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Abstract. We present the first application of Genetic Algorithms to the analysis of data from an aperiodi-
cally ordered system, high resolution X-Ray diffraction spectra from multilayer heterostructures arranged
according to a deterministic or random scheme. This method paves the way to the solution of the “in-
verse problem”, that is the retrieval of the generating disorder from the investigation of the spectra of an
unknown sample having non crystallographic, non quasi-crystallographic order.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 05.90.+m Other topics in
statistical physics, thermodynamics, and nonlinear dynamical systems – 61.10.-i X-ray diffraction
and scattering – 61.43.-j Disordered solids

Introduction

Solving a particular problem can amount to the finding
of the minimum of a function over a given space. One
then considers an optimization problem. When the func-
tion has a certain type of regularity, a number of methods
exist, most often based on gradient or generalized gradient
computations (see for instance [1]). Generalized gradient
methods work well when:

• “some sort” of gradient can be defined and computed
at any point of the space of solutions (for instance, a
directional derivative),

• the function of interest does not have too many local
minima, or the value taken by the function at these
minima is significantly greater than its value at the
absolute minimum.

But for very irregular functions which do not sat-
isfy these requirement, different methods have to be used
for optimization. Most of them are based on stochastic
schemes.

1. One of the most known stochastic algorithms is Simu-
lated Annealing. It is a powerful technique for finding
the global minimum of a function when a great num-
ber of parameters have to be taken into account. It
is based upon an analogy with the annealing of solids,
where a material is heated to a high temperature, then

a e-mail: Evelyne.Lutton@inria.fr
b CNRS UMR 8502

very slowly cooled in order to let the system possibly
reach its ground state energy. The delicate point is to
lower the temperature T not too rapidly, so as to avoid
local minima.

The Metropolis algorithm is then used: at “temper-
ature” T , the jump from a state of energy E to a state
of energy E′ is made with probability one if E′ is lower
than E, that is the state of energy E′ is “accepted”,
and with a probability proportional to exp((E−E′)/T )
if not [2–4].

Theoretical results exist that prove the convergence
of such a process, but reaching the optimal solution
is guaranteed only if the “temperature” parameter is
lowered at a logarithmic rate, implying a very large
number of iterations in general.

To solve optimization problems of other systems
one uses a transposition to the statistical mechan-
ics situation of simulated annealing along the lines of
Table 1 [5].

The combinatorial problem is therefore formulated
as a statistical mechanical problem.

2. Another one is the Replica Method which has first been
applied to spin glass systems. It had been originally
proposed as a trick to simplify the computation of the
average value of the free energy density. This is done by
introducing n uncoupled replicas of the initial system
of size N , then defining the partition function and the
free energy of the n replicas as a function of n integer,
that are simply related to the partition function and
free energy of the initial system. Then extending these
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Table 1. Optimization and simulated annealing.

Optimization problem of a given system Simulated annealing

Domain of the problem Sample

Definition of configuration State

Cost function for a configuration Energy of a state

Optimal configuration Ground state

Minimal cost Ground state energy

Control parameter for optimization process Temperature

to analytic functions of n, one takes the two limits n →
0 and N → ∞ in an adequate fashion, thus obtaining
the desired average free energy.

The application to the solution of other optimiza-
tion problems is straightforward [6,7].

3. In the following, we chose to experiment another op-
timization technique, Genetic Algorithms [8,9] which
we selected for its efficiency in dealing with discrete
codings, and describe in details below.

The systems under study, as explained below, are mul-
tilayers heterostructures composed of planar layers of two
kinds (the two letter alphabet) arranged according either
to deterministic algorithms, aperiodic substitutional or
automatic sequences, or analogous systems where the dis-
order generating sequence is unknown.

In Section 1, we present the multilayer system under
study and introduce the “inverse problem”. In Section 2
an application of a Genetic Algorithm to this problem is
presented for the investigation of calculated Xray diffrac-
tion spectra. Results are presented in Section 3.

