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Invariant Percolation and Harmonic Dirichlet Functions

Damien Gaboriau*

Abstract

The main goal of this paper is to answer question 1.10 and settle conjecture 1.11 of Benjamini-

Lyons-Schramm ||B 9] relating harmonic Dirichlet functions on a graph to those of the infinite
clusters in the uniqueness phase of Bernoulli percolation. We extend the result to more gen-
eral invariant percolations, including the Random-Cluster model. We prove the existence of the
nonuniqueness phase for the Bernoulli percolation (and make some progress for Random-Cluster
model) on unimodular transitive locally finite graphs admitting nonconstant harmonic Dirichlet
functions. This is done by using the device of £? Betti numbers.

Mathematical Subject Classification: 60K35, 82B43, 31C05, 37A20, 05C25, 05C80, 37TR30
Key words and phrases: percolation; transitive graph; harmonic Dirichlet function; measured
equivalence relation; L? Betti number.

0 Introduction

Traditionally, percolation on graphs lives on Z¢ or lattices in R?. Following earlier work of G. Grimmett
and C. Newman [GN9(] on the direct product of a regular tree and Z, a general study of invariant
percolation was initiated in I. Benjamini and O. Schramm [BS96] and further developed by several
authors.

Let G = (V,E) be a (non-oriented) countable infinite locally finite graph. A bond percolation on
G is simply a probability measure P on 2 = {0, 1}, the subsets of its edge set E. It is an invariant
percolation when this measure is invariant under a certain group H of automorphisms of G.

An element w in ) defines the graph whose vertices are V and whose edges are the retained (or
open) edges, i.e. those e € E with value w(e) = 1. It is the subgraph of G where edges with value 0
are removed (or closed). One is interested in the shape of the “typical” random subgraph w! and
of its clusters, i.e. its connected components.

One of the most striking instances is Bernoulli bond percolation, and particularly on a Cayley
graph? of a finitely generated group: each edge of G is removed with probability 1 — p indepen-
dently (where p € [0,1] is a parameter). The resulting probability measure p, on €2 is the product
Bernoulli measure (1 — p,p) on {0,1}. It is invariant under every automorphism group of G. How
does the behavior evolve as p varies? For small p, the clusters are a.s. all finite, while for p = 1 the

*C.N.R.S.

In more probabilistic terms, w is a random variable with values in € and distribution P.

2A Cayley graph will always be assumed to be for a finitely generated group and with respect to a finite generating
system.
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measure concentrates on the infinite subgraph G itself. Depending on the value of the parameter, p,,-
almost every subgraph w € € has no infinite cluster, infinitely many infinite clusters (nonuniqueness
phase) or only one infinite cluster (uniqueness phase). According to a somehow surprising result
of O. Héggstrom and Y. Peres [HP9Y], the phases are organized around two phase transitions for two
critical values of p depending on the graph 0 < p.(G) < p.(G) < 1, as summarized  in the following
picture:

. all finite . infinitely many infinite clusters . a unique infinite cluster
[ [ [ I

0 pc(g) pu(g) 1

The picture at the critical values themselves is far from complete (to which interval belong the
transitions? which inequalities are strict: p. # p, # 1 ?7) and seems to depend heavily (for Cayley
graphs) on the algebraic properties of the group. However, a certain amount of results has been
obtained. For instance, in the Cayley graphs setting *:

e p, = p. for amenable groups (Burton-Keane [BK8Y])

e p. < 1 for groups of polynomial or exponential growth, except for groups with two ends [Lyo95, [LP0H]
e For any nonamenable group, there is almost surely no infinite cluster at p = p. [BLPS994, Th. 1.3]°
e p, < 1 for finitely presented groups with one end (Babson-Benjamini [BB9Y]) and for (restricted)
wreath products® K ! A := A x @ K with finite non-trivial K (Lyons-Schramm [[LS99))

e p, = 1 for groups with infinitely many ends, thus the percolation at p = p,, belongs to the uniqueness
phase”

e The percolation at the threshold p = p, belongs to the nonuniqueness phase, and thus p, < 1, for
infinite groups with Kazhdan’s property (T) (Lyons-Schramm [[LS99])

e in the nonuniqueness phase, infinite clusters have uncountably many ends almost surely [HP99] 2

For (much !) more information and references, the reader is referred to the excellent survey of
R. Lyons [Lyo0d], book (in preparation) by R. Lyons and Y. Peres [LP05 and papers [BLPS994,
BLPS99H, BLS99, BS94, [HP9Y, [LS9]].

0.1 On Harmonic Dirichlet functions

The space HD(G) of Harmonic Dirichlet functions on a locally finite graph G = (V, E) is the space
of functions on the vertex set V whose value at each vertex equals the average of the values at its

neighbors
(Z 1) floy=> )

v/Nv v/~

3For Cayley graphs, say. More generally this picture appears for Bernoulli percolation of unimodular quasi-transitive
(see below for the definitions) graphs [[HP9J]. R. Schonmann has even removed the unimodularity assumption.

Yie. for any Cayley graph G of a given finitely generated group I’

This is true more generally for nonamenable unimodular transitive graphs ]

5The finitely generated group A acts transitively on the discrete set W of indices and thus on the W-indexed direct
product &w K.

"This is a very general result, see ]

8This is true more generally for quasi-transitive unimodular graphs ] This has also been proved in the nonuni-
modular case by O. Haggstrom, Y. Peres, R. Schonmann.
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and whose coboundary is #2-bounded

ldf1I* =3 [f(v) = () < co.

v’

The constant functions on the vertex set V always belong to HD(G). Denote by Oup the class of
connected graphs for which these are the only harmonic Dirichlet functions. Belonging or not to
Oup plays a role in electrical networks theory: when assigning resistance 1 ohm to each edge, the
coboundary of a harmonic Dirichlet function gives a finite energy current satisfying both Kirchhoff’s
laws.

As an example, a Cayley graph of a group I' is in Ogp if and only if the first £2-Betti number
B1(T) of the group vanishes (see Theorem [p.1]). Thus, the Cayley graphs of the following groups
(when finitely generated) all belong to Ogp: abelian groups, amenable groups, groups with Kazhdan
property (T), lattices in SO(n, 1) (n > 3) or in SU(n, 1). On the other hand, the class of groups whose
Cayley graphs don’t belong to Opp contains the non-cyclic free groups, the fundamental groups of
surfaces of genus g > 2, the free products of infinite groups, and the amalgamated free products over
an amenable group of groups in that class. Look at the very informative paper by Bekka-Valette
B | and F. Martin’s thesis [Mar0J] for further interpretations in cohomological terms.

P. Soardi [S0a9]] has proved that belonging to Ogp is invariant under a certain kind of “pertur-
bation” of G, namely quasi-isometry or rough isometry. Bernoulli bond percolation clusters may also
be considered as perturbations of G. I. Benjamini, R. Lyons and O. Schramm addressed the analogous

invariance problem? in B 9], by taking a stand only in one case:

Question 1.10 Let G be a Cayley graph, and suppose that G € Ogp. Let w be Bernoulli
percolation on G in the uniqueness phase. Does it follow that a.s. the infinite cluster of w
is in Ogp”?

Conjecture 1.11 Let G be a Cayley graph, G ¢ Opp. Then a.s. all infinite clusters of
p-Bernoulli percolation are not in Oyp.

They proved this for p sufficiently large:

Theorem 1.12 [BLS9Y] If a Cayley graph G is not in Oup, then there exists a py < 1,
such that every infinite cluster of pp-a.e. subgraph is not in Oup, for every p > po.

On the other hand,

Theorem 1.9 [BLS9]] If G is a Cayley graph of an amenable'® group, then every cluster
of pp-a.e. subgraph is in OHp.

The main goal of this paper is to complete these results and prove the following:

Theorem 0.1 (Theorem [I.4) Let G be a Cayley graph of a finitely generated group. Consider Bernoul-
li percolation in the uniqueness phase. Then i, a.s. the infinite cluster wo, of w satisfies:

Weo has no harmonic Dirichlet functions besides the constants if and only if G has no harmonic
Dirichlet functions besides the constants: i, a.s.

Woo € Ogp <— G € Oup

9Observe that for p, < p < 1, the infinite clusters are u, a.s. not quasi-isometric to G. They contain for instance
arbitrarily long arcs without branch points (by deletion tolerance !).
Ythus G is in Oup
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This answers question 1.10 and settles conjecture 1.11 of [BLS99Y]. Together with their Corollary 4.7
about the nonuniqueness phase, this theorem allows to complete the picture for Cayley graphs:

Corollary 0.2 Let G a Cayley graph of a finitely generated group.

e IfG isnotin Oup (i-e. 31(T) #0), then a.s. ! the infinite clusters of Bernoulli bond percolation
(for both nonuniqueness and uniqueness phases) are not in Ogp.

e IfG isin Ogp (i.e. 1(I') = 0), then a.s.'' the infinite clusters of Bernoulli bond percolation
are
- not in Oup in the nonuniqueness phase
—in Ogp in the uniqueness phase.

Since percolation at p. belongs to the finite phase for nonamenable Cayley graphs, it turns out that
every po > p. suits in Th. 1.12 of [BLS99 recalled above, while py = p. doesn’t.

In the course of the proof, a crucial use is made of the notion of (first) L2-Betti numbers for
measured equivalence relations, introduced in [Gab0J]. We consider two standard equivalence relations
with countable classes associated with our situation: the full equivalence relation R™ and the
cluster equivalence relation R°. They are defined concretely or also more geometrically (see
Section [[.] and [[.3) in terms of two laminated spaces £ and £, constructed from Q x G after taking
the quotient under the diagonal I'-action and removing certain edges. Their laminated structure comes
from the fact that these spaces are equipped with a measurable partition into leaves, corresponding
to the decomposition of €2 x G into the graphs {w} x G ~G.

One shows (Section [f]) that the first L2-Betti number of such an equivalence relation, generated by
such a 1-dimensional lamination (in fact generated by a graphing in the sense of [Lev9d, [Gab0(] or
Section [ or example f.] below), vanishes if and only if the leaf of almost every point in the transversal
is a graph without harmonic Dirichlet functions, besides the constants:

Theorem 0.3 (Corollary [6-4) Let R be a measure-preserving equivalence relation on the standard
Borel probability measure space (X, ). Let ® be a graphing generating R. If the graph ®[z] associated
with x € X has p a.s. bounded degree'?, then 31(R, 1) = 0 if and only if p a.s. HD(®[z]) = C.

Now the triviality of the first L?-Betti number of an equivalence relation is invariant when taking
a restriction to a Borel subset that meets almost every equivalence class [[Gab03, Cor. 5.5]. Denote
by U the subset of w’s with a unique infinite cluster and such that the base point p belongs to that
cluster. In the uniqueness phase, U meets almost every Rf%-equivalence class and the restrictions of
R and RY to U define the same equivalence relation. And Theorem 0 follows.

Invariant bond percolation on a locally finite graph G, for a group H of automorphisms of G, is
also considered in a more general setting than just Cayley graphs. For the invariance property of the
measure to be of any use, the group has to be big enough. The standard hypothesis is that H is
transitive or at least quasi-transitive (there is only one, resp. only finitely many orbits of vertices).

