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Abstract

Products of random matrices in the (max,+) algebra are used as
a model for a class of discrete event dynamical systems. J. Mairesse
proved that such a system couples in finite times with a unique sta-
tionary regime if and only if it has a memory loss property.

We prove that the memory loss property is generic in the following
sense : if it is not fulfilled, the support of the measure is included in
a finite union of affine hyperplanes and in the discrete case the atoms
of the measure are linearly related.
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1 Introduction

Products of matrices in the (max, +) algebra are related to various fields
such as discrete event dynamical systems, graph theory or asymptotic anal-
ysis. A review of various applications is given in [GP97].

The spectral and asymptotic theory of powers of a single matrix in the
(max, +) algebra is well known.(cf [CDQV83]) Products of random matri-
ces in the (max, +) algebra have been investigated since [Coh88]. Some re-
sults have been proved under the so called ”memory loss property” ([Mai97]
and [GH00]). In this article we prove that this condition is generic in the
following sense : if it is not fulfilled, the support of the measure is included
in a finite union of affine hyperplanes and in the discrete case the atoms of
the measure are linearly related.
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This article is divided into three sections. In the first one, we introduce
the (max, +) algebra and the matrices in that algebra and we recall the
spectral and asymptotic theory. In the second one we state our main results
and apply them to the cases of [Mai97] and [GH00]. In the last section, we
prove the results.

2 Matrices in Rmax

For any k ∈ N, Ik will be the set of all integers between 1 and k.

Definition 2.1.

i) Let Rmax be R ∪ {−∞} and ⊗,⊕ be defined by :

∀x, y ∈ Rmax,

{

x ⊕ y := max(x, y)
x ⊗ y := x + y

ii) For any k ∈ N, it provides R
k
max with a linear-like structure :

∀x, y ∈ R
k
max, ∀α ∈ Rmax, ∀i ≤ k,

{

(x ⊕ y)i := xi ⊕ yi

(α ⊗ y)i := α ⊗ xi

iii) For any k, l, m ∈ N, the product of two matrices A ∈ R
k×l
max and B ∈ R

l×m
max

is the matrix A ⊗ B ∈ R
k×m
max defined by :

∀i ≤ k, ∀j ≤ m, (A ⊗ B)ij :=

l
⊕

p=1

Aip ⊗ Bpj.

Proposition 2.1.

i) These laws make Rmax a semiring but no ring because ⊕ is not invertible.
The neutral element of the addition (resp. the multiplication) is −∞
(resp. 0).

ii) A matrix A ∈ R
k×l
max defines a (max, +)-linear application Ã from R

l
max

to R
k
max given by :

∀x ∈ R
l
max, Ã(x) := A ⊗ x,

and the product of the matrices corresponds to the composition of the
functions. If A has no line of −∞, it also defines an application from
R

k to R
l.
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iii) The image of Ã is stable under the operations of R
k
max. It is the (max, +)-

moduloid spanned by the columns of A. As in usual linear algebra :

∀x ∈ R
k
max, A ⊗ x =

⊕

j∈Ik

xj ⊗ A.j.

iv) A matrix A has rank 1 if all its columns are proportional. It happens if
and only if there are a and b in R

k such that ∀(i, j) ∈ I2
k Aij = ai + bj.

We denote it by rk(A) = 1.

Proof. All the assumptions can be checked by direct computations. After
the first one, the computations are the same as in linear algebra.

Remark 2.1. The rank 1 notion is clear but there are several notions of
rank.(cf [CG79] and [Wag91])

We briefly review the spectral and asymptotic theory of matrices in
(max, +). These results are from [CDQV85]. The reader interested in proofs
can find them in [BCOQ92].

Definition 2.2. A cycle on a graph is a closed path on the graph and a loop
is a cycle of length 1. Let A be a square matrix of size k with coefficients in
Rmax.

i) The graph of A is the directed labelled graph whose vertices are the
elements of Ik and whose edges are the (i, j) such that Aij > −∞. The
label on (i, j) is Aij . The graph will be denoted by G(A) and the set of
its minimal cycles by C(A).

ii) The average weight of a cycle c = (i1, · · · , in, in+1) ∈ C(A) (where i1 =
in+1) is aw(A, c) := 1

n

∑n

j=1 Aij ij+1
.

iii) The spectral radius of A is ρ(A) := maxc∈C aw(A, c).

iv) The critical graph of A is obtained from G(A) by keeping only vertices
and edges that belong to cycles with average weight ρ(A). It will be
denoted by Gc(A).

v) The cyclicity of a graph is the greatest common divisor of the length of
its cycles if it is connected. Otherwise it is the least common multiple
of the cyclicities of its connected components. The cyclicity of A is that
of Gc(A).
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vi) The type of A is scsN-cycC, where N is the number of connected
components of Gc(A) and C the cyclicity of A.

