+f(p, x, t)Ω(p)

is locally integrable (since it is locally conjugate to E+p2/2) provided that the canonical

transformation is well defined (which is obtained when ε is sufficiently small). A phase

portrait of Hamiltonian (23) with the control term (29) shows a very regular behaviour

which persist for high values of ε. However we notice that for ε greater than one, the

control term is no longer small compared with the perturbation.

3.1.2. Localised control In order to apply the localised control as in Sec. 2.2, we notice

that Hamiltonian (24) is of the form (10) with v = cos x + cos(x − t), w = 0 and

Q = p2/2. In this case the control term given by Eq. (14) is equal to

f(x, t) = −1

2
N (Γ∂xv)2.
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Figure 2. Poincaré surface of section of Hamiltonian (23) with the global control term

given by Eq. (30) with ε = 0.06.

Therefore the control term is equal to

f(x, t) = −1

2

(

cos x

ω
+

cos(x − t)

ω − 1

)2

+
1

4

(

1

ω2
+

1

(ω − 1)2

)

. (30)

This control term has four Fourier modes with frequency vectors (2, 0), (2, 2), (2, 1) and

(0, 1). We consider the region in between the two primary resonances located around

p = 0 and p = 1. The control term given by Eq. (30) can be simplified by considering

the region of phase space around p = 1/2. By keeping the main Fourier mode of this

control term, i.e. the one with frequency vector (2, 1) which has the largest amplitude

for ω close to 1/2, the control term becomes [8, 9]

fa(x, t) =
1

2ω(1 − ω)
cos(2x − t). (31)

For the numerical computations we have chosen ω = (3−
√

5)/2 (golden-mean invariant

torus) which is the last invariant torus to break-up for Hamiltonian (23).

A Poincaré section of Hamiltonian (23) with the approximate control term (31) for

ε = 0.06 shows that a lot of invariant tori are created with the addition of the control

term precisely in the lower region of phase space where the localisation has been done

(see Fig. 2). Using the renormalization-group transformation [7], we have checked the

existence of the golden-mean invariant torus for the Hamiltonian H + ε2f is given by

Eq. (30) with ε ≤ 0.06965. By using the approximate and simpler control term fa given

by Eq. (31) the existence of the invariant torus is obtained for ε ≤ 0.04857. However, we

have checked using Laskar’s frequency map analysis [10] that invariant tori and effective

barriers to diffusion (broken tori) persist up to higher values of the parameter (ε ≈ 0.2).

The next step is to localize f given by Eq. (30) around a chosen invariant torus created

by f : We assume that the controlled Hamiltonian H + ε2f has an invariant torus with

the frequency ω. We locate this invariant torus using frequency map analysis. Then we
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Figure 3. (a) Poincaré surface of section of Hamiltonian (23) with the approximate

control term (32) with ε = 0.034 (enlargement in the inset). (b) Same as (a) with

initial conditions above the invariant torus.

construct an approximation of the invariant torus of the Hamiltonian H + ε2f of the

form p = p0(x, t). We consider the following localised control term :

f (L)(p, x, t) = f(x, t)Ω(|p − p0(x, t)|), (32)

where Ω is a smooth function with finite support around zero. More precisely, we have

chosen Ω(x) = 1 for x ≤ α, Ω(x) = 0 for x ≥ β and a third order polynomial for

x ∈]α, β[ for which Ω is a C1-function, i.e. Ω(x) = 1 − (x− α)2(3β − α − 2x)/(β − α)3.

The function p0 and the parameters α, β are determined numerically (α = 5 × 10−3

and β = 1.5α). The support in momentum p of the localised control is of order 10−2

compared with the support of the global control which is of order 1.

Figure 3 shows that the phase space of the controlled Hamiltonian is very similar to

the one of the uncontrolled Hamiltonian. We notice that there is in addition an isolated

invariant torus. Using frequency map analysis [10], we check that this invariant torus

corresponds to the one where the control term has been localised, i.e. its frequency is

equal to (3 −
√

5)/2.