When closed in all automorphisms of G, the group H is locally compact and equipped with a
unique (up to multiplication by a constant) left invariant Haar measure. If that measure is also right
invariant, then H is called unimodular. A graph with a unimodular quasi-transitive group H, is

"every infinite cluster for u,-almost every subgraph w € {0, 1}F
123 bound on the number of neighbors of each vertex
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called itself unimodular. The unimodularity assumption is a quite common hypothesis in invariant
percolation theory, where it is used in order to apply a simple form of the mass-transport principle
(see for example [B 4, sect. 3] and Section P.3).

The same unimodularity assumption appears here, for a related reason: in order to ensure that a

certain equivalence relation preserves the measure (see Section P.J). We obtain the following general-
ization '3 of Theorem P.1]:

Theorem 0.4 Let G be a locally finite graph, H a closed transitive unimodular group of automor-
phisms of G and P any H-invariant percolation. On the Borel subset of subgraphs with finitely many
infinite clusters, P-almost surely the infinite clusters belong (resp. do not belong) to Oup if and only
if G belongs (resp. doesn’t belong) to Oup .

The clusters of this theorem satisfy the more general property (to be introduced in Section B.2) of
being (virtually) selectable and the proof is given in that context (Section [, Theorem B.9).

The most studied invariant percolation, beyond Bernoulli, is probably the Random-Cluster
Model. It was introduced by C. Fortuin and P. Kasteleyn [FK72] in relation with Ising and Potts
models as explained for instance in [HJL024), Prop. 2.3 and 2.4].

It is a (non-independent) percolation process, governed by two parameters 14, e [0,1] and ¢q €
[1,00]. It is defined through a limit procedure by considering an exhaustion G,, of G by finite subgraphs,
and on the set of subgraphs of G,,, this measure only differs from the Bernoulli(p) product measure
by the introduction of a weight (g to the power the number of clusters). However, the count of this
number of clusters is influenced by the boundary conditions. This leads to two particular incarnations
of the Random-Cluster model: WRC,, , and FRC, , according to the Wired (the boundary points are all
connected from the exterior) or Free (there is no outside connection between the boundary points)
boundary conditions . These invariant bond percolations both exhibit phase transitions, for each
q, similar to that of Bernoulli percolation, leading to critical values p.(q) and p,(q) (denoted more
precisely by p¥(q), p¥(q) and pE(q), pf(q) in case the boundary conditions have to be emphasized).
They “degenerate” to Bernoulli percolation when ¢ = 1.

The reader is invited to consult the papers [HJLO02a|, HJLO2H] of O. Haggstrom, J. Jonasson and
R. Lyons, for most of the results relevant for this paper and for details and further references.

The above Theorem [0.4 obviously specializes to:

Corollary 0.5 Let G be a locally finite graph admitting a transitive unimodular group of automor-
phisms. Consider the Random-Cluster model RC, , = WRC,, , or FRC, , in the uniqueness phase. Then
RC,, a.s. the infinite cluster admits non- (resp. only) constant harmonic Dirichlet functions if and
only if G admits non- (resp. only) constant harmonic Dirichlet functions.

3Compare with [BLS99] where Theorem 5.7 extends Theorem 1.12 (recalled above) to the more general setting of a
unimodular transitive graph, and for much more general percolations than Bernoulli percolation.

4The temperature, T in Ising or Potts models is linked with the parameter p of the Random-Cluster model by
p=1-— e~ 7. The parameter ¢, taken to be ¢ = 2 in the Ising Model, resp. ¢ € N in the Potts Model, may assume any
value in [1, 00) for the Random-Cluster model. For example, the (free) Gibbs distribution FPt1 of the Potts model
on {0,1}" is obtained from FRC, , by choosing a subgraph w € {0, 1}* according to FRCp 4 and then choosing a color in
{1,2,---,q} uniformly and independently on the vertices of each cluster.
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0.2 On the nonuniqueness Phase

One of the most famous conjectures in the subject is probably Conjecture 6 of Benjamini and Schramm

BS94]:

The nonuniqueness phase always exists'® for Cayley graphs G of nonamenable groups.
and more generally

If the quasi-transitive graph G has positive Cheeger constant, then p.(G) < pu(G).

I. Pak and T. Smirnova-Nagnibeda [PSNO(] proved that each finitely generated nonamenable group
admits a Cayley graph for which p. < p,. On the other hand, the groups with cost strictly bigger
than 1 (see [Gab0(] or Section [ below, item “cost”) are the only ones for which it is known that
pe # py for every Cayley graph (R. Lyons [Lyo0(]). This class of Cayley graphs contains all those
outside Ogp (see Th. p.1 and [Gab03, Cor. 3.23]), but it is unknown whether the reverse inclusion
holds.

We are able, using our £? methods, to extend Lyons’ result to the unimodular setting and to make
some progress for Random-Cluster model. Our treatment doesn’t make use of the continuity of the
probability that p belongs to an infinite cluster, but only of the expected degree. We show:

Theorem 0.6 (Cor. [[.]) Let G be a unimodular transitive locally finite graph. If G doesn’t belong to
Oup, then the nonuniqueness phase interval of Bernoulli percolation has non-empty interior:

Pe(G) < pu(G)

In fact, to each unimodular transitive locally finite graph G, we associate (see def. R.10]) a numerical
invariant (1(G), which can be interpreted as the first £2 betti number of any closed transitive group
of automorphisms of G. It vanishes if and only if G belongs to Oup. In case G is a Cayley graph of a
group I, then 1(G) = (1(I"). A transitive tree of degree d has 31(G) = % — 1.

For Bernoulli percolation, we get the more precise estimate, where deg(G) denotes the degree of a
(any) vertex of G:

0 < 1(9) < 5de8(@)(pu(G) — ().

Observe that deg(G) p is the expected degree p,[deg(p)] of a base point p with respect to the Bernoulli
measure of parameter p. This inequalities appear as Corollary [L.H of a quite general result (Th. [£.)
which applies to more general percolations, like the free or the wired Random-Cluster model, RC,, ; =
WRCp, 4 or FRCy 4:

Theorem 0.7 Cor. [[.7) Let G be a unimodular transitive locally finite graph, not in Oup. Fiz the
parameter q € [1,00). The gap between the left limit (when p /" p.(q)) and the right limit (when
P\, pu) of the expected degree of a base point p with respect to the measure RCp, 4 satisfies:

0 51(G) < 5 (RCy 4 ldes(p)] — Ry, g [dea(p)]).

Indeed the function p — FRCpg[deg(p)] := [fo13e deg(p)(w)dFRCpq(w) is left continuous while p —
WRC,, 4[deg(p)] is right continuous in p, but the possible remaining discontinuity doesn’t allow to con-
clude in general that p.(q) < pu(q).

15

i.e. pe(G) < pu(G) for Bernoulli percolation
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0.3 About Higher Dimensional Invariants and Treeablility

Higher dimensional ¢? Betti numbers are also relevant in percolation theory. Y. Peres and R. Pemantle
[PPOQ] introduced the percolation theoretic notion of countable treeable groups. They are groups I
for which the space of trees with vertex set I' admits a I'-invariant probability measure. They proved
that nonamenable direct products are not treeable. It is not hard to show that being treeable is
equivalent to being not anti-treeable in the sense of [[Gab0(, Déf. VI.1] or to having ergodic dimension
1 in the sense of [[Gab032, Déf. 6.4].

Similarly, R. Lyons introduced the notion of almost treeable groups: They are groups for which
the space of forests with vertex set I" admits a sequence (Py,),ecn of I'-invariant probability measures
with the property that for each pair of vertices, the probability that they belong to the same connected
component of the forest tends to 1 as n tends to infinity: Vy1,72 € T, limy, oo Pp(y1 < 72) = 1.
Clearly treeable implies almost treeable.

It is not hard to show that I is almost treeable if and only if it has approzimate ergodic dimension
1; where the approximate ergodic dimension of I is the minimum of the approximate dimensions
of the equivalence relations produced by a free p.m.p. action of I" on a standard Borel space (see
[Gab032, Déf. 5.15]).

The next theorem follows from [[Gab03, Cor. 5.13, Prop. 5.16, Prop. 6.10] and imposes serious
restrictions for a group to be treeable or almost treeable. In particular, lattices in SO(n,1) are
treeable if and only if n < 2. Also direct products I'y x I's are not almost treeable as soon as I'y and
I's contain a copy of the free group Fo. This answer questions of R. Lyons and Y. Peres (personal
communication).

Theorem 0.8 IfT is treeable in the sense of [PP0Q], then 31(T) = 0 if and only if T is amenable. If
T is almost treeable, then its higher ¢? Betti numbers all vanish: B,(A) = 0 for every n > 2.

Warning for the reader Theorem is clearly a specialization of Theorem [.4 However, for
the convenience of the reader mainly interested in Cayley graphs and also to serve as a warm-up
for the more technical general case, we present first a separate proof of Theorem .1 (Section i,
Subsection and Th. [[.F), while Theorem 0.4 is proved in Section B.J. A necessary consequence
is a certain number of repetitions. Section [ is devoted to the proof of Theorems [0.7 and D.6. Some
notions related to equivalence relations are recalled in Section [j. Theorem .3 is used at several places.
It is proved as Corollary .6 (see also Remark [.7). But the sections [ and | are quite technical, and I
put it back until the end of the paper. It may be a good advice to skip them and to keep Theorem [.5
and Corollary 6.4 as “black boxes” for a first reading.
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Bruno Sévennec for many valuable discussions, and especially Vincent Beffara who helped me to
understand several references. I am particularly grateful to Russell Lyons who explained to me many
entertaining and impressive results in graph percolation theory, as well as some connections with my
previous work on cost of equivalence relations, and who suggested that the notion of £2 Betti numbers
of equivalence relations could be relevant for question 1.10 and conjecture 1.11 of [BLS99]. Thanks
also for his careful proofreading.
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1 Percolation on Cayley Graphs

Let G = (V,E) be a Cayley graph of a finitely generated group I'. Let p be a base vertex, for example
the vertex representing the identity element of I'. The group I' acts freely on the set E of edges and
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freely transitively on the set V of vertices.

The space €2 := {0, 1} is the space of colorings (assignment of a number) of the edges of G with
two colors (0 and 1) of G. A point w € Q is also the characteristic function of a subset of E. When
viewed as a subgraph of G it is denoted by w(G). It then has the same set of vertices V as G and for
edges the set of retained or open edges: those edges e € E with color w(e) = 1. It has the same base
vertex p as G. The cluster w(v) of a vertex v is its connected component in w(G). The action ¢ of T
on E induces an action on the space €2 of colorings.

Let (X, u) be a standard Borel probability space together with
e a probability measure-preserving (p.m.p.) action of I, which is (essentially) free !”, and
e a I-equivariant Borel map 7 : X — {0, 1}E.

The push-forward measure 7, is a I'-invariant bond percolation on G.

1.1 The Full Equivalence Relation

Consider now the space X x G with the diagonal action of I'. It is a “laminated space”, with leaves
{z} x G.

Dividing out by the diagonal action of T', one gets the laminated space £ = I'\(X x G): the
full lamination. It is a (huge, highly disconnected) graph with vertex set I'\(X x V) and edge set
I'\(X x E). A leaf is a connected component of this graph.

— Because of the freeness of the T'-action on V, the image X*® in £ of the space X x {p} is an
embedding, leading to a natural identification of X with X*°.
— Because of the transitivity on V of the I'-action, X*® equals I'\(X x V).

X = X*=T\(X xV)
r — (x,p)~ (yz,7p)

Let’s denote by p® the push-forward of the measure p to X*.

