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Abstract. Although observations of the rotations rates of the extra-solar
planets will probably not be obtained soon, one can make predictions for these
rates for all planets that should have tidally evolved, despite the fact that it is
very probable that none of these planets are strictly in a 1/1 spin orbit resonance
state.

1. Introduction

Even in the Solar System, the determination of the rotational periods of the
main planets has only be achieved recently for Mercury and Venus, when it be-
came possible to use radar ranging on the planets (Pettengill and Dyce, 1965,
Goldstein, 1964, Carpenter, 1964). We do not thus expect that it will be im-
mediately possible to observe the rotation of the newly discovered extra-solar
planets. Nevertheless, as was done by Schiaparelli for Mercury and Venus (1889,
1890), it is possible to make predictions for the rotation periods of the extra-
solar planets that should be tidally evolved through tidal friction. Although
the predictions of Schiaparelli were wrong for both Mercury and Venus, one
can nevertheless consider that his theoretical estimates, based on Darwin’ work
(1880), were much closer to the true values of the rotation periods than most
observations made in the two previous centuries. As Schiaparelli, we will dare
to make predictions for some of the rotation periods of the known extra-solar
planets, hoping that the additional knowledge that we gained from a better un-
derstanding of the rotation of Mercury and Venus, will prevent us from being as
much in error as he was.

2. Tidal friction

The theory of tidal friction was initiated by Darwin (1880), with more recent
contributions of (Love, 1927, Munk & MacDonald, 1960, Kaula, 1964, Goldre-
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Figure 1.

ich and Peale, 1966, 1968, Mignard, 1979, 1980). We consider the potential
generated by the action on a planet by a perturbating body m(r) (Fig.1). The
potential in any point in r’ | generated by m(r) is expressed in term of Legendre
polynomials as

m X
:_GZ< )Plcosrr)). (1)

The tidal response at the planet surface (with radius R) is then

Gm I

+1
VR)=—— Z K < ) P(cos(r,R)) = F(r,R) , (2)

where G is the gravitational constant and k; are the usual Love numbers. The
potential in r’ generated by this deformation (limited to I < 2) is then

3 3
V(') = —G]énkg <R> (f,) Py(cos(r, 1)) (3)

r

In a viscous model that is adapted to giant gaseous planets, we can consider
that the non elasticity of the planet induces a small constant delay At between
the excitation of the planet and the planet response (Mignard, 1979, 1980). The
tidal response at time ¢ in the direction R is thus V4(R,t) = F(r(t — At), R(t —
At)), and the potential at r at time ¢ can be written on the form

3 3
Vd(r):—(’?@(R) (f) Py(cos(Ry (At)r*,r)) (4)

where r* = r(t — At), and where R,,(At) is a rotation along the axis of rotation
of angle wAt (Fig.2).

For an obliquity € = 0, that can be assumed for tidally evolved planets
(see for example Correia et al., 2003), the tidal frequencies that arise in (4) are
o = 2w + kn, where k is an integer. As the main tidal term is associated with
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Figure 2.

the tidal frequency 2w, the constant time lag At for our viscous model can then
be related to the usual dissipative factor @) as

1

© 2woQ
where wq is the initial angular velocity of the planet. The rotational evolution
of the planet can then be computed and leads, for a constant eccentricity e and

semi major axis a, to (Goldreich and Peale, 1966, Hut, 1980, Correia et al., 2003,
Correia and Laskar, 2004)

At

()

w wo —Q(e)Kt
Y_E “ _g
2= B+ (22— B(e) ) e OK, (6)
where
B 9Gm? ko )
 dmpwad €Q

where m, is the mass of the central star, p the density of the planet, ¢ = C/M R?
its structure constant, and

1+ 3e? +3e*/8
Q(e) = (1_62)9/2/ _ (8)

The angular velocity of the planet w will evolve toward the asymptotic value wy
that can be computed easily at e = 0, for all values of the eccentricity (Goldreich
and Peale, 1966, Hut, 1980) as'

14 15¢%/2 4 45¢*/8 + 5¢5/16
€)= (9)

Porb o ws .
P n (© (14 3e2 + 3¢*/8)(1 — €2)3/2

'There is a misprint in the ¢® term of the equation of Goldreich and Peale (1966)
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where P, is the orbital period of the planet, P; its final rotation period. One
should note that in the presence of significant planetary perturbations, the ro-
tation period of the planet will not follow strictly E(e(t)) (correia and Laskar,
2004).