Remark 2.2. Interpretation of powers with G(A).
If (i1, i2 · · · , in) is a path on G(A), its weight is

∑

1≤j≤n−1 Aij ij+1
, so that A⊗n

ij

is the maximum of the weights of length n paths from i to j.

To state the spectral theorem, we will also need the following :

Definition 2.3.

For any A ∈ R
k×k
max with ρ(A) ≤ 0,

A+ :=
⊕

1≤n≤k

A⊗n.

Remark 2.3. For any (i, j) ∈ I2
k , A+

ij is the maximum of the weights of paths
from i to j. Indeed, since ρ(A) ≤ 0 all cycles have nonpositive weights and
removing cycles from a path makes its weight greater, so

⊕

1≤n≤k A⊗n =
⊕

n≥1 A⊗n and the remark follows from remark 2.2 .

Proposition 2.2. Eigenvectors

i) If c is a cycle on Gc(A), its average weight is ρ(A).

ii) If G(A) is connected, ρ(A) is the only eigenvalue of A.

iii) If ρ(A) = 0, for any i ∈ Gc(A), A+
.i is an eigenvector of A with eigenvalue

0.

iv) If ρ(A) = 0, for any eigenvector y of A with eigenvalue 0, we have

y =
⊕

i∈Gc(A)

yi ⊗ A+
.i .

v) If ρ(A) = 0, and if i and j are in the same connected component of
Gc(A), A+

.i and A+
.j are proportional.

vi) If ρ(A) = 0, no column vector A+
.i with i ∈ Gc(A) is a (max, +)-linear

combination of the A+
.j with j in other connected components.

Proposition 2.3. Powers
Assume G(A) is connected, ρ(A) = 0 and the cyclicity of A is 1. Then for n
big enough A⊗n = Q, where Q is defined by

∀(i, j) ∈ I2
k , Qij :=

⊕

l∈Gc(A)

A+
il ⊗ A+

lj .
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Remarks 2.4.

1. When ρ(A) 6= 0, we use that ρ(A − ρ(A)O) = 0, where O is the k × k
matrix with all coefficients 1.

2. For any (i, j) ∈ I2
k , Qij is the maximum of the weight of paths from i

to j that crosses Gc(A).

3 Results and applications

The aim of this article is to prove the two following theorems :

Theorem 3.1. For any k ≥ 1, the complement set of

{(A, B) ∈ (Rk×k)2|∃A1, · · · , An ∈ {A, B}, rk(A1 ⊗ · · · ⊗ An) = 1}

is included in a finite union of hyperplanes of (Rk×k)2.

Theorem 3.2. Let µ be a probability on R
k×k whose support is not included

in a finite union of affine hyperplanes of R
k×k. Then there exists n ∈ N such

that :
µ⊗n

({

(Ai)i∈In
∈ (Rk×k)n|rk(A1 ⊗ · · · ⊗ An) = 1

})

> 0.

Remarks 3.1.

1 For sake of simplicity, the theorems have been stated and will be proved for
matrices with finite coefficients. If we want to allow −∞, we have to take
a condition of fixed structure, irreducibility and aperiodicity, as in [Mai97]
: the place of the −∞ are not random and there is a fixed power of the
matrices that has no coefficient equal to −∞.

The set of matrices with given coefficients equal to −∞ is a vector space
with dimension less than k2. Under the irreducibility and aperiodicity
assumptions, the same proofs can be conducted in that spaces and lead to
the same theorems with each occurrence of R

k×k replaced by that spaces.

On the opposite in a fixed structure without aperiodicity or without irre-
ducibility there will allways be −∞ coefficient in every product, so memory
loss property is impossible.

2 If k = 2, the hyperplanes of theorem 3.1 are explicit : if A11 6= A22,
B11 6= B22 and A21 −A12 6= B12 −B21, then there is a word A1 · · ·An in A
and B such that rk(A1 ⊗ · · · ⊗ An) = 1. Moreover the product can be a
power of A, B or A ⊗ B.
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If k 6= 2, we explicitly construct products of rank 1 as powers of A⊗n ⊗
B ⊗ A⊗p for some n and p but there are too many hyperplanes to write
them down with formulas.