We notice that the perturbation has a norm (defined as the maximum of its

amplitude) of 6.8×10−2 whereas the control term has a norm of 2.7×10−3 for ε = 0.034.

The control term is small (about 4% ) compared to the perturbation. We notice that

there is also the possibility of reducing the amplitude of the control (by a factor larger

than 2) and still get an invariant torus of the desired frequency for a perturbation

parameter ε significantly greater than the critical value in the absence of control.

3.2. Delta-kicked rotor – standard map

We consider the standard map :

pn+1 = pn + K sin xn, (33)

xn+1 = xn + pn+1 mod 2π. (34)
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Figure 4. Phase portrait of the standard map for K = 1.2.

This map is obtained by a Poincaré section of the following Hamiltonian

H(p, x, t) =
p2

2
+

K

4π2

+∞
∑

m=−∞

cos(x − mt). (35)

Figure 4 depicts a phase portrait of the standard map for K = 1.2. We notice that

there are no KAM tori (dividing phase space) at this value of K (the critical value of

the parameter for which all the KAM tori are broken is Kc ≈ 0.9716). Similarly to the

forced pendulum, we consider the invariant torus with frequency ω. By translating the

momentum, we map Hamiltonian (35) into

H = E + ωp + ε

+∞
∑

m=−∞

cos(x − mt) +
p2

2
, (36)

where ε = K/(4π2).

3.2.1. Global control Using the same computations as for the forced pendulum, the

controlled Hamiltonian obtained by the procedure described in Sec. 2.2 is

H(p, x, t) =
p2

2
+ ε

+∞
∑

m=−∞

cos(x − mt)

+ ε(p − ω)
+∞
∑

m=−∞

cos(x − mt)

ω − m
+

ε2

2

(

+∞
∑

m=−∞

cos(x − mt)

ω − m

)2

,

which is integrable and canonically conjugate to H0 = p2/2. We notice that although

the control term is of the same order as the perturbation, it is more regular than the

perturbation since its Fourier coefficients decrease like m−1.

3.2.2. Localised control Hamiltonian (36) is of the form (10) with v =
∑

m cos(x−mt),

w = 0 and Q = p2/2.
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Figure 5. Phase portrait of (a) the standard map for K = 5 and (b) the controlled

standard map with the control term (38).

The control term given by Eq. (14) becomes

f(x, t) = −1

2

(

+∞
∑

m=−∞

cos(x − mt)

ω − m

)2

+
1

4

+∞
∑

m=−∞

1

(ω − m)2
. (37)

Again we notice that this control term is more regular than the perturbation since its

Fourier coefficients decrease like m−1. In particular, it is bounded in space and time,

piecewise continuous in time. For instance, for ω = 1/2, the control term (37) is equal

to

f(x, t) =
π2

4
cos(2x − t)χ(t /∈ 2πZ) +

π2

4
χ(t ∈ 2πZ). (38)

The phase portrait of Hamiltonian (36) with the control term (38) for K = 5 is

depicted on Fig. 5. We notice that in this case, the controlled kicked rotor is now

a kicked pendulum : Instead of the rotor H0 = p2/2, the integrable part becomes a

pendulum

H0 =
p2

2
+

ε2π2

4
cos(2x − t),

and the perturbation is a periodic δ-kick. We notice that the controlled Hamiltonian

has invariant tori in the region near p = 1/2 (where the control has been localised).

These invariant tori persist up to high values of the parameter K = ε/(4π2) larger than

10 which has to be compared with Kc ≈ 0.97 in the absence of control. Note that the

control term we use is bounded (conversely to the perturbation) and its amplitude is

small compared with the amplitude of the Fourier coefficients of the perturbation (with

a factor smaller than 10% depending on K).

In order to recover a map, we need to locate the control at each ω = (2m + 1)/2

for m ∈ Z. For a given m ∈ Z, the approximate control term is

f (a)
m (x, t) =

π2

4
cos(2x − (2m + 1)t).
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Since each of these control term act on different regions of phase space, we sum all these

control term to obtain a more global stabilization and recover a map. The control term

becomes

f (a)(x, t) =
π2

4

+∞
∑

m=−∞

cos(2x − (2m + 1)t).