With the (any) choice of p, the set V identifies with I" and the left action of I" on itself by multipli-
cation by the inverse on the right induces on X® =T'\(X x V) ~T'\(X x I') a u®-preserving I'-action,
isomorphic to the original one on X. With p < 1 and yp < 7 one gets yoy1(z,1) := (z, 19 195 1) =
(@71 172 1) ~ (ymi (), 1)

— Because of the freeness of the I'-action on X, the leaf of p®-almost every z* € X*® is isomorphic to

G.

Definition 1.1 Define the full equivalence relation R™ on X* by x*RMy® if and only if z* and
y® are vertices of the same LM-leaf.

It is isomorphic with that given by the I'-action on X and preserves the measure.

R Two points x,y are RM-equivalent if and only if there is v € T' such that yx = y.

YFor v € I W' =~ w if and only if w'(e) = w(y 'e) for every edge e € E.
"the Borel set of points 2 € X with non-trivial stabilizer have y-measure 0
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Example 1.2 Let G = L be the standard Cayley graph of Z: the simplicial line. Take p as the point 0
of the line. The product space X x L is a kind of cylinder laminated by lines. A fundamental domain
for the diagonal Z-action on X x L is given by X x[0,1). Denote by t the automorphism of X given by
the generator 1 of Z. The quotient space Z\(X x L) identifies with the usual suspension or mapping
torus construction (w,0) ~ (tw, 1)\(X x [0,1]) obtained from X x [0,1] (laminated by {w} x [0,1]) by
gluing together the top and bottom levels X x {0} and X x {1} after twisting by t. The gluing scar is
the transversal X°.

1.2 The Cluster Equivalence Relation

Now, thanks to the map 7 : X — {0,1}E, the field of graphs z — {z} x G becomes a I'-equivariant
field of colored graphs x — 7(x). Each leaf of £ becomes a colored graph.

By removing all the O-colored edges, one defines a subspace £ of £M: the cluster lamination.
A leaf of L% is a connected component of 1-colored (or retained) edges.

Definition 1.3 Define the cluster equivalence relation RY on X* by x*R%y® if and only if x*
and y* are vertices of the same L-leaf. It is a subrelation of R™.

For p-almost every x € X, the leaf of z* is isomorphic to the cluster G, := m(x)(p) of the vertex p
in the subgraph 7(z) of G. Thus the R%-class of z*® is infinite if and only if the corresponding cluster
7(x)(p) is infinite. For each x* € X*, the family of R-classes into which its R-class decomposes
is in natural bijection with the clusters of 7(z). The R -class of z® contains n infinite R-classes iff
m(x) has n infinite clusters.

Let e = [p,7 'p] be an edge with end point p. Once descended in L™, the edge {z} x e =
[(z,p), (z,7p)] is retained in £ iff 7(x)(e) = 1. In this case, the vertices p, v 'p are in the same
—_——

~(vyz,p)
cluster of 7(z), while z, vz are R-equivalent. More generally:

R Two points x,y are R -equivalent if and only if there is v € T such that y& =y and
the vertices p,y~'p are in the same cluster of w(x).

It may be relevant to emphasize the role of 7 and include it in the notation: RS

Example (continued) The edges are divided into the positive ones and the negative one according
to their position with respect to p = 0. The R -equivalence class of x € X consists of the iterates t*(x)
fork € {—i,—i+1,---,0,1,2,--- ,5 — 1,5}, where j and i are the number of negative and positive
edges colored 1 in 7(x), starting from p:

negative edges positive edges
m(x)=(--,0,1,1,1,--- ,1,1,1,1,--- ;1,0,--).
J times ¢ times

From now on, and until the end of Section [ we won’t distinguish between (X, 1) and (X*, p®).

The uniqueness set U is the Borel subset of points w of € such that w has a unique infinite
cluster and such that p belongs to it. The uniqueness set U™ of 7 is the Borel subset of points of
X such that m(x) belongs to U.

Proposition 1.4 When restricted to the uniqueness set U™ the two equivalence relations R and R
do coincide.
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The point here is the selectability of the infinite cluster (see Subsection B.3 devoted to that subject).

PROOF: Let x,y be two Rf"-equivalent points of U”. Since 7(z) contains only one infinite cluster,
the Rf"-class of x contains only one infinite R-class. The R%-equivalence classes of z and y being
both infinite, they coincide. |

1.3 Examples
1.3.a Trivial Example

Apply the above construction to the particular constant map z /> G, sending every point z to the full
graph G (w =1, i.e. m(x)(e) = 1 for every x € X and e € E, which is fixed by the whole of I'). In this
case, almost every G, is just G, the uniqueness set U™ equals X and R = R

1.3.b Bernoulli Percolation

The main example is given by X = {0,1}F itself, # = id and p = p, the Bernoulli measure with
survival parameter p, i.e. u, is the product of the measures giving weights 1 — p,p to 0,1. The
I"-action is essentially free for p £ 0 or 1.

Stricto sensu, this example is just what is needed for the statement of Theorem P.]. However, it
is useful to introduce more objects in order to better distinguish between the various roles played by
the space ().

The parameter p belongs to the uniqueness phase if and only if j,-almost every graph in 2 has
a unique infinite cluster. In this phase, the uniqueness set U has non-zero pu,-measure and is p,-a.s.
the union of the infinite R-classes. The restrictions of R™ and R to U coincide (Proposition [[4).
Theorem P.J of the introduction will thus be a corollary of Theorem [[.§ for p < 1 and is trivial for

p=1

1.3.c Actions Made Free

If one is considering a percolation for which the I'-action is not free, one can switch to a free action
by taking any free probability measure-preserving I'-action on a space (Y,v), and replacing 2 by
its product with Y, equipped with the product measure and the measure-preserving diagonal action
of T', together with the natural T'-equivariant projection 7 : X = Q x Y — Q. General (non-free)
percolations are thus treated together in the same framework.

1.3.d Standard Coupling

The standard coupling is a very useful way to put all the Bernoulli measures p,, together and to vary
the map 7 instead of changing the measure on {2 with the parameter p.

Let X = [0,1]F be the product space with the product measure p of Lebesgue measures on the
intervals [0,1]. An element of X gives a colored graph: a coloring of the graph G, with [0,1] as
set of colors. For each p € [0,1], let m, be the I'-equivariant map sending [0, 1]-colored graphs to
{0, 1}-colored ones by retaining only the edges colored in [0, p|:

0,1* — {0,1}"

Tp v o m(a) {Wp(x)(e) =1 ifz(e) €[0,p]

mp(z)(e) =0 if z(e) € (p,1]
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Clearly, m, pushes the measure p to p,. For each value of p, one gets the cluster equivalence relation
RIC,I, also defined as follows:

7?,;1: Two [0, 1]-colored graphs x,y are R;l—equivalent if and only if there is v € I' such
that yx = y and the vertices p,y ' p are connected in the colored graph = by a path
of edges with colors < p.

This gives an intuitive picture of the cluster evolution as p varies: The family (R;l)pe[o,l] is strictly
increasing. Moreover for every p, 7?,;1 = Ut<p7?,§l and R§! = R, The critical value p. is characterized
as the supremum of those p for which the R;l—classes are finite (p-a.s.), as well as the infimum of
p such that 7?,;1 admits a p-non-null set of points with infinite classes. Much less obvious is the
similar characterization of p,, obtained by O. Haggstrom and Y. Peres, who showed that after p.,
there is no spontaneous generation of infinite clusters, all infinite clusters are born simultaneously: If
pe < p < q, then p-a.s. every infinite Rgl—class contains an infinite R;l—class [HP99]. This explains
that the uniqueness phase is an interval.

pe := inf{p: there is a unique infinite cluster for p,}
= sup{p : there is not a unique infinite cluster for s}

1.3.e Site Percolation

An invariant site percolation on G is a probability measure P on the space {0,1}V that is invariant
under a certain group of automorphisms of G. To a site percolation corresponds a bond percolation
by the equivariant map 7 : {0,1}V — {0, 1}F sending a coloring of the vertices V to the coloring of the
edges E where an edge gets color 1 if and only if both its endpoints are colored 1.

1.3.f Graphings
Let (71,72, -+ ,7n) be the generating system defining the Cayley graph G and e; be the edge [p, y;p].

If 7(x)(e;) = 1, the vertices p,y;p are in the same cluster of 7(z), and x,v; ‘= are R%-equivalent.
Define the Borel set A; := {x € X : n(z)(e;) = 1} and the partial Borel isomorphism ¢; = ’yi_}‘_, the
restriction of ;! to A;. The family ® = (1, @2, , ) is a graphing (in the sense of [Lev9d,
— see also Section []) that generates R®: the latter is the smallest equivalence relation such that
z ~ @;(x), for every € A;. For instance, in the above standard coupling (ex. [[.3.d), the cluster
equivalence relation RIC,I is generated by the graphing ®, = (¢!, b, -+, ¥b), where ¢! is the restriction
of vt to AV := {x € [0,1]F : 2(e;) < p}.

Conversely, given a free p.m.p. I'-action on (X, u), consider n Borel subsets A;, partial isomor-
phisms ¢; = %’_\/11,” the graphing ® = (1, 9, -+ ,¢,) and the generated equivalence relation Rg. The
coloring m(z)(e;) = 1 iff = belongs to A; extends by I'-equivariance to a map 7 : X — {0,1}F whose
cluster equivalence relation R coincides with Re.

1.4 Harmonic Dirichlet Functions and Clusters for Cayley Graphs

We are now able to state the main result of this section. Recall that we have at hand: (1) A locally
finite graph G = (V,E) with a free action of a countable group I', transitive on V; (2) A standard
probability measure space (X, ) with a free measure-preserving I'-action, and with a I'-equivariant
map 7 : X — {0,1}%; (3) The two associated cluster (R®) and full (Rf") equivalence relations.
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Theorem 1.5 For p-a.e. x in the uniqueness set U™, the cluster G, of the vertex p in the colored
graph m(x) belongs to Oup if and only if G belongs to Oup.

For the purpose of proving this result, very little has to be known about the L2-Betti numbers
of equivalence relations. Just assume the following “black box”, which will be further developed in
Section [f. The reader feeling more comfortable with the notion of cost may think at first glance that
B1(R) = cost(R) — 1 (see Section [i, item “cost”).

Fact 1. For each measurably defined subrelation R of R on a non-null Borel subset Y of X, there
is a well-defined notion of first L2-Betti number 31(R, py ), where py denotes the normalized

restricted measure % ([Gab02)). In particular, B (R™, u), ﬁl(Rfﬁ,,uy) and [ (RS ‘Y, wy) are
well defined.

Fact 2. If Y meets almost every RfU-classes, then 8y (R, p) = u(Y)B1( 7?,|Y,,uy ) [Gab0g, Cor. 5.5].

Fact 3. The first L?-Betti number 3; (Rfﬁl/, py) of 7?%/ vanishes if and only if for py-almost every y € Y,
the graph G, belongs to Ogp (Theorem [.3).

Remark. However, when Y is R%-saturated (the R-class of every y € Y is entirely contained in
Y'), these numbers are “easily explicitly defined”: consider the space HD(G,) of harmonic Dirichlet
functions on G, := 7(z)(p). Its image dHD(G,) by the coboundary operator d in the [*-cochains
0(12)(%) is a closed subspace of C’(lz) (G) (every edge outside G, is orthogonal to it), isomorphic to
HD(G,)/C. Denote by p, : C(IQ) (G) — dHD(G,) the orthogonal projection and, for each edge e € E,
denote by 1. the characteristic function of the edge e. Let e, ea,- -+ , e, be a set of orbit representatives
for the I'-action on E.