Corollary 3.1. For any measure µ on R
k×k that gives 0 measure to affine

hyperplanes

µ⊗µ
(

(Rk×k)2\
{

(A, B) ∈ (Rk×k)2|∃A1, · · · , An ∈ {A, B}, rk(A1 ⊗ · · · ⊗ An) = 1
})

= 0.

Applications

Let us give some notations to state results. Let (Ω,F , θ, P ) be a measurable
dynamical system . That is F is a σ-algebra of subsets of Ω, P is a probability
on F and θ is an F -measurable application from Ω to itself that preserves
P . Let A be a measurable function from Ω to R

k×k
max. We will write A(n) for

A ◦ θn.
We investigate the behaviour of the sequence x(n, x0) defined by x(0, x0) =

x0 and x(n + 1, x0) = A(n) ⊗ x(n, x0).

Remark 3.2. This explains the name memory loss : rk (A(n) ⊗ · · · ⊗ (1)) = 1
if and only if for any couple (i, j), x(n, x0)i − x(n, x0)j does not depend on
the initial condition x0.

Together with theorem 3.2, theorem [Mai97, 6.15] gives :

Corollary 3.2. Let µ be a probability on R
k×k whose support is not in a finite

union of affine hyperplanes. Let P be the product probability on Ω = (Rk×k)N

with marginal µ. Then, for any i, j ∈ Ik, the sequences x(n, x0)i − x(n, x0)j

and x(n + 1, x0)i − x(n, x0)j converge in total variation, uniformly in x0.

Remark 3.3. Under the conditions of the theorem, the sequence A(−1)⊗· · ·⊗
A(−n) contracts the (max, +) projective space in a finite number of steps.
That behaviour looks like that of classic products of random matrices : in
[GR85] Y. Guivarc’h and A. Raugi proved that products of i.i.d. invertible
matrices contract the projective space under generic hypothesis.

In the classic case, É. Le Page used the contraction to prove a CLT and
other limit theorems (cf. [LP82]). Following the same way, we are currently
writing a proof of these theorems for what we called x(n, x0). This proof will
require the memory loss property.

Together with theorem 3.1, a particular case of theorem [GH00, 4.1] gives
:

Corollary 3.3. For any t-uple of matrices M = (A1 · · ·At) and any p ∈
{p ∈ R

t|
∑

ps = 1}, we call LM(p) the Lyapunov exponent of i.i.d random
variables A(n) such that

∀n ∈ N, ∀i ∈ It, P (A(n) = Ai) = pi.
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For any M outside a finite union of hyperplanes of (Rk×k)t, LM(p) is an
analytical function of p on the domain {p ∈ R

t|
∑

ps = 1, p > 0}.

4 Proofs

4.1 Proof of theorems 3.1 and 3.2.

Both theorems follow from the next lemma which will be proved in sec-
tion 4.3.

Lemma 4.1. For any couple (A, B) ∈ (Rk×k)2 outside a finite union of
hyperplanes, there exist two integers m and n such that the critical graph
of the matrix A⊗m ⊗ B ⊗ A⊗n is a loop. As a consequence that matrix is
scs1-cyc1.

Theorem 3.1 directly follows from lemma 4.1 and the following :

Lemma 4.2. Every matrix scs1-cyc1 A ∈ R
k×k has a power with rank 1 .

Proof. Let O be the k×k matrix with all coefficient 1. From proposition 2.3,
when n is big enough, the column vectors of A⊗n−nρ(A)O = (A − ρ(A)0)⊗n

are eigenvectors of A−ρ(A)O. Moreover this last matrix has spectral radius
zero so it follows from proposition 2.2 that all this vectors are proportional.

Notation We will denote a n-uple of matrices by (iA)i∈In
instead of

(Ai)i∈In
to use indexes for coefficients of matrices.

Theorem 3.2, will be deduced from lemma 4.1 and the following :

Lemma 4.3. If Gc(A) has only one vertex, then there is a neighbourhood V
of A and an integer n such that :

∀(iA)i∈In
∈ V n, rk(1A ⊗ · · · ⊗nA) = 1.