1 X-Ray diffraction spectra and the inverse
problem

1.1 X-Ray diffraction spectra analysis: the model

In their article [10], Peyrière, Cockayne and Axel present
a theoretical and numerical study for the analysis of XRay
diffraction spectra of Prouhet-Thue-Morse GaAs-AlAs
multilayer heterostructures.

The experimental discovery of quasicrystals [11]
in 1984 has opened a new field of research to both experi-
mentalists and theoricians. In this field, the importance of
deterministic structures having controlled aperiodic dis-
order is being increasingly recognised. This is why one-
dimensional deterministic sequences generated by substi-
tution or finite automata [12–14] have been widely used
mathematical objects to build such structures. In par-
ticular, 3D multilayer heterostructures having two kinds
of layers arranged according to the Fibonacci sequence
were first defined and effectively made as early as 1985 by
molecular-beam epitaxy [15,16] (MBE) and consequently
investigated by X-ray and neutron diffraction [16–19]
Raman scattering [20,21] etc.

Prompted by all of these studies, an extension of such
methods to nonquasiperiodic systems soon began, with

special interest in the Thue-Morse sequence, and its math-
ematical and physical properties. For instance, in 1987, a
Thue-Morse superlattice heterostructure was made for the
first time and investigated by Raman scattering [20].

The Prouhet-Thue-Morse sequence {εn} can be de-
fined in several equivalent ways as follows:

• Let σ be a substitution acting on a two letter alphabet,
for example (0, 1):

σ

{
0 → 01
1 → 10.

(1)

The sequence is then characterized by its initial condi-
tions ε0 and the number n of iterations of σ. Its length
is N = 2n.

With ε0 = 0, the sequence is:

0
01
0110
01101001
0110100110010110 . . .

• A recursive definition. With εi the ith element in the
sequence, one has:{

ε2n = εn

ε2n+1 = 1 − εn
with ε0 ∈ {0; 1} · (2)

• A definition using an algorithmic machine known as a
2-automaton (see [10,22]).

Let us notice that for a given length there exist two
possible sequences called mirror sequences corresponding
to the two initial conditions ε0 = 0 and ε0 = 1.

In practice, superlattice heterostructures are grown
on a GaAs(001) substrate by molecular-beam epi-
taxy (MBE). The deposition rate is about 1 Å/sec. The
lattice simply consists of AlAs (A) and GaAs (B) layers.
The values of dA and dB are designed to be dA = dB =
5a0, where a0 is the average constant of the cubic “zinc-
blende” lattice of AlAs and GaAs.

Taking advantage of the specific properties of the
Prouhet-Thue-Morse sequence and using the atomic struc-
ture factors of the GaAs and AlAs layers, and using kine-
matic diffraction theory, the authors [10] calculate a gen-
eral formula for the diffraction amplitude Ŝn(q) with q the
wave vector.
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The intensity of the high resolution X-Ray diffraction
spectrum is then:

In(q) =
∣∣∣Ŝn(q)

∣∣∣2 = Ŝ∗
n(q)Ŝn(q). (3)

The authors have thus been able to successfully re-
produce experimental high resolution X-Ray diffraction
spectra from 27 and 210 Prouhet-Thue-Morse multilayer
heterostructures originally published in reference [23].

1.2 Generalization of the model

This model can be generalized for multilayer heterostruc-
tures having any kind of generating binary sequence

(sN (k))k∈[0;N−1]

with N the total length of the sequence.
With the symbolic association and using the notations

of [10]:

0: codes GaAs layers, with thickness d0 and diffraction
amplitude µ̂0(q) as a function of wave vector q.

1: codes AlAs layers, with thickness d1 and diffraction
amplitude µ̂1(q) as a function of wave vector q.