Proposition 1.6 Let Y be a non-null R-saturated Borel subset of X. The first L?-Betti number of
the restricted equivalence relation 7?,%, on (Y, py) equals

o) (R|Y7MY Z/ py(Le,)|Le,)dp(y).

To prove this, we essentially use Theorem [.5 stating that 3; (R%/, wy) = dimR%/ Jy d(HD(Gy)) dpy (y)
and then the definition of the dimension (see [Gab03, Prop. 3.2 (2)]). See also Proposition R.7.

PROOF: (of Theorem [[.J) If U™ is a p-null set, the theorem is empty. Up to replacing X by the
union of the I'-orbits meeting U™, one may assume that U™ meets every R"-class of X. The following
are then equivalent:

1. Gisin Oup

2. By (R, ) =0

8. Bu(RYe, ) = 0
4. Bu(RYe s ) = 0

5. for p-almost every x € U™, the graph G, is in Oup
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The equivalence [l <= B follows from fact 3 (i.e. Theorem D.J) applied to the m; of the trivial
example [.3.4, since in this case X =Y, R = RM and almost every G, equals G.

The equivalence f| <= [ follows from fact 2.

By Proposition [[4, R|CU” = R‘fgﬂ The key point of the proof is that from [Gab02] these numbers
depend only on the equivalence relation: one gets ] <= [. Again, fact 3 shows the equivalence
< [, after noticing that p and the normalized measure pug~ are equivalent on U™.

It remains to move the quantifier (u-almost every = € U™) outside the equivalence ] <= [ Let
Y C U™ be the Borel subset of points such that the graph G, is in Ogp. If Y is non-null, then the
argument applied to Y shows that G belongs to Opp and thus Y = U™ a.s. This implies that in case
G does not belong to Ogp, then for pu-almost every x € U™, the graph G, is not in Oyp. |

Remark 1.7 Observe that the freeness of the I'-action on X is a hypothesis made to simplify some
arguments (7 is the unique element of the group sending x to yx) and to apply more directly results from
Gab03]. However, thanks to the example [1.3.4, the above Theorem [I.§ admits a natural generalization
without 4t.

2 Percolation on Transitive Graphs

Let G = (V,E) be a locally finite transitive '® graph. Let Aut(G) be the automorphism group of G
with the topology of pointwise convergence. Let H be a closed subgroup of Aut(G). We assume that
H acts transitively on the set V of vertices. It is locally compact and the stabilizer of each vertex is
compact. Let p be a base vertex and denote by K, its stabilizer.

The action of H on E induces an action on the space Q = {0,1}F of colorings: ' = h - w if and
only if w'(e) = w(h™!e) for every h € H and edge e € E.

Let (X, u) be a standard Borel probability space together with
e a probability measure-preserving (p.m.p.) action of H, which is essentially free !, and
e an H-equivariant Borel map 7 : X — {0, 1}E.

The push-forward measure m,u is an H-invariant bond percolation on G.

2.1 The Full Equivalence Relation

Consider now the space X x G with the diagonal action of H. It is an H-equivariant field of graphs
above X, all isomorphic to G: = +— {z} x G. It is also a “laminated space”, with leaves {x} x G.
Dividing out by the diagonal action of H, one gets the laminated space £ = H\(X x G): the
full lamination. It is a (huge, highly disconnected) graph with vertex set H\(X x V) and edge set
H\(X x E). A leaf is a connected component of this graph.
Denote by X* the image in £ of the space X x {p}. Because of the transitivity on V of the
H-action, X x {p} meets every H-orbit of X x V, so that X* equals H\(X x V):

X ~Xx{pl — X*=H\(XxV) W
z — (z,p) ~ (hz, hp)

18The quasi-transitive case is very similar and we restrict our attention to the transitive one only to avoid an excess
of technicality.
the Borel set of points 2 € X with non-trivial stabilizer have y-measure 0
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In particular, two points of X x {p} happen to be identified in X*, i.e. (x,p) ~ (hz,p), if and only
if h belongs to K,. Thanks to the compactness of the stabilizer K, of p, the space X*® gets naturally
the structure of a standard Borel space (see Proposition .4, Section P.J).

X*=H\(X xV) ~ K\X
(ha,hyp) — Ky 'z
Denote by p® the push-forward of the measure p to X°®. Because of the freeness of the H-action on
X, the leaf of p®-almost every x® € X*® is isomorphic to G.

Define the full equivalence relation R on X*® by 2*Ry*® if and only if 2* and y® are vertices
of the same £M-leaf.

R Two points z°,y* are RM-equivalent if and only if they admit two representatives in
X x V with the same first coordinate, iff they admit two representatives x,y in X
for which there exists h € H such that hx = vy, iff any of their representatives are
in the same H-orbit.

It inherits naturally an unoriented graphing and a smooth field of graphs (see Section [], and
examples p.J, -3 of Section ) from the edge set H\(X X E), where the graph associated with each
point admits an isomorphism with G, canonical up to “rotation around p”, i.e. up to the action of the
stabilizer K, of p.

Theorem 2.1 The equivalence relation R™ preserves the measure u® if and only if the group H is
unimodular.

This result is just an application of Theorem P.J below. It sheds another light on the unimodularity
assumption and on the Mass Transport Principle (see the proof of Theorem P.5).

Example 2.2 The simplest example of the graph G made of a single infinite line is quite eloquent,
with H = Aut(G) ~ Z/2Zx Z. The compact subgroup K, = Z/27Z is finite and X*® = (Z/2Z)\X . If the
H-action on X is ergodic, then the lamination L™ is not orientable, so that the associated unoriented
graphing cannot be made (measurably) oriented.

2.2 The Cluster Equivalence Relation

Now, thanks to the map m : X — {0,1}F, the field of graphs z — {x} x G becomes an H-equivariant
field of colored graphs x — 7(x) so that each leaf of £ becomes a colored graph.

By removing all the O-colored edges, one defines a subspace £ of £M: the cluster lamination.
A leaf of £ is a connected component of 1-colored (or retained) edges.

Define the cluster equivalence relation R on X°® by z*R%y® if and only if z* and y* are
vertices of the same £¢-leaf. It is a subrelation of RM.

The leaf of p®-almost every z°® is a graph Eiu. which admits an isomorphism with the cluster
G, = m(x)(p) of the vertex p in the subgraph m(x) of G for any representative = of z® (just observe
that since kp = p, for any k € K,, the clusters of p for # on the one hand and for kx on the other
hand are isomorphic: 7(kz)(p) = kn(x)(p)). Thus the R-class of z* is infinite if and only if the
corresponding clusters 7(x)(p) are infinite. For each z* € X*, the family of R-classes into which its
RMU-class decomposes is in bijection with the clusters of 7(x). The R-class of 2® contains n infinite
R¢-classes iff 7(x) has n infinite clusters.
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R Two points x°,y* are R -equivalent if and only if they admit two representatives in
X XV with the same first coordinate x and second coordinates in the same connected
component of w(x), iff they admit two representatives x,y in X for which there exists
h € H such that hx =y and the vertices p,h~'p are in the same cluster of w(x).

Let’s check by hand that the above characterization doesn’t depend on the choice of representatives.
This h defines an isomorphism between the cluster 7(x)(p) = 7(x)(h~'p) and w(hx)(hh™1p) = 7(y)(p).
If ki and koy are two other representatives, ki,ky € K, then k:ghkfl(klx) = koy (i.e. h has to be
replaced by kphky '), then kip = p and kyh~'p = kth~'ky 'p = (kohky')~'p are in the same cluster
of w(ky1(x)).

The equivalence relation R inherits naturally an unoriented graphing and a smooth field of graphs

(see Section [, and examples [6.1], B.3 of Section [).

Remark 2.3 Let Y* C X* be the union of the infinite R -classes. Assume the action of H on X
is ergodic. Then the invariant percolation w.u has indistinguishable infinite clusters in the sense of

[LS93, Sect. 3] if and only if the restriction RIC}l, is ergodic.

2.3 Measure Invariance, Unimodularity and the Mass-Transport Principle

Recall that a locally compact second countable group G admits a left-invariant Radon measure, its
Haar measure m, unique up to a multiplicative constant. Pushed forward by right-multiplication, the
measure is again left-invariant, and thus proportional to m. One gets a homomorphism mod : G — R* |
the modular map, which encodes the defect for m to be also right-invariant. In case the modular
map is trivial (mod(G) = {1}), i.e. m is also right-invariant, then the group G is called unimodular.

Let (X, p) be a standard Borel space with a probability measure and an essentially free measure-
preserving action of a locally compact second countable group G. Let K be a compact open subgroup
of GG. Restricted to K, the modular function is trivial.

Proposition 2.4 The space X = K\X is a standard Borel space. The quotient map X — K\X
admits a Borel section.

PRrOOF: The following argument has been explained to me by A. Kechris. Pushing forward the
normalized Haar measure m on K by the Borel map (for any fixed ) K — X, k — kx defines a
measure m, and thus a Borel map from X to the standard Borel space of probability measures on
X ([Kec9d, Th. 17.25]). But the right invariance of m on K shows?® that x and y are in the same
K-orbit iff m, = m,. The K-action is then smooth. It follows from [Kec93, Ex. 18.20] that the action
has a Borel selector. [ |

Let R be the reduced equivalence relation defined on X by Ry iff T and 7 admit G-equivalent
preimages. Let’s denote by fi the push-forward probability measure on X = K\X, or by fiy if one
wants to emphasize the choice of K. Section [] recalls the terminology for the next Theorem.

Theorem 2.5 The equivalence relation R on X is standard countable. It preserves the measure Ty
if and only if G is unimodular.

mpg(A) = m({k: kha € A}) = m{Kh™" : Kz € AY) =m({k : kx € A}) = ma(A)
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PROOF: It is obviously a Borel subset of X x X. The countability of the classes comes from that of
the set K\G.

The statement about unimodularity is quite natural once one realizes that the decomposition of u
relatively to @ makes use of the right invariant Haar measure on G. However, we will follow elementary
but enlightening facts leading by two ways to the result.

Recall (see Section [f) that R preserves fij if and only if the measures v; and v on the set
R C X x X coincide, defined with respect to the projections on the first (resp. second) coordinate

pri (vesp. pra) by v1(C) = [y #(C Npri*(@))dfig (x) and v5(C) = [ #(C Npry (y))dfix (3)-

Proof by hand: If K, K’ are compact open subgroups of GG, then K is made of unimodular elements
of G. The intersection K N K’ is a compact open subgroup of G. By a covering argument, its index
in K is finite: [K : KNK']:=#K/(KNK') = % For v € G, m(y ' Kv) = mod(y)m(K).
In particular, G is unimodular iff all the conjugates of K have the same Haar measure. Observe that
[K : yKy™ ' N K] = mod(y)[K : KNy 'K~ and that K and K’ as well as their Haar measures are
commensurable, so that the modular function on G is rational. The reduction map (K N K')\X —
K\X is a.s. [K : KN K']-to-one, and yields a disintegration of the push-forward measure fi g with
respect to i, with normalized counting measure in the fibers.