2.1. Tidally evolved planetary rotations

We can thus expect that if the rotation of a planet, with non zero eccentricity
and close to its central star, is tidally evolved, its rotation period will not be
synchronized with its orbital period, but will be given by relation (9).

The time required for dampening the rotation of the planet depends on their
dissipation factor ko/@Q (7). As we can assume that these planets are similar to
the Solar system outer planets (Table 1), we have assumed that ks = 0.4 for all
planets, and a range for @ from 10* to 10°.

| quantity || Jupiter | Saturn [ Uranus | Neptune |
Py (h) 9.92 [ 10.66 | 17.24 16.11
p (gem™3) 1.33 0.69 1.32 1.64
¢E=C/MR* | 0.25 0.21 0.23 0.24
ko 0.49 0.32 0.36 0.41
Q (x10%) ~ 3 > 2 1—4 ?

Table 1. Constants for the Solar System outer planets (Yoder, 1995, Veeder
et. al., 1994, Dermott et. al., 1988, Tittemore and Wisdom, 1990).

We have then plotted in figures 3 and 4, all known extra-solar planets, taken
from the catalog of J. Schneider (2004), that could have been tidally evolved over
their history. We consider that they are tidally evolved if their rotation period,
starting with an initial period of 10 hours, is dampened to a value such that
|(w—wy)/wg| < 0.01. The curves represent the planets that have tidally evolved
in a given time interval ranging from 0.001 Gyr to 10 Gyr. In Table 2, the
estimated ages of the central stars are given, when available. This allows to
check whether the planet should be fully tidally evolved. In absence of this
data, for a Solar type star, we can expect that all planets that are above the 1
Gyr curve are tidally evolved. On the other hand, planets that are below the 10
Gyr curve are probably not yet tidally evolved.

As expected, all planets in circular orbits with ¢ < 0.05 AU are tidally
evolved, but we will concentrate more on the planets further from the star with
non zero eccentricity. We can obtain for all these planets that are tidally evolved
an estimate of their rotation period, through formula (9). It is thus possible to
predict the rotation period of planets that are far from their central star if they
have a large eccentricity, as around HD80606. In this extreme case, the orbital
period is 111.7 days, but the rotation period should be 1.9 days. One should note
that contrarily to the terrestrial planets (see Goldreich and Peale, 1966, Correia
and Laskar, 2004), it is very difficult for the gaseous planets to be trapped into a
spin-orbit resonance, as these planets will have a symmetry of revolution around
their rotation axis, and their momentum of inertia A, B around axis orthogonal
to their rotation axis will be practically identical.
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Planet a e My age® | age® P, | Pe)
(AU) (me) | (Gyr) | (Gyr) (d) ] (d)
51 Peg 0.05 0.0 1.07 | 4.3 7.1 4.2 4.2
HD 162020 0.072 | 0.277 0.75 | - - 8.4 5.7
HD 130322 0.088 | 0.048 0.91 <1 0.4 10.7 10.5
HD 108147 0.104 | 0.498 1.23 <1 2.0 10.9 3.9
55 Cnc b 0.11 0.02 0.89 11.0 5.0 14.6 14.6
Gliese 86 0.11 0.046 0.79 | - - 15.7 15.5
HD 38529 b 0.129 | 0.29 1.42 3.0 - 14.3 9.4
Gliese 876 ¢ 0.13 0.12 0.32 | - - 30.1 27.7
HD 195019 0.14 0.05 1.04 | 8.7 3.2 18.3 18.0
HD 6434 0.15 0.30 0.80 > 17| 3.7 22.0 14.1
Gliese 876 b 0.21 0.27 0.32 | - - 61.0 42.1
rho CrB 0.23 0.028 0.90 12.6 - 39.6 39.4
HD 74156 b 0.276 | 0.649 1.27 | - - 51.6 10.2
HD 3651 0.284 | 0.63 0.79 | - - 62.2 13.4
HD 168443 b 0.29 0.529 1.03 9.3 7.4 58.1 18.7
HD 114762 0.3 0.334 0.91 14.0 - 84.0 49.4
HD 121504 0.32 0.13 1.11 4.0 2.8 64.6 58.6
HD 178911 0.32 0.1243 | 0.87 | - - 71.4 65.4
HD 16141 0.35 0.28 1.18 3.2 6.7 75.8 o1.1
70 Vir 0.43 0.4 1.05 7.9 - 116.6 57.0
HD 80606 0.439 | 0.927 090 | - - 111.7 1.9
HD 52265 0.49 0.29 1.25 0.5 4.0 118.9 78.3
GJ 3021 0.49 0.505 0.99 0.7 < 0.1 ] 133.8 46.8
Table 2. Exra-solar planets that could have a tidally evolved rotation (Figs.