Then the diffraction amplitude reads

ŜN (q) = µsN (0)(q)

+
N−1∑
j=1

e−2iπq[�j−1
k=0 dsN (k)]µsN (j)(q). (4)

We note that for the calculation of ŜN (q) one has to use
a summation of N = 2n terms, whereas the calculation
of ŜN (q) in the Prouhet-Thue-Morse case requires only
n factors. The generalization in the present context is at
the price of going from O(n) to O(2n) in computational
time [10].

1.3 Nature and interest of the “inverse problem”

The goal is to retrieve from the experimental X-Ray
diffraction spectrum of an unknown multilayer het-
erostructure sample the binary sequence after which the
layers are arranged.

Such a problem is well resolved in “classical” crystal-
lography where the possible lattices of crystalline sam-
ples have symmetries belonging to one of the 230 crys-
tallographic groups. The analysis of the XRay diffraction
spectrum then allows – the chemical composition being
known – the complete retrieval of the structure. This is
also true for quasicrystals [24,25], but not for materials
where long range order is “less regular”, such as aperiodic
deterministic order generated by a substitutive sequence
or for glassy materials where the disorder is in general
thought of as being of random origin. The interest of find-
ing or approaching a solution to this problem is obvious.

When dealing with difficult “inverse problems” as the
previous one, where no analytical solution is known, a
straightforward strategy is to try and deal with this prob-
lem as with an optimization problem. The optimization
problem here is the minimization of a “distance” between
the experimental spectrum and the computed spectrum
according to equation (4), with respect to the generating
binary sequence (sN(k))k∈[0;N−1]. The function to be min-
imized in this case is a very irregular and complex function
and a well adapted stochastic optimization method must
be used1. We present in the sequel a solution of this prob-
lem based on a Genetic Algorithms.

2 Use of a Genetic Algorithm

2.1 Genetic Algorithms

Genetic Algorithms – or more generally Evolutionary
Algorithms – mimic Darwin’s evolutionary model of
survival-of-the-fittest, in evolving a set of potential solu-
tions rather than a unique point. This is a main advantage
over other stochastic schemes when optimizing irregular
and difficult functions over large search spaces.

This method is based on two themes: the ability of sim-
ple representations (sequences on a two letter alphabet)
to encode complicated structures, and the power of simple
transformations to improve such structures. It has been
shown [26] that with the proper control structure, rapid
improvements of bit strings could be made to “evolve” as
population of animals do. Recently established theoretical
results [27–30] prove that, given appropriate conditions,
genetic algorithms tend to converge onto solutions that
are globally optimal, i.e. the limit distribution of the pop-
ulation when generations tends to infinity is concentrated
on the global maximum (or maxima, if there are several)
of the fitness functions2.

In natural evolution, the characteristics of each indi-
vidual are embodied in the composition of its chromo-
somes. Operations that alter this chromosomal composi-
tion specially occur when parents reproduce; among them
are random mutation, i.e. a small alteration of its chro-
mosomal material, and crossover, an exchange of chromo-
somal material between two parents’ chromosomes. This
feature of natural evolution – the ability of a population
of chromosomes to explore its search space and simulta-
neously combine the best findings through crossover – is
exploited during a Genetic Algorithms run.

Of course these notions are sufficiently simplified so
they can be used in a computer program. The general
structure of a Genetic Algorithm program is described in

1 The size of the search space (see Sect. 2.2) without consid-
ering the irregularity of the function itself, is a sufficient reason
to consider stochastic optimization methods.

2 Other theoretical and experimental analysis proved a
“weaker” convergence criterion, i.e. the best individual of the
limit population is positioned on the global optimum (or on
one of the global optima) of the fitness function.
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Fig. 1. General scheme of a Genetic Algorithm.

Fig. 2. The crossing over process: parts of the genome are
exchanged between parents to form the offspring.

0 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 10 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 0 1 1

mutation site

Fig. 3. The mutation process: a small perturbation of the
genome. For example a bit is flipped (0 → 1) on a randomly
chosen position on the genome (mutation site).