For v € G, consider the graph C, := {(z,7z) : z € X} and its image in R:

C,={=x7z) 2 € X} = {([K.a],[K~z]) : x € X}.

For every k € K, Cy = Ck,. Two points (z1,y1) and (x2,y2) of the “curve” C, define the same
point in C., iff there exist k,k’ € K such that 1 = kxo and o1 = y1 = K'yo = K'yaa, iff (since
by freeness of the action k = y~1k’y) there exists k € K N (y~'K~) such that 1 = kxa, y21 = 11
and yry = yo iff there exists k' € (yK~v~!) N K such that 21 = v ly;, 20 = 7 lyp and y1 = K'yo.
Thus, the preimage in C,, (not in X x X !) of a point in C, is of the form (for certain z and y):
{(kz,vkx) : k € (KN LKy} = {y YKy, k'y) : k' € (yKy~1 N K)}, so that

Cy~ (KNy tKy)\X or Cy~ (vKy ' nK)\X,

according to whether UV is parameterized by its first coordinate or its second coordinate. We have
thus proved the following:

Proposition 2.6 The projection of 67 C R to the first coordinate is [K : K Ny~ 'K~]-to-one. To
the second coordinate, it is [K : yK~~! N K]-to-one.

_ KoKy 'NK]

KRRy V1 = mod(y) v1.

It follows that the measures 1 and vy restricted to Uv satisfy 19

Proof by Mass-Transport Principle: Denote by W the countable discrete set G/K and observe
that X is isomorphic with the quotient G'\(X x W) (where the G-action is diagonal).

G\(XxW) ~ K\X=X
(97,97K) — Ky 'z

Denote by p the class K € G/K and by K, the stabilizer of v € W in the left multiplication G-action.
In particular, K, = K.

Two points Z; and Zy of X are R-equivalent iff they admit representatives in X x W with the same
first coordinate. One thus gets an identification of R with G\(X x W x W) (where the G-action is
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diagonal on the three coordinates), thanks to the two coordinate-forgetting projections (where Wy, Wo
are two copies of W):
G\(X x W) =
pr1 /‘
G\(X X W1 X Wg)

prz\ .
G\(X X Wg) =X

It becomes equivalent to consider a function F on R or a G-invariant function f on X x W x W.
Thus, for non-negative functions

n(F) = /Fﬂ:l,xg )dvy = / Z (Z1,Z2)di(Zy)

To~T1

= [ % fpwmdua)

v W

while

n(F) = [ 3 faenpdu)

viEW

On the other hand, the mass-transport principle below essentially gives the correcting terms for v
and 1o to coincide. In particular, unimodularity, equivalent to the coincidence of the Haar measures
m(K,,) = m(K,) for every vy, is equivalent to the preservation for R of the measure fi.

The mass-transport principle:

| X fapen) miK,) dute) = [ X f@vnp) ) duta),

v €W v eEW

where m is the Haar measure on G, is a useful device in invariant percolation theory. For details,
2

see [B a] where I took the following two-line proof, credited to W. Woess. Let f(v,v') :=
Jx f(x,v,v") du(z) denote the mean value.

> flpve) m(K,) = > Flp,va) m({g: gp = v2}) Z/Gf(p,gp) dm(g)

voeW v €W
Y. flon,pm(Ky) = Y flor,p)m({g : g1 = p}) :/ Flg™ p, p)dm(g)
v1EW veW R G
{g:97 p=v1}
And, the last terms are equal, thanks to the G-invariance of f and pu. |

2.4 Some computation

Assume that H is transitive and unimodular.

Recall that G, denotes, for z € X, the cluster of the vertex p in the subgraph m(x). Let p, : C(IQ)(Q) —
dHD(G,) be the orthogonal projection from the space of ¢? cochains of G to the image, under the
coboundary d, of HD(G,) in C(IQ)(Q). Denote by 1¢,, 1y, -+, 1e, € C(IQ)(Q) the characteristic functions
of the edges ey, eo, - , e, adjacent to the base point p.
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Proposition 2.7 Let Y* be a non-null R%-saturated Borel subset of X*®, and Y its preimage in X.
The first L?-Betti number of the restricted measure equivalence relation R%/. on (Y*, use) equals

B (R i) = Z [, ool dnto)

Here, p$. is of course the normalized restriction of p® to Y*. The % terms just reflects that, the
graph being transitive, each edge is counted twice: once per endpoint, while ﬁ is just designed to
normalize.

We use first Theorem [.J stating that (3; (R‘Cll/.,uy.) = dimRﬁV. Jye d(HD(Gys)) dpy-« (y*); second
the deﬁnition of the dimension (see 2, Prop. 3.2 (2)]): A measurable labeling (see Proposition P.4)

el,e5,--- ey of the edges adjacent to y* leads to measurable vector fields y® — 1.0 € 0(2 (Gye) that
define a famlly of fields of representative (in the sense of [[Gab0d]), except that each edge is represented
twice (the additionnal difficulty of a possible loop in G is dlsmlssed by the fact that it would give a
vector orthogonal to d(HD(Gye)). Third, we use the relation between the objects with and without a
e sign. |

Remark 2.8 In case Y* is not R -saturated, the families of fields of representative are more delicate
to describe. However, Corollary 5.5 of [Gab03], for induction on Borel subsets (see fact 2, Subsec-
tion [L.4), applied to Y* and its R -saturation leads to the same formula except that the domain of
integration is now the H-saturation HY of Y:

o) (R|Y°=MY Z/HY py(Le,)|Le,)du(y).

Observe that the quantity on the right in the above Proposition R.7 in fact only depends on the image
Qy :=7n(Y) in Q= {0,1}F

AR ti) = 5 Z [, elteltednpto)

Concerning the full equivalence relation, one gets,
Bi( Rfuuu Z/ px(1e,)|le,)dp(z).

But in the case of R, the projection p, doesn’t depend on z: it is just the projection
p: Cly(9) — dHD(G) ~ HD(G)/C.
It follows that

Proposition 2.9 For the full equivalence relation on X*°:
n
1

=52

=1

Bir(R™, u®) )e,)- (2)

l\.')lr—l
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Observe that this quantity doesn’t even depend on what happens on X nor on the choice of H, once
H is unimodular and transitive on the vertices: It is an invariant of the graph.

Definition 2.10 Call it the first /2 betti number of G and denote it

p1(G) = (P(Le;)1e;)- 3)

1

1 n
2
1=

It follows from Theorem P.J that 3;(G) = 0 if and only if G belongs to Oup.

3 Harmonic Dirichlet Functions and Clusters for Transitive Graphs

In this section, we give the proof of Theorem [.4 of the introduction by putting/proving it in the more
general context of selectability.

Recall that we have at hand: (1) A locally finite graph G = (V,E) with a transitive (on V) action of
a closed group H of automorphisms; (2) An H-invariant probability measure P on the set Q = {0, 1}F
of colorings of G.

3.1 The action made free

The H-action on €2 being not necessarily free, let’s consider a diagonal H-action on X = 2 x Z, where
Z is a standard Borel space with an essentially free probability measure-preserving action of H. An
example of such a Z is furnished by the Lemma B.9 below.

The diagonal action preserves the product measure p and is (essentially) free. The obvious pro-
jection m : X = Q x Z — () sends p to P and is H-equivariant, so that we are in the context of
Section P

Remark 3.1 We could probably avoid the detour by the freeness of the action by defining (> Betti
numbers for groupoids instead of just for equivalence relations, as suggested in [Gab03, p.103]. Notice
that such a study of ¢> Betti numbers for measured groupoids has been carried out by R. Sauer (see

[Sau03)), using Liick’s approach of ¢? theory.

Lemma 3.2 If H acts continuously?' faithfully on a discrete countable set V', then the diagonal action

of H on Q = ({07 1}V) is continuous, preserves the Bernoulli measure (product of equiprobabilities
on {0,1}), and is essentially free.

PRrROOF: Enumerate the elements of V: vy, v2,...,v,,... and denote by Qi,j the subset of points of
Q) that are fixed by an element of H which sends v; to v;. This subset satisfying infinitely many
equations: w(v;,l) = w(vj,l) for each coordinate I € N, has thus measure 0. The set of points w with
a non-trivial stabilizer is contained in the countable union of the Qi,j? it has measure zero. |

2IThe stabilizer of a point of V is a closed open subgroup of H.
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3.2 Selectability

Let G be a locally finite transitive graph and H a closed transitive subgroup of Aut(G). Equip {0,1}V
with the natural action of H induced by its action on V.

Definition 3.3 Let P be an H-invariant percolation on G. Let A be a closed subgroup of H.

A A-equivariant selected cluster on a A-invariant P-non-null Borel subset D C {0,1}F is a A-
equivariant measurable map ¢ : D — {0,1}V, such that c(w) is the (characteristic function of
the) vertex set of one cluster C'(w) of w.

A A-equivariant virtually selected cluster on a A-invariant P-non-null Borel subset D C {0,1}F
is a A-equivariant measurable map ¢ : D — {0,1}V such that c(w) is the (characteristic function
of the) vertex set of (the union of) finitely many clusters C1(w), Co(w), -+ , Cp(e)(w) of w.

Example 3.4 If almost every subgraph w has a unique infinite cluster, assigning to w this infinite
cluster defines an H -equivariant selected cluster. And similarly, if almost every subgraph w has finitely
many infinite clusters, assigning to w these infinite clusters defines an H -equivariant virtually selected
cluster.

Let (X, u) be a standard Borel probability space together with
e a probability measure-preserving (p.m.p.) action of H, which is free, and
e an H-equivariant Borel map (field of graphs) 7 : X — {0,1}F

so that our situation fits in the general context of Section .

Proposition 3.5 The following are equivalent:
(1) The invariant percolation .(p) admits a H-equivariant selected cluster,
(2) There is a non-null Borel subset T® of X* to which the restrictions of R and R coincide:
Rite = Ripe-

Moreover, T® can be taken to be the image in X°® of the set of those x € X whose selected cluster
contains the base point p.

PROOF: The selected cluster ¢ : {0,1}F — {0,1}V selects by composition by m one connected
component of the splitting of each £f-leaf into its £-components. The union of these selected leaves
intersects the transversal X*® along a Borel subset T'® which is characterized as the image in X*® of
the set of z € X such that the selected cluster ¢(m(x)) contains the base point p. Two R"-equivalent
points in T belong to the same £f-leaf and both belong to THE selected L£-leaf; they are thus
R-equivalent.

Conversely, if T* is a Borel subset of X*® to which the restrictions of Rf" and R coincide, then it
selects a L%-leaf in each L£M-leaf meeting T®. One can assume that T is R%-saturated (two points
that are Rf"-equivalent and R-equivalent to some point in T have to be R-equivalent). Let T be
the preimage of T in X x V. It is an H-invariant subset whose projection 7T in X is non-null and
whose intersection with each fiber TN {z} x V is a cluster of 7(z). This defines an H-equivariant
map ¢: T — {0,1}". Now the set TN (X x {p}) once projected in X corresponds to those z € T for
which ¢(x) is the cluster of the base point p. This shows that the cluster ¢(x) only depends on 7(x).
Moreover, 7(T") is non-null for the measure 7., so that the map ¢ induces an H-equivariant selected
cluster on 7(T") C {0,1}E. [ |
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Recall that a subrelation S has finite index in R if each R-class splits into finitely many S-classes.
The same kind of argument as above shows:

Proposition 3.6 The following are equivalent:
(1) The invariant percolation (1) admits a H-equivariant virtually selected cluster,
(2) There is a non-null Borel subset T® of X* to which the restriction of R has finite index in the
restriction of RM: [Rf%. : R‘C%F.] < 00.