3,4). The hot Jupiters in circular orbits at about 0.05 AU are not listed, except
for 51 Peg. For each planet, the semi major axis a, eccentricity e, mass of
the central star m., and orbital period (P,,;) are given, as well as the limit
period (P;(e)). When available, the age of the central star is also given. These
data are collected from Laws et al.(2003) and on the Web sites of Mayor et
al.(2004), Marcy et al.(2004), and Schneider (2004). The determination of
the ages of the central stars are model dependent; ages® are derived from
Padua stellar isochrones (Salasnich et al., 2000), while ages® are computed
from Henry et al.(1996) and Laws et al.(2003).




eccentricity

eccentricity

Laskar & Correia

1
0.8
0.6 1
0.4
0.2 t
o) PO=10 h
Q=100 000
0 (&) : e : :
0 0.1 0.2 0.3 0.4 0.5

semi-major axis (AU)

Figure 3.  Tidally evolved planets with Q) = 10° and initial period Py = 10 h.
The labelled curves denotes (in Gyr) the time needed to reach the equilibrium.
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Figure 4.  Tidally evolved planets with @ = 10* and initial period Py = 10 h.
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Figure 5.  Atmospheric tides

2.2. Are synchronous rotations possible 7

One would think that the planets that are close to the central star, with nearly
zero eccentricity, are in synchronous rotation with their orbital period, as pre-
dicted by formula (9). But here other mechanisms can take place. Indeed,
these planets are supposed to be gaseous Jupiter-like planets, and atmospheric
tides may have a large effect on their rotation motion as for Venus ( Gold and
Soter, 1969, Correia and Laskar, 2001, 2003 Correia et al., 2003, and references
therein).

The atmospheric tides result from the heating of the atmosphere of the
planet at the subsolar point. In order to equilibrate the pressure, the particles
will move away from the subsolar point, and a tidal bulge will result, with an
important quadrupolar component, perpendicular to the direction of the Sun
(Fig. 5) at synchronization. If w > n, the tidal bulge will be displaced by a
small angle §, and an accelerating torque will appear (Fig. 5), while the torque
will be decelerating when w < m. The tidal potential at r at time ¢ can be
written in an analougs way as for gravitation tides (Eq. 4):

~ N 3 ~
Vi(r) = —gp; (f) Py(cos(Ru(At)r, 1)) | (10)

where ps is the second harmonic of the pressure amplitude variations at the base
of the atmosphere (Correia et al., 2003).

Although it is difficult to have a proper estimate of this effect, one can
nevertheless assume that it will dominate in the vicinity of synchronization where
the Solar heating is maximal. Indeed, according to Chapman and Lindzen (1970)
we have py < 1/0 and therefore atmospheric tides destabilize the synchronous
limit fixed point. In the same way as for Venus, additional possible stable limits
values will appear, two fixed points with obliquity ¢ = 0 and two for ¢ = 7
(Fig.6). If the thermal tides are large enough, this should lead to the possibility
of retrograde rotations, as for Venus (Correia and Laskar, 2001, 2003, Correia
et al., 2003).
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Figure 6. Final states for a planet with strong atmosperic thermal tides.
The original equilibrium point obtained at synchronization (w/n = 1) when
considering uniquely the body tides, becomes unstable, and bifurcates at ¢ = 0
into two new stable fixed points 7, and Fy, and at € = 7 into F; and F}
(Correia and Laskar, 2001, 2003).
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2.3. Conclusions

Due to their large eccentricity, the rotation of many of the observed extra-solar
planets should be tidally evolved even if they are not very close from their central
stars (Figs 3,4). For all these planets, we can conjecture that their rotation
period are the limit values Pj(e) given in Table 2. It is thus possible to make
precise predictions on their rotations periods, and it becomes a new challenge
for the observers to be able to confirm these predictions.

Nevertheless, although it was largely assumed that the hot Jupiters in nearly
circular orbits within 0.1 AU of the central star are in 1/1 spin-orbit resonance,
the atmospheric tides may very well have destabilized these 1/1 fixed point, and
created additional possible stable limit values, with the possibility of retrograde
rotations, as for Venus.

In a paradoxical way, the final rotation rate of these planets are the most
difficult to predict. On the opposite, once the rotation rate of one of them will
be determined, we can probably assume that the amplitude of the atmospheric
tides is the same for all similar planets, and thus deduce for all of them, the
location of the limit stable fixed points (Fig.6), and thus the possible rotation
periods for these planets.
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