Next, we perform an inverse Fourier transform. The Hamiltonian becomes

f (a)(x, t) =
π3

4
cos 2x

+∞
∑

m=−∞

[δ(t − 2πm) − δ(t − (2m + 1)π)] .

The controlled standard map is thus obtained by performing additional kicks: Each

t = 2πm, in addition to the kicks of strength K cos x, one has to perform kicks of

strength (K2 cos 2x)/16, and each t = (2m + 1)π, one has to perform kicks of strength

−(K2 cos 2x)/16. This leads to the following form for the controlled standard map

p̃2m+1 = p̃2m + K sin x̃2m +
K2

16
sin 2x̃2m,

p̃2m+2 = p̃2m+1 −
K2

16
sin 2x̃2m+1,

x̃2m+1 = x̃2m +
1

2
p̃2m+1,

x̃2m+2 = x̃2m+1 +
1

2
p̃2m+2.

It has a more compact form by using xn = x̃2n and pn = p̃2n :

pn+1 = pn + K sin xn +
K2

16
[sin 2xn

− sin(2xn + pn + K sin xn + (K2 sin 2xn)/16)], (39)

xn+1 = xn + pn+1 +
K2

32
sin(2xn + pn + K sin xn + (K2 sin 2xn)/16). (40)

If we neglect the kicks every t = (2m + 1)π, we obtain the following map

pn+1 = pn + K sin xn +
K2

16
sin 2xn, (41)

xn+1 = xn + pn+1. (42)

Conversely, if we neglect the kicks every t = 2mπ, we get

pn+1 = pn + K sin xn − K2

16
sin(2xn + pn + K sin xn), (43)

xn+1 = xn + pn+1 +
K2

32
sin(2xn + pn + K sin xn). (44)

A phase portrait of these maps are depicted on Figs. 6, 7 and 8. The most efficient

control is obtained for the map (39)-(40) by considering the two additional kicks of order

K2. The control term which only add the negative kicks does not lead to an efficient

control although it appears slightly more regular than the uncontrolled case. Using

frequency map analysis [10], we have computed the critical thresholds for the break-up
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Figure 6. Phase portrait of the controlled standard map (39)-(40) for K = 1.2.

Figure 7. Phase portrait of the controlled standard map (41)-(42) for K = 1.2.

of the last KAM tori : There are invariant tori for the map (39)-(40) up to Kc ≈ 2.23

which is more than twice the uncontrolled case (Kc ≈ 0.97). The map (41)-(42) which

is simpler than the map (39)-(40) has invariant tori up to Kc ≈ 1.57.

In this section, we have used the control for Hamiltonian flows in order to derive

control terms for area-preserving maps. We note that a control method has been

developed directly for area-preserving maps in Refs. [11].

3.3. Non-twist Hamiltonian

We consider the following Hamiltonian

H = E + ωp +
p3

3
+ ε (cos x + cos(x − t)) , (45)

where ω = (
√

5− 1)/2. A Poincaré section of this Hamiltonian with ε = 0.2 is depicted

on Fig. 9. The invariant torus with frequency ω is located at p = 0 for ε = 0. We
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Figure 8. Phase portrait of the controlled standard map (43)-(44) for K = 1.2.

notice that this invariant torus is shearless since the second derivative of H with respect

to p is zero on this torus. Hamiltonian (45) is of the form given by Eq. (10) with

v = cos x + cos(x − t), w = 0 and Q = p3/3. The control term is given by Eq. (14):

ε2f(x, t) =
ε3

3

(

cos x

ω
+

cos(x − t)

ω − 1

)3

. (46)

The noticeable feature is that the modification of the Hamiltonian is of order ε3

compared with the forced pendulum or the standard map where the control term is

of order ε2. A Poincaré section of the controlled Hamiltonian (45) with the control term

(46) is depicted on Fig. 10. We notice that there are invariant tori in the region near

p = 0 that have been created with the addition of the small control term of order ε3.