Moreover, T® can be taken to be the image in X*® of the set of those x € X for which one of the
selected clusters contains the base point p.

Observe that if G is not a finite graph, then R has infinite classes and the H-equivariant virtually
selected clusters are (almost) all infinite.

Remark 3.7 The main result of [LS99] (indistinguishability of the infinite clusters) implies that
Bernoulli percolation in the nonuniqueness phase admits no H -equivariant virtually selected clusters.

Remark 3.8 Let A be a closed subgroup of H that contains the stabilizer K, of p. One can define
a notion of full A-equivalence relation 7?&1 C R and cluster A-equivalence relation: the intersection

RE = RINRY.

R&‘: Two points z°*,y* are Rfﬁ—equz’valent if and only if they admit two representatives x,y
in X for which there exists 6 € A such that éx =y, iff any of their representatives
are in the same A-orbit.

Similarly, for the cluster A-equivalence relation:

RZI: Two points x®,y* are Rﬂ-equivalent if and only if they admit two representatives
x,y in X for which there exists § € A such that Sz =y and the vertices p,0~'p are
in the same cluster of m(x).

In case G is the Cayley graph of a discrete group I' (ie. K, = {1} and X*® = X) then RY is
just the equivalence relation defined by the A-action on X, while Ri =RIN RfK is just defined by:
(z,y) € Ri iff there exists 6 € A such that 6z =y and the vertices p,6~!p are in the same cluster of
m(x).

Exactly along the same arguments as above, one can show that the following are equivalent:

(1) The invariant percolation .(u) admits a A-equivariant selected cluster,

(2) There is a non-null Borel subset T® of X*® to which the restrictions of Ra and RA coincide:
RfAu|T = Rim

And similarly, with finite index, for the virtual notion.

The lamination interpretation of these equivalence relations goes as follows:

Consider first the space X x G and divide out by A to get the laminated space Efg. Consider now
the transversal A\(X x Ap) C A\(X x V), which is naturally isomorphic with X*® = K,\X since A
contains K,, and the equivalence relation defined on it by “belonging to the same EfK—leaf”. This is
the full A-equivalence relation R € R and it appears as the image in X* = H\(X x V) of the
equivalence relation defined by the A-action on X. Just like in Section [, use now 7 to get a coloring
on the leaves. Define L& as the sub-laminated space where the 0-colored edges are removed and R4
as the subrelation of R induced on A\(X x Ap) by “belonging to the same £4-leaf”.
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3.3 Selected Clusters and Harmonic Dirichlet Functions

The connections between selected clusters and harmonic Dirichlet functions is very simple:

Theorem 3.9 Assume m,u admits an H -equivariant virtually selected cluster. Assume that the closed
subgroup H is unimodular. If G belongs to Oup, then p-a.e. virtually selected cluster belongs to Oup.
If G doesn’t belong to Oup, then w-a.e. virtually selected cluster doesn’t belong to Oup.

PRrROOF: Thanks to unimodularity, the associated equivalence relations R and R are measure-

preserving (Th. R.5).
Start with the case of a selected cluster. Denote by ¢ the H-equivariant selected cluster c :

{0,1}F - {0,1}V and C = com: X — {0,1}". Let T be the Borel subset of z € X where the selected
cluster C(x) contains p and let T'® be its image in X°.
The following are equivalent:

1. Gisin Oup

2. B(R™,1u*) =0

3. B1(Rife, 1%e) =0

4. ﬁl(RflT-,M%-) =0

5. for p®-almost every z* € T, the graph E;l. is in Oup

6. for p-almost every x € T', the selected cluster C'(z) is in Oup

z® —
<= [ When applied to the restriction of that field to T* (example .4), it gives ] <= B Observe
that the equivalence fl <= [ is also an application of [Gab03, Cor. 5.5]. Since £ is an invariant of the
equivalence relation, fj <= [ is deduced from the coincidence RTIT. = R‘f:‘;. (prop. @) Theorem p.3,
applied to the field of graphs z*® +— L, (example ) restricted to T, shows the equivalence f| <= [
Each £ being isomorphic to the cluster 7(x)(p) = C(x) of any of its representatives, and u® being
the push-forward of u, one deduces the last equivalence.

Let T" C T be the Borel subset of points such that the selected cluster is in Ogp. If T’ is non-null,
then the above arguments applied to 7" shows that G belongs to Ogp and thus 7" = T a.s. This
implies that in case G does not belong to Oup, then for p-almost every = € T, the selected cluster
C(z) is not in Oup.

Theorem .3 applied to the field of graphs z* — L4 ~ G (example .9) gives the equivalence

For the case of a virtually selected cluster, partition first 17" as [[ T, according to how many clusters
are selected. On T3 the R‘f:‘;.—classes decompose into n RTIT.—classes (prop. B.6). Then just replace the
argument in the proof of the equivalence fj <= || above by Proposition 5.11 of [Gab0d], asserting

that f1(Rfp.) = nfi(Rff.). |

4 nonuniqueness Phase and Harmonic Dirichlet Functions

This section is concerned with a comparison between two invariant percolations. Its main goal is to
prove Theorem .9, which implies both Theorem 0.§ (Corollary f.5) and Theorem P.7q (Corollary [£7)
of the introduction.
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Consider a unimodular transitive group H of automorphisms of G and two H-invariant percolations
w1 and po on G. Recall that given two H-invariant percolations on G, an H-equivariant coupling
is a p.m.p. H-action on a standard probability measure space (X, ) with two H-equivariant maps

(X, )
T / \7r2
({071}E7:U'1) ({071}E7M2)

pushing p to p; respectively, i.e. w1, = p1 and mo = po.
To m; and 73 correspond two laminations £§! and £§' (both sub-laminations of £™) with transversal
X* = K,\X and two cluster equivalence relations RS and RS (both subrelations of R™M).

Remark 4.1 An invariant coupling always exists since the product space with the product measure
and the diagonal action will do. In case the coupling witnesses a stochastic domination®® (see for
instance [HJL02d, sect. 2.2]), then R{ fits into RS: R$ € RY.

Theorem 4.2 Let G be a unimodular transitive locally finite graph that doesn’t belong to Oup. Let
H be a unimodular transitive group of automorphisms of G, let u1, o be two H-invariant percolations
and (X, p) be an H-invariant coupling. Assume that

1. py-a.e. cluster belongs to Oup,
2. my has an H-equivariant selected cluster defined on a non-null set??,

Then
0<B1(9) < % Z p(ma(e) =1 and m(e) # 1).

edges €
adjacent to p

Here, (41(G) is the invariant of the graph introduced in Definition R.10. It is strictly positive if and
only if G belongs to Oup.

The main ingredient in the proof of the theorem will be the following useful result. Here, graphing
may be understood as oriented or unoriented (see Section ff).

Theorem 4.3 Let Ry be a p.m.p. equivalence relation on the standard Borel space (X, ). Let Uy be
a p.m.p. graphing and let Ro = R1 V Yo be the equivalence relation generated by R1 and ¥o. Then

B1(R2) — fo(R2) < B1(R1) — fo(R1) + cost(Ps).

Remark 4.4 There is no continuity in the other direction: Think of R; given by a free action of
I'y =F9 and I's = Fo X Z. Then Ra can be generated from R1 by adding a graphing Yo of arbitrarily
small cost. However, 31(R2) — Bo(R2) = 0 while 51(R1) — fo(R1) = 1.

2ie. p{z:m(z) < me(x)} =1, ie. for pae x € X and for every edge e € E, if w1 (z)(e) = 1, then m2(x)(e) = 1.
2For instance, if po has a non-null set of subgraphs with exactly one infinite cluster.
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PROOF: The proof is just an adaptation of the proof of the Morse inequalities (see [Gab02, sect.
4.4, p.137]). Let £1 be a simply connected smooth simplicial R1-complex, with a big enough 0-skeleton:
Ri1 C £1. Then (81 — Bo)(R1) = (61 — Bo)(1). Let (E7), be an increasing sequence of ULB smooth
simplicial Ri-complexes that exhausts Y1, with say Ry C 39. ~
Let 31 and X7 be the corresponding smooth Ra-complexes ([Gab02, sect. 5.2, p.140]): Ro C X¢ and
moreover, the reciprocity formula gives

(B1 = Bo) (R1) = (B — o) (EF, Ra) = lim(B1 — Bo) (57, Ra).

Define ¥, and ig by just adding to ¥, and i? the Ro-field of graphs associated to U5 on Ro.
Claim: (81 — £0)(X3) < (B1 — Bo) (E}) + cost(¥2), Vn.

This is an immediate computation by mimicking the first 4 lines of [Gab02, sect. 4.4, p.137] (read
bp = 0 instead of b_; = 0, there). - -

Now, by letting n tend to oo, (81 — £0)(X2) < (61 — B0)(X1) + cost(Vs) = (81 — Bo)(R1) + cost(Vs).
By definition, Y5 is connected, so that 5y(32) = Bo(R2) [Gab02, 3.14]. On the other hand, 3;(Rs) <
B1(52) [GabOQ 3.13 and 3.14]. This proves Th. [L.3. |

PROOF (of Theorem [£.3): Denote by R = RS vV RS the equivalence relation generated by R and
RS Tt is also the relation defined on X*® by the union lamination £§'U £
Let Y C X*® be a p®*-non-null R-saturated Borel subset. It is clear from the lamination description
that the restriction R|y is generated by the restriction Rl\Y together with the graphing Wy consisting
of edges of £\ £§' with both endpoints in Y (one endpoint in Y implies the other one in Y, by
saturation):

R‘y = Ril‘y V Wy,

The cost of s (again, % just reflects that each edge is counted twice, while ﬁ is just designed to
normalize) is bounded above by

cost(Wq) < Z p(ma(e) =1 and m(e) # 1).

edges e
adjacent to p

The above Theorem [1.9 gives:

Bi(Ryy) = Bo(Ryy) < Bi(RSly) — Bo(Rily) + Z p(ma(e) =1 and mi(e) # 1).

edges e
adjacent to p

If Z is a non-null subset Where p belongs to the H-equivariant selected cluster (for instance, the unique
infinite cluster), then 7?, Sz = R|Z So that its R-saturation Y satisfies Ry = R and thus (see fact 2,
Subsection [[.4)

p*(V)B1(Ry) = p* (V)BL(RY) = Bu(R™),
which coincides by definition with the quantity 3;(G) introduced in Section R.4, Definition R.10.
Recall that (1(G) = 0 iff G € Opp. The graph G being infinite, ﬁ0(7?,|y) = ﬁO(R%) = 0, so that

0 < B1(G) < 1" (V) (Bu(RSy) — Bo(Rijy)) + Y n(ma(e) =1 and mi(e) # 1),

edges e
adjacent to p
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Now, the assumption (1) of Theorem [.9 is designed (since (Ril‘y) =0 by Th. D.3) to ensure that

B1(RSly) — Bo(RSjy) <0

and this finishes its proof. |

4.1 Application to Bernoulli Percolation

Corollary 4.5 (Th.[0.4) Let G be a unimodular transitive locally finite graph. If G doesn’t belong to
Oup, then the nonuniqueness phase interval of Bernoulli percolation has non-empty interior:

Pe(G) < pu(9)

More precisely,

(degree of G)(pu(G) — pe(9)).