Proof of theorem 3.2 :
Every hyperplane of lemma 4.1 is the kernel of a linear form fα on (Rk×k)2.
This linear form can be written fα

1 + fα
2 where fα

1 depends only on the first
matrix and fα

2 on the second one. The support of µ is not included in the
union of the ker fα

1 . Therefore there exists a matrix A in the support of µ
such that ∀α, fα

1 (A) 6= 0. For any α, the set {B ∈ R
k×k|fα

2 (B) = −fα
1 (A)}

is an affine hyperplane of R
k×k or the emptyset. Therefore there exists a B

7



in the support of µ such that B is not in ∪α{B ∈ R
k×k|fα

2 (B) = −fα
1 (A)}.

Finally (A, B) /∈
⋃

α ker fα.
By lemma 4.1 there exists m and n such that Gc(A⊗m⊗B⊗A⊗n) has only

one vertex. By lemma 4.3 there exists a neighbourhood V of A⊗m⊗B⊗A⊗n

and an integer N such that every matrix in V ⊗N has rank 1. Let V1 × V2 be
a neighbourhood of (A, B) such that V ⊗m

1 ⊗ V2 ⊗ V ⊗n
1 ⊂ V . The matrices

in
(

V ⊗m
1 ⊗ V2 ⊗ V ⊗n

1

)⊗N
have rank 1. As A and B are in the support of µ,

µ(V1) > 0 and µ(V2) > 0, so

µ⊗(n+m+1)N
(

(

V ⊗m
1 ⊗ V2 ⊗ V ⊗n

1

)⊗N
)

≥ µ(V1)
(n+m)Nµ(V2)

N > 0.

This concludes the proof of theorem 3.2. The end of this section will
be devoted to the proof of lemma 4.3 by putting together the proofs of the
results we used in lemma 4.2.

To understand the powers of A, we used that their coefficients are the
weights of paths on G(A). We want to do the same for products of two
matrices, which means the edges weights can be different at every step.

For any finite sequence of matrices (iA)i∈In
we give the following definitions

:

Definition 4.1. From now on, G will be the complete directed graph with
vertices the elements of Ik.

- The weight of a path pth = (ij)j∈In+1
on G (with respect to (iA)i∈In

) is

w(pth) :=
∑j

j∈In
Aij ij+1

- A path is maximising if its weight is maximal among the weights of paths
with the same origin, the same end, and the same length.

With such definitions (ij)j∈In+1
is maximising if and only if its weight is

(1A ⊗ · · · ⊗ nA)i1in+1
.

Proof of lemma 4.3 :
As Gc(A) has only one vertex there exists l ∈ Ik such that : ∀c ∈ C(A)\{(l, l)}, All >
aw(A, c). So there exists an ε > 0 such that

∀c ∈ C(A)\{(l, l)}, All − aw(A, c) > 3ε.

Let V be the open ball with center A and radius ε for infinity norm and M
be the maximum of the infinity norm on V .

Let us notice that every matrix B ∈ V has the same critical graph as A.
Let B̃ be the matrix with spectral radius 0 defined by B̃ij = Bij −Bll. Then
‖B̃ − Ã‖∞ < 2ε.
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From now on, (iA)i∈In
will be in V n and the weights of paths will always

be with respect to (ĩA)i∈In
.

Let pth = (ij)j∈In+1
be a path of length n that does not cross l. It can split

into a path of length less than k and minimal cycles. As a minimal cycle that
is not (l, l) and whose length is t has weight w(c) ≤ aw(Ã, c)t + 2tε < −tε,

w(pth) < −(n − k)ε + 2kM.

But for any i, j ∈ Ik,
(

1̃A ⊗ · · · ⊗ ñA
)

ij
≥ w((i, l, · · · , l, j)) > −2M,

so there exists an N such that every maximising path of length n ≥ N crosses
l.

Let pth = (ij)j∈In+1
be a maximising path of length n ≥ 2N + 1. Then

(ij)j∈IN+1
is also maximising, so there is a j0 ≤ N such that ij0 = l. And

(ij)n−N≤j≤n+1 is maximising for (jA)n−N≤j≤n+1, so there exists n−N ≤ j1 ≤
n + 1 such that ij1 = l. The path (ij)j0≤j≤j1 is a cycle, so it can split into
minimal cycles. As minimal cycles have a negative weight, except for (l, l),
the only subcycle of (ij)j0≤j≤j1 is (l, l). So for any j between j0 and j1, ij = l.
Practically for N + 1 ≤ j ≤ n − N , so that

w(pth) = w ((ij)1≤j≤N+1) + w ((ij)n−N≤j≤n+1) .