For instance, for ε = 0.2 and ω = (
√

5 − 1)/2, the control term has a norm which is

about 10% of the perturbation. In order to obtain a localised control, one has to apply

the control term only in the region where the KAM invariant tori have been recreated,

i.e., in the region p ≈ 0.
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Appendix A. The transformations Tm,b are canonical

First we notice that Tm,b can be written as

Tm,b = e−m∂D1+µ′Tb,

where D is a dilatation and T a translation of the actions acting on a function V (A, θ)

as

(D1+µ′V )(A, θ) = V ((1 + µ′)A, θ),
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Figure 9. Poincaré section for Hamiltonian (45) with ε = 0.2 and ω = (
√

5 − 1)/2.

Figure 10. Poincaré section for Hamiltonian (45) with the control term (46) with

ε = 0.2 and ω = (
√

5 − 1)/2.

(TbV )(A, θ) = V (A + b, θ).

A translation of the actions by a function b of θ (i.e. independent of A) is obviously

a canonical transformation if b derives from a scalar function, i.e. b = ∂β. Thus it is

sufficient to prove that Tm,0 is also a canonical transformation. We notice that Tm,0 is

an automorphism since it is the product of two automorphisms : an exponential of a

derivation and a dilatation. In what follows we prove that

e−m∂D1+µ′ = e{mA}, (A.1)

which is equivalent to say that Tm,0 is a Lie transform generated by the scalar function

mA. In other terms, Eq. (A.1) can also be written as [cf. Eq. (18)]

De∂m̂·1 = em∂e{mA}.

Since these operators are automorphisms, it is sufficient to check that Eq. (A.1) is
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satisfied on the basis (A, θ). First, we expand the operator e{mA} :

e{mA} = e−m∂+m′A∂
Ā ,

and we use the Trotter-Kato formula [12] to express the exponential of the sum of two

operators :

eA+B = lim
n→∞

(

eA/neB/n
)n

.

Any function of θ is invariant under the action of an operator em′A∂
Ā

/n. Therefore it is

straightforward to check that
(

e−m∂/nem′A∂
Ā

/n
)n

θ = e−m∂θ,

for all n ∈ N. It follows that Eq.(A.1) is satisfied on θ.

For A, we use the identity

eMA∂
ĀNA = NeMA, (A.2)

where M and N are functions of θ. This identity follows from (MA∂Ā)NA = NMA.

In particular, we have

eMA∂
Ā = DeM .

Using Eq. (A.2) we prove that

(

e−m∂/nem′A∂
Ā

/n
)

A = e−m∂/nem
′/nA,

and it follows recursively that

(

e−m∂/nem′A∂
Ā

/n
)n

A =

n
∏

k=1

e−km∂/n
(

em
′/n
)

A,

where the product is taken from right to left, i.e.
∏n

k=1 ak = anan−1 · · ·a1. Concerning

the operator e−m∂D1+µ′ , the Trotter-Kato formula leads to the following expansion

e−m∂D1+µ′ = lim
n→∞

e−m∂
(

em′/nem∂/n
)n

A,

since 1 + µ′ = e∂m̂ · 1 and ∂m̂ = m′ + m∂ [see Eq. (15)]. Using the same type of

computations as for Tm,0, we have

(

em′/nem∂/n
)n

=
0
∏

k=n−1

ekm∂/n
(

em′/n
)

.

If we multiply the above expression by e−m∂ and change the index of the product

(k′ = n − k), it leads to

e{mA}A = e−m∂D1+µ′A,

and hence Eq. (A.1) is proved.
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Remark : We notice that Eq. (A.1) implies that

(De∂m̂·1)
−1 = em∂De−∂m̂·1e

−m∂,

which leads to the expression of the inverse of 1 + µ′ :

(

e∂m̂ · 1
)−1

= em∂e−∂m̂ · 1.
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