DN |

B1(G) <

ProOF: The standard coupling ([0, 1]E, @Lebesgue) 5 ({0, 1}E, P,,) (see for example Section [[3.d)
provides a family of countable equivalence relations R;l (on the quotient space K,\[0, 1]¥, once given
a closed unimodular transitive group of automorphisms of G). For s < p., the equivalence classes of
the cluster equivalence relation are a.s. finite, thus ps-a.e. cluster belongs to Opp. The right-hand
quantity of Theorem [L.9 with p1 = ps and po = py, for ¢ in the uniqueness phase, is

% Z p(ma(e) =1 and mi(e) #1) = %(degree of G)(t — s).

edges €
adjacent to p

One concludes by continuity, by letting s tend to p.(G) and ¢ tend to p,(G).
Observe that one could have applied Theorem .3 directly with s = p.(G): there is almost surely

no infinite cluster at p.(G) [BLPS994, Th. 1.3]. [ |

Remark 4.6 While the above corollary extends to unimodular quasi-transitive locally finite graphs,
it is unknown whether the unimodularity assumption may be removed. On the other hand, the
removal of any transitivity assumption makes it false since R. Lyons and Y. Peres showed (personal
communication: I want to thank them allowing me to reproduce their description here) that the
following graph G doesn’t belong to Ogp but on the other hand, the set of parameters p in Bernoulli
percolation doesn’t admit any interval of nonuniqueness.

Denote by G,, the graph obtained from the lattice Z? by replacing each edge of Z? by m paths of
length 2. We fix m large enough so that p.(G.) < pe(Z?). Denote by G,,(k) a k-by-k square in Z2,
with each edge replaced by m paths of length 2. Now consider two copies of Z3 (call them G’ and G")
that we will join in countably many corresponding places (z;,v;) € G’ x G”, with density 0 in both
G" and G”, using graphs G,,(k;) as follows: position G,,(k;) with one corner at x; and another corner
at y;. We make k; grow fast enough so that the effective conductance between G’ and G” is finite;
explicitly, we make >, 1/(log k;) < co. This constructs the graph G.
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4.2 Application to Random-Cluster Model

Corollary 4.7 (Th. [0.%) Let G be a unimodular transitive locally finite graph, not in Ogp. Fiz the
parameter ¢ € [1,00). The gap between the left limit (when p /" p.(q)) and the right limit (when
P \\ Pu) of the expected degree of a base point p with respect to the measure RC,, , satisfies:

0< 01(G) < 5 (RGy 4 des(p)] — Ry, [dea(p)]).

Here, RC denotes either WRC or FRC.

Proo¥: Consider the invariant coupling introduced by O. Haggstrom, J. Jonasson and R. Lyons
in [HJLO24] of (all) the measures FRC, ; and WRC,, ; (together) for p € [0,1] and ¢ € [1,c0)

RC

(Xnu‘) ﬂ;] ({Oa 1}E5RCP7Q)

It provides two families of countable equivalence relations R;{q (on the quotient space K,\X, once
given a closed unimodular transitive group of automorphisms of G), one for FRC and one for WRC. The
usefulness of that coupling is that it reflects the stochastic domination (see [IJL02d, sect. 3]); in
particular, for a fixed parameter ¢ and s < ¢t (and denoting 77551 by ):

pire) =1 and m(e) £1) = p(m(e) = 1) - ulma(e) = 1)

Take s,t such that s < p.(q) < pu(q) < t, then Theorem .9 says that:

adjacent to p

Now, the right member is precisely: 3(RC;4[deg(p)] — RCs4[deg(p)]). The monotonicity properties
of the measures RC lead to the required inequality. Indeed, monotony as well as left continuity of
p — FRC, 4[deg(p)] and right continuity of p — WRC, ,[deg(p)] follow, like in [LJLO2H], from the fact
that FRC is an increasing (and WRC is a decreasing) limit of increasing (in p) continuous functions. W

5 Harmonic Dirichlet Functions and /> Cohomology

The main result of the section is the technical Proposition p.g that will allow to make the connection
between harmonic Dirichlet functions and the definitions of L? Betti numbers for equivalence relations
in ] (see the proof of Theorem @) However, as a leading and motivating example, we will
consider the following well-known result relating harmonic Dirichlet functions with the first £2-Betti
number.

Theorem 5.1 Let I' be a finitely generated group. Its first £2-Betti number (31(T) is not zero if and
only if any of its Cayley graphs admits nonconstant harmonic Dirichlet functions.
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5.1 Harmonic Dirichlet Functions. ..

Let G = (V,E) be a connected graph?* with bounded degree. The tail and head of an oriented edge ¢é
are denoted by ¢~ and é7.

Denote by F (V) or C%(G) the space of all complex-valued functions (0-cochains) on V and by C(G)
the space of 1-cochains 2°. Define the coboundary, “boundary” and Laplace maps:

i oG — o) TO= 1@~ 1)

d: CYG) — C°%G) dglw) = > (&)

AL OG0 AO—EE = S () 1)
— deslo) (o) - RG

The spaces of £2-cochains will be denoted by C&) (G) and C(12) (G). By definition, the space of harmonic
Dirichlet functions on G is the space of functions whose value at each v equals the mean of the
values at its neighbors (A(f) = 0, i.e. f is harmonic) and with coboundary in £2 (f has finite energy
or finite Dirichlet sum):

HD(G) := {f € F(V) : df € Cly(G) and Af = 0}.
The kernel of d clearly consists of the constant functions (since G is connected), so that naturally

HD(G)/C ~ d(HD(G)) = Imd N Cfy(G) NKerd". (4)

As for the ¢? cohomology, it is not really that of the graph G that is of interest, since, for example,
for Cayley graphs it is too sensitive to changes of generators (think of Cayley graphs of Z, where
Ffé) = 0 or # 0 according to whether the generating system is (1) or (2,3)). One has first to “fill in
the holes” of the graph:

Consider a simply-connected 2-dimensional complex ¥, with G as 1-skeleton.

Example 5.2 For instance, let I' be a group given by a presentation with g generators and r relators.
Recall that the Cayley complex of the presentation is a 2-dimensional complex built from a bouquet
of g oriented circles labeled by the generators, together with r oriented disks labeled by the relators glued
along their boundary to this 1-dimensional skeleton by following successively the circles associated with
the labeling relator. Its fundamental group is (isomorphic to) I'. The universal cover ¥ of the Cayley
complex is a (simply connected) 2-dimensional complex (with a free action of T' and) with the Cayley
graph of I' as 1-skeleton.

More generally, ¥ can be obtained from G by gluing one oriented disk (thought of as a polygon)
along its boundary to each circuit (and the opposite orientation for the reverse circuit).

Denote by C?(X) the space of 2-cochains, i.e. anti-symmetric functions on the oriented 2-cells
—disks—-), by 0(22)(2) the space of those that are £ (i.e. 3., h(c)? < oo, where the sum is over all the

2In the whole Section 57 except in the examples, G is not assumed to have any kind of symmetries or automorphisms.
25j.e. the space of anti-symmetric functions on the set of oriented edges: f(¢) = —f(¢€) where ¢ is the edge é with the
reverse orientation
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2-cells o). The boundary of a 2-cell o in ¥ being a 1-cycle D*o, one defines the coboundary D by
Dg(o) = g(D"0).
o L ooy B ooy
By taking the adjoint, C(12)(E) N Kerd* = [dC?Q)(E)}lC(IQ), the orthogonal of Imd) = dC?Q)(E) in
0(12) (X). Since X is simply connected, Imd = KerD. From formula () we get the natural isomorphisms
KerDNCL, (T
HD(G)/C =~ KerD N Ch(%) N [dCY (%)™ ~ @®)

— )
T (5)

where Hd@) is the closure of the space Imdy).

5.2 ...and /? cohomology

To define ¢? cohomology of ¥, one is led to consider ¢? cochains and restrictions of the coboundary
maps:

d D
Cly(8) =2 ) (2) =5 C)(D)

Say that ¥ is uniformly locally bounded (ULB) if it admits a uniform bound M s.t. each
vertex (resp. edge) belongs to at most M edges (resp. 2-cells), and the boundary of each 2-cell has
length at most M. In this situation, D(9) is a bounded operator, and the standard first reduced 0
cohomology space of X is defined as the Hilbert space

S Imdg

It follows from (f]) that for a ULB ¥
HD(G)/C =~ Hp)(%). (6)

Example 5.3 ¥ is ULB if it comes from the Cayley complex of a finitely presented group. One
can show that any other simply connected, cocompact free I'-complex X' leads to a (T-equivariantly)
1somorphic I:I(IQ)(E'), so that the non-triviality of H'(IQ)(E) is an invariant of the group I', and not only
of the complex . The first £2-Betti number 31(T) is the von Neumann I'-dimension dimpﬁ(lz)(z) and

we retain from this dimension theory that it vanishes iff H'(IQ)(E) = {0}.

Observe that some finiteness condition on X is however mecessary since the free group Fs, for
example, acts on its Cayley tree as well as on the product of the tree with a line, whose 1-skeleton
admits (resp. doesn’t admit) nonconstant harmonic Dirichlet functions. In case the presentation of T’
is not finite (r = 00), ¥ is no longer I'-cocompact, and D(y) is no longer a continuous (=bounded)
map.

The general way to proceed to define 2 cohomology for a complex that is not ULB, in the spirit of
J. Cheeger and M. Gromov [CG8(], consists in approximating ¥ by its ULB subcomplexes. Consider
the directed set of ULB subcomplexes ¥; of X, directed by inclusion and the inverse system of reduced
¢% cohomology spaces H(”Q)(Et) of ¥; with the maps H(”Q)(Es) — H&)(Et) induced by inclusion ¥4 D ¥
(denoted by s > t). Then define the reduced ¢? cohomology as the inverse limit H () (2) = limH %) (¢).
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In our context, all the ULB complexes ¥, as well as X itself, share the same ULB 1-skeleton
G. Thus, the first reduced ¢?> cohomology spaces I:Ié)(Et) are each the quotient of the subspace

Ker (0(12) (9) 2, 0(22)(Et)) of 0(12) (G) (organized into an inverse system by inclusion), by the common
subspace Imd(Q). It follows that:

N Ker(C(Q) (G) 2 €% (%)) _ KerDNC(G)

Hiy(8) = imHj (S =

(7)

and by formula ([), valid for any X:
Ail(5) = HD(G)/C. ®)

Example 5.4 Let I' be finitely generated, but not necessarily finitely presented. For a I'-complex
¥, the ¥y are moreover required to be T-invariant (and cocompact) and the (? Betti numbers of the
T-action on X are defined by keeping track of the I'-dimensions:

BT = sup (A (9) — Hy (50)
= suptdlmpﬁs>tlm( ( s) = (n(zt))

For simply connected T'-complexes %, the value (1(3,T) doesn’t depend on a particular choice of X,
so that for 3 constructed from a Cayley complex of T,

vanishes if and only if HD(G)/C = {0}. This proves Theorem [5.1.

Let’s quote for further use the observation that the space of formula ([]) may be obtained by considering
a exhausting sequence instead of the whole inverse system:

Proposition 5.5 Let G be a graph with finite degree, 3 a simply-connected 2-dimensional complex
with 1-skeleton G. If (3;)ien is an increasing and ezhausting sequence of ULB subcomplezes of 3,
then for any fized t

~ KerDn C(Q) (G)

Imd(g)

Nszdm(Hpy () — Hipy (5
doesn’t depend on t and is NATURALLY isomorphic with HD(G)/C.