We proved that :

∀n ≥ 2N+1, ∀i, j ∈ Ik,
(

1̃A ⊗ · · · ⊗ ñA
)

i,j
=

(

1̃A ⊗ · · · ⊗ ÑA
)

il
+

(

n−NÃ ⊗ · · · ⊗ ñA
)

lj
,

so that rk
(

1̃A ⊗ · · · ⊗ ñA
)

= 1 and also rk (1A ⊗ · · · ⊗nA) = 1. This concludes

the proof of lemma 4.3.

4.2 Reduced matrix

To prove lemma 4.1, we introduce the notion of reduced matrix.

Definition 4.2. A matrix A ∈ R
k×k
max is reduced if :

{

∀(i, j) ∈ I2
k , Aij ≤ 0

∀i ∈ Ik, ∃j ∈ Ik Aij = 0
(1)

It is strictly reduced if :
{

∀(i, j) ∈ I2
k , Aij ≤ 0

∀i ∈ Ik, ∃!j ∈ Ik Aij = 0
(2)
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Proposition 4.1.

i) The set of reduced matrices is a semigroup. The set of strictly reduced
matrices too.

ii) Reduced matrices have spectral radius zero and a critical graph with 0 on
each edge.

Proof. The proof is straightforward.

To easy the statements, we will use the following notion of genericity.

Definition 4.3. A property P of a matrix is said to be generic (or a generic
matrix fulfills P ) if every matrix outside a finite union of hyperplanes of R

k×k

fulfills P .
A property P of a couple of matrices is generic if every couple of matrices

outside a finite union of hyperplanes of
(

R
k×k

)2
fulfills P .

Proposition 4.2. There is a finite number of linear forms ρα and V α
i in the

coefficients of A, such that for any A ∈ R
k×k, there exists an α such that Ā

defined by Āij := Aij − ρα(A) − V α
i (A) + V α

j (A) is reduced. Moreover, for a
generic A, Ā is strictly reduced.

To prove this proposition, we need the following definition.

Definition 4.4. For any ξ ∈ IIk

k , let Aξ be {C ∈ R
k×k|∀i ∈ Ik, Ciξ(i)} = 0

and let ϕξ be the linear application from Aξ ×R×R
k−1 to R

k×k defined by :

ϕξ(C, ρ, V )ij = Cij + Vi − Vj + ρ

where Vk = 0 by definition.

Proof. If V is an eigenvector associated with eigenvalue ρ, the matrix with
coefficients Aij − ρ − Vi + Vj is reduced : it is equivalent to the relation
A ⊗ V = ρ ⊗ V .

For any cycle c = (i1, i2, · · · , in) of Ik, the application that maps A on
aw(A, c) = 1

n

∑n
j=1 Aijij+1

is a linear form of A. So let us choose as ρα the
aw(., c), for c ∈ C(A). Since the length of c is always less than k, there are
finitely many c.

By proposition 2.2, we can take Vi = A+
ij for some j. As A+

ij = A⊗n
ij =

∑n

j=1 Aij ij+1
for some n ≤ k and some finite sequence of il, we have found

the V α
i among the applications of the form A 7→

∑n
j=1 Aijij+1

. The set of
this applications is finite.
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It remains to show that for a generic A, Ā is strictly reduced. Let Vi :=
V α

i (A) − V α
k (A). Then

∀A ∈ R
k×k, ∃ξ, A = ϕξ(Ā, ρ(A), V ).

If Ā is not strictly reduced, there exist i and j 6= ξ(i), such that Āij = 0,
so A ∈ ϕξ({(C, ρ, V )|Cij = 0}). Since Aξ × R × R

k−1 has dimension k2,
ϕξ({(C, ρ, V )|Cij = 0}) has dimension at most k2 − 1. Therefore the set of
matrices A with Ā not strictly reduced is a subset of the union on ξ, i and
j 6= ξ(i) of these strict subspaces of R

k×k. A generic A is outside this union
so generically Ā is strictly reduced.

In what follows, we will use that the critical graph of Ā has the same
vertices and edges as the one of A with 0 on each edge.

4.3 Proof of lemma 4.1

Let A and B be two square matrices of size k. By proposition 4.2 there
are Ā and α such that :

Āij := Aij − ρα(A) − V α
i (A) + V α

j (A).

Let B̄ be such that :

B̄ij := Bij − V α
i (A) + V α

j (A).

Moreover we assume that Ā is strictly reduced and that ξ maps i to the
unique j such that Āij = 0. We also assume that there is only one cycle on
Gc(A). The first assumption is generic from proposition 4.2. The second one
is generic because if c1 and c2 are two minimal cycles on Gc(A), the non-zero
linear form aw(., c1) − aw(., c2) vanishes in A.

By proposition 2.3 applied to Ā⊗c(A) there is P = Ā⊗N such that every
great power of Ā is equal to Ā⊗p ⊗ P for some p ≤ k. As in the proof of
lemma 4.3, we investigate the paths on G. The decomposition of the paths in
minimal cycles shows that, up to taking a bigger N , every maximising path
of length N on G(Ā) crosses Gc(A).

Let us search for the maximal coefficients of Ā⊗N ⊗ B̄ ⊗ Ā⊗(k+p). Such a
coefficient

(

Ā⊗N ⊗ B̄ ⊗ Ā⊗(k+p)
)

ij
is the weight of a path (ir)r∈IN+k+p+1

from

i to j (figure 1). We denote iN+1 by l and iN+2 by m.
If we replace every ir with r ≥ N + 3 by ξr−N−2(m), we replace edges

with negative weights by edges with weight 0, so we get a path with greater

11



Figure 1: Maximal paths of Ā⊗N ⊗ B̄ ⊗ Ā⊗(k+p).

0 0 0 0 0 00

0 0 0

0

0

   

i′m jlqi

i′
Vertices in the boxes are in Gc(A)

Ā⊗N B̄ Ā⊗k Ā⊗p

B̄lm

weight. Since this weight can not be strictly greater, and since Ā is strictly
reduced, this means that ir = ξr−N−2(m). Therefore a maximal coefficient is
equal to Pil + B̄lm and does not depend on p. Moreover, (ir)N+2≤r≤N+k+p+2

crosses twice the same vertex, so it contains a cycle. Since all edges have
zero weight, the cycle is on Gc(A). As for any r ≥ N + 3, ir+1 = ξ(ir), the
path stays on this cycle so j ∈ Gc(A).

On the other side, (ir)r∈IN+1
crosses Gc(A). Let q be the first vertex in

Gc(A). We can find a new path such that every edge before q is in Gc(A) :
we construct it backward from q. The first vertex of this path is called i′ and
belongs to Gc(A). By construction

(

Ā⊗N ⊗ B̄ ⊗ Ā⊗(k+p)
)

i′j
is greater than

(

Ā⊗N ⊗ B̄ ⊗ Ā⊗(k+p)
)

ij
so it is maximal. Since Gc(A) is connected, there is

a p such that j = i′. From now on, we will suppose this is the case.

The matrix M := Ā⊗N ⊗ B̄ ⊗ Ā⊗k+p has a maximum coefficient on its
diagonal. This coefficient is the spectral radius of M and the weight of every
edge of Gc(M). Let us show that all edges with this weight have the same
end.

First there is a finite set of linear forms fβ such that A+
ij = fβ(A) for some

β, because A+ is a (max, +) polynomial in A. Second Pij = (Ā⊗c(A))+
ih +

(Ā⊗c(A))+
hj is also the image of Ā by a linear form, and the image of A by

another linear form. At each step, the linear form is chosen in a finite set,
so there exists a finite set of linear forms P γ

ij and V γ
i such that for every A

there is a γ such that P = P γ(A) and V = V γ(A).
We have proved that the maximal Mij are equal to Pil + B̄lm for some l

and m. If there are two indices such that (l, m) are different, then the linear
form

P γ
i1l1

+ B◦
l1m1

+ V γ
m1

− V γ
l1
− P γ

i2l2
− B◦

l2m2
− V γ

m2
+ V γ

l2

where B◦
lm is the (l, m)-coordinate application, vanishes in (A, B). But this
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linear form is not zero, because the B component is the difference of the two
coordinates applications B◦

l1m1
and B◦

l2m2
. If no such linear form vanishes in

(A, B), then all maximal coefficients of M are equal to Pil + B̄lm with the
same (l, m). Since there are finitely many γ and indices, this condition is
fulfilled outside a finite union of hyperplanes.

So generically if Mij is a maximal coefficient of M we have j = ξk+p(m) =
i′. That means that all edges of Gc(M) end in i′. The only possible cycle
with such edges is (i′, i′).

To conclude we notice that Ā⊗N ⊗ B̄⊗ Ā⊗k+p and A⊗N ⊗B⊗A⊗k+p have
the same critical graph.
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