The connection with the simplicial framework of [[Gab03] is made by considering a double barycentric
subdivision ¥* of ¥, with the exhaustion ¥} corresponding to the subdivision of ¥;. Since for each ¢,
Hé)(zt) and ]:1(12)(2*) are naturally isomorphic, it follows that

Proposition 5.6 For any fized t, ﬂsztlm(ﬂé)(z’s‘) H(Q)( 7)) doesn’t depend on t and is NATU-
RALLY isomorphic with d(HD(G)) and HD(G)/C.
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6 Fields of Graphs, Harmonic Dirichlet Functions and L? Betti Num-
bers for Equivalence Relations

Let (X, 1) be a standard Borel space with a probability measure p and R a measure-preserving Borel
equivalence relation with countable classes.

Recall from [Gab03] that an R-equivariant field z — ¥, of simplicial complexes is a mea-
surable assignment to each x € X of a simplicial complex Y., together with an “action” of R, i.e.
with the measurable data of a simplicial isomorphism, for every (z,y) € R, 1z, : £y — 35 such that
Yz yWy,2 = Vg and ¥, , = idy_. It is smooth if the action on the vertices admits a Borel fundamental
domain. It is smooth uniformly locally bounded if there is a uniform bound N on the degree of
the 1-skeleton of the ¥, and there is a Borel fundamental domain that meets each ¥, in at most NV
vertices.

Example 6.1 Let R be a p.m.p. countable Borel equivalence relation on the probability standard Borel
space (X, ). An unoriented graphing U over R (see Section[]) defines an R-equivariant field of graphs
x — W, with vertex set R itself, which is smooth.

- The vertex set of U, is the set {(x,y) € R}, i.e. the set of elements of R with first coordinate x.

- Two vertices (x,y) and (z,z) of U, are neighbors if and only if (y, z) belongs to U, i.e. iff the second
coordinates are neighbor for ¥

- The left action of R on itself (w,x).(x,y) = (w,y) and thus on the set of vertices induces a natural

. c(w,x) \ — Y
action on the field: (w,z) : (z,9), (x,2)] — [(w,y),(w,2)] )

- The “diagonal” set {(z,x):x € X} of vertices forms a Borel fundamental domain.

This example contains as main applications the various equivariant fields of graphs (described below)
relevant for percolation theory.

Example 6.2 In the context of Section [ for a Cayley graph G,

(Rfv, o +— G) The full lamination L™ (Section defines an unoriented graphing over R (see
Section []). In the corresponding smooth R™M-equivariant field x — L2, each L8 admits a
canonical isomorphism with G.

(R, =+ m(x)(p)) The cluster lamination L% defines an unoriented graphing over R°. In the
corresponding smooth R -equivariant field x — LS, each LI is isomorphic to the cluster m(z)(p)

of p in w(x). .

(Rfv, 2 — n(x)) The cluster lamination L% defines also an unoriented graphing over R™ and in the
corresponding field x — V,., each W, is isomorphic to the subgraph w(x), which is non-connected
i general.

Example 6.3 In the context of Section [§ for a transitive, locally finite graph G,

(Rfe, 2* — G) The full lamination L™ (Section 1) defines an unoriented graphing over Rfv.,

In the corresponding smooth R-equivariant field 2* — L% each L% admits a (non-canonical)
isomorphism with G. However, each representative x € X of x* defines an isomorphism j, :
LY ~ G and for another one y = kux, Jy = kjz, where k € K, so that this isomorphism is

canonical up to an element of K.
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(R, 2* — 7(x)(p)) The cluster lamination L defines an unoriented graphing over RY'. The
corresponding field x® — LS assigning to x* its leaf (graph) in the lamination L is a smooth
uniformly locally bounded R-equivariant field of connected graphs. Each Eiu. is isomorphic
to the cluster w(x)(p) of p for a (any) representative x € X of x*. Two representatives give
subgraphs of G that are isomorphic under an element of K,. The graph E;l. belongs to Oup iff
m(x)(p) belongs to Oup for any representative x of z°.

Example 6.4 (Restrictions) If x — Y, is a smooth R-equivariant field of graphs and Y is a Borel
subset then restricted to Y, the fields Y > x +— W, is a smooth Ry -equivariant field of graphs, where
Ry is the restriction of R to Y.

Also recall from [[Gab0J] that there is a well-defined notion of L?-Betti numbers £, (R, ) for
a measure-preserving Borel equivalence relation R with countable classes, which uses the notion of
equivariant fields of simplicial complexes and the von Neumann dimension dimp associated with the
von Neumann algebra of the equivalence relation and the measure p.

Theorem 6.5 Let R be a measure-preserving equivalence relation with countable classes on the stan-
dard Borel probability measure space (X, p). Consider a smooth uniformly locally bounded R-equiva-
riant field x — G, of connected graphs. Then

D D
Bi(Rp) = dine [ d(HD(G,) du(z) = dine [ HD(G,)/C du(a).

Since dimg H = 0 if and only if H = {0}, one gets:

Corollary 6.6 For a smooth uniformly locally bounded R-equivariant field x — G, of connected
graphs, B1(R,p) =0 if and only if p a.s. G, € Oup.

Remark 6.7 Since a generating (oriented) graphing in the sense of [Lev9d, [Gab0d] (see also Section[})

defines an unoriented graphing and thus a smooth R-equivariant field of connected graphs, the above

Corollary reduces to Theorem of the introduction.

PROOF: By Theorem/Definition [[Gab03, Th. 3.13, Déf. 3.14], 31(R, i) is the first L2-Betti number
B1(3, R, ) of ANY smooth R-equivariant field of simply connected (2-dimensional, say) simplicial
complexes Y. It can be computed [Gab03, prop. 3.9] by using any exhausting increasing sequence
(Xs)sen of R-invariant uniformly locally bounded (ULB) sub-complexes by the following formula ():

BuERop) = lim /' lim \ dimg Tn[H{Y (5, R, ) — H (25, R, )] (9)
= Jlim 7 lim N\ dimg Tm[H) (S0, R, 1) — Hi) (S0, R, p)] (10)
= Jim ~dimg () Tm[Hp) (S R, 1) — H) (SR, )] (11)

s>t s—o0

The equality ([Lld) holds by duality between homology and cohomology because, just as in usual
linear algebra, taking dual does not alter the dimension of the image. Equality ([[T]) is due to the
continuity of dimension, since H[ﬂé)(zs,’/{, ) — ]:1(12)(215,7?,,#)] C ﬂé)(zt,??,,,u) decreases with s.
Now, for a fixed ¢, one has the Hilbert integral decomposition:

(| Tm[H (Z6 R, ) — Hy) (B0, Ry p)] = /XEB (N Tm[H(S0) = Hay(Sea)|du(z)  (12)

s>t s—o00 s>t s—o0
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It remains to make the choice of a ¥ and of the sequence (X;):cn and to relate this with harmonic
Dirichlet functions via Section [l The simplicial complex ¥, , is obtained from G, by first gluing a
disk along each circuit of length ¢ and then taking the second barycentric subdivision. The simplicial
complex ¥, is their union. For each s, it follows from naturality in Proposition p.6, applied for each
x, that there is an isomorphism of Hilbert R-modules:

[ T () — Hy () )duta) ~ [ HDG)/C du) (13)

X s>t s—o00

so that its R-dimension does not depend on t, and Theorem [6.9 is proved by putting the equalities

(1), (L) and ([J) together. ]

7 Some Background about Measured Equivalence Relations

In this section, we just recall briefly the definition of some notions appearing in the paper. The reader
may consult [FM77] and [Gab00, [Gab03J] for more details and more references.

Countable standard equivalence relation. A countable standard equivalence relation on the stan-
dard Borel space (X, ) is an equivalence relation R with countable classes that is a Borel subset
of X x X for the product o-algebra.

Preservation of the measure. The (countable standard) equivalence relation R is said to preserve
the measure if for every partially defined isomorphism ¢ : A — B whose graph is contained
in R ({(z,p(z)) : x € A} C R), one has u(A) = u(B), or equivalently iff the measures 1
and v5 on the set R C X x X coincide, defined with respect to the projections on the first
(resp. second) coordinate pry (resp. pro) by vi(C) = [y #(C N prit(z))du(z) and ve(C) =
[ #(C N pryt(y))du(y). One denotes by v = 11 = vy this common (usually infinite) measure
on R.

Essentially Free Action. A Borel action of H on a standard probability measure space (X, u) is
essentially free if the Borel subset of points x € X with non-trivial stabilizer (Stabg(z) = {h €
H : hx =z} # {id}) has p-measure 0. The term “essentially” is frequently omitted.

Restrictions. Let (X, i) be a standard Borel space with a probability measure ¢ and R a measure-
preserving Borel equivalence relation. If Y is a Borel subset of X of non-zero measure, denote by
By = % the normalized probability measure on Y. The restriction Ry of R to Y is the uy-

measure-preserving Borel equivalence relation on Y defined by for every z,y € Y, xRyy < zRy.

Saturation. A Borel subset U C X is called R-saturated if it is a union of R-classes. The R-
saturation of a Borel set U is the smallest R-saturated set containing it. It is the union of the
R-classes meeting U.

Finite index. A sub-equivalence relation S C R has finite index in R if each R-class decomposes
into finitely many S-classes. If this number is constant, it is called the index of & in R and is

denoted by [R : S].

Graphings. A probability measure-preserving oriented graphing on (X, u) is an at most countable
family ® = (¢;)ier of partial measure-preserving isomorphisms ¢; : A; — B; between Borel
subsets A;, B; C X.
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Cost. The cost of an unoriented graphing W is the number cost(¥, ) :=
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A probability measure-preserving unoriented graphing ¥ on (X, u) is a Borel subset of X X
X\ {(z,z) : x € X} that is symmetric under the flip (z,y) < (y,z) such that the smallest
equivalence relation Ry containing it has coutable classes and is measure-preserving. It provides
a Borel choice of pairs of Ry-equivalent points (“neighbors”).

Ry is generated by W.
¥ is a graphing over R if it is contained in R.

An oriented graphing defines clearly an unoriented one, by considering the graphs of the ¢;, <pi_1 ’s.
The terms probability measure-preserving, oriented and unoriented are frequently omited.

The notion of unoriented graphing has been introduced by S. Adams in [Ada9(] and oriented
graphing by G. Levitt, together with the notion of cost, in [Lev0y].
%I/(\I/), where v is the witness
measure on Ry for Ry to preserve the measure p of X.

The cost of an oriented graphing ® = (p;)ics, is the sum of the measures of the domains
Dier 1(Ai).

Except in the obvious cases (redundancy in @), the two notions coincide. In general the cost of
an oriented graphing is greater than that of the associated unoriented one.

The cost (cost(R, u)) of a p.m.p. countable equivalence relation R is the infimum of the costs of
the generating graphings. The cost of a group I is the infimum of cost(R, 1) over all equivalence
relations R defined by a p.m.p. free actions of " (see [[Gab0(]). A comparison has been established
between the cost and the first L? Betti number: 8;(R,u) < cost(R,u) — 1 [Gab02, Cor. 3.23].
Despite that equality is not known to be true in general for an R with only infinite classes, there
is no (not yet ?) counterexample.
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