Figure 1, the selection step is usually performed by a bi-
ased random shot, where the probability for an individual
to be selected is proportional to its “fitness”, i.e. a mea-
sure of the quality of the “solution” represented by this
individual regarding the problem to solve. The “genetic”
operators are usually two: crossover and mutation. They
are stochastic operators, applied with some probabilities
(pc and pm respectively). Figures 2 and 3 show two clas-
sical implementation of these operators.

In the application presented in this paper, we have
made specific choices concerning these points, in order
to perform an efficient statistical optimization. Of course,
there exist many possible variations of this structure: we
implemented a classical scheme, where the population size
of each generation is constant, and the initial population
is randomly generated on the search space. This appli-
cation has been programmed with ALGON [31], a gen-
eral Genetic Algorithm software which was developed at
INRIA by two of the authors.

2.2 The standard method

For a given problem to be solved with the help of a Genetic
Algorithm, it is necessary to define an efficient coding of
its possible solutions (also called individuals) which could
lend themselves to the action of genetic operators. It is also
necessary to carefully design a fitness function that eval-
uates the qualities displayed by an individual confronted
to the given problem.

In the present case:

• The coding of an individual is a binary sequence wich
represents its genotype from which the diffraction spec-
trum (its phenotype) is calculated.

• The fitness function carries the “resemblance” of the
spectrum generated by a given individual to the target
spectrum. With Ne sample points (the values of the
wave vector q for which the intensity In(q) is calcu-
lated) in the spectrum, one defines the following “dis-
tance” between spectra and the fitness function:

distance(spi, spc) =
1

Ne

Ne−1∑
k=0

[spi(k) − spc(k)]2

fitness(i) = exp (−distance(spi, spc))

where (spi(k))k∈[0;Ne−1] are the values of the
sampled spectrum associated to individual i and
(spc(k))k∈[0;Ne−1] the values of the target spectrum.
Note that this value is exactly 1 when the spectra spi

and spc are identical, and goes to 0 as the two spectra
are increasingly different.

An analysis has been performed with target spectra
that are X-ray diffraction spectra numerically calculated
using the general model of equation (4) with a given binary
sequence of length N . Figures 12 and 13 show sufficiently
well how very close they are to the experimental data.
This binary sequence is then the exact solution and the
individual which represents it has a fitness value equal to 1.
One assumes furthermore that the sequence length N is
known, which limits the search space to the set of binary
chains of length N for a space size of 2N .

We consider, as in [10], a Prouhet-Thue-Morse se-
quence of order 7, the size if the search space is then 2128.
Such a size alone would not be an obstacle for the conver-
gence of an optimization algorithm if the fitness function
did not have a multimodal character, i.e. it has only one
global optimum.

Preliminary computations show that a classical
Genetic Algorithm must be improved due to difficulties
arising from the multimodal character of the fitness func-
tion and the lack of specificity of the Hamming distance to
characterise the “efficiency” of the individuals having the
best fitness value in nearing the solution (the Hamming
distance, that is the number of sites at which two binary
chains of identical length are different, is the natural dis-
tance used in search spaces when using character strings
or binary codes).
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Moreover, the sequence length has a direct effect on
the oscillating character of the corresponding spectrum.
In order to have a correct sampling of the target spec-
trum, the number of sample points Ne has thus to be in
proportion to the sequence length.

2.3 The shared Genetic Algorithm

Because of the above mentionned difficulties it has been
found useful to use the sharing [32] method which allows
to keep some genetic diversity in a population, so as to
reduce the risk of premature convergence. (See [33] for a
survey of the methods used for the conservation of genetic
diversity among a Genetic Algorithm population.)

Sharing methods can briefly be described as follows:
by analogy with the natural phenomenon of “niching”,
the Genetic Algorithm is modified in order to simultane-
ously explore all the promising zones it discovers in the
search space. The concept of sharing stems from the fol-
lowing need: If the individuals of a same population sub-
group have to share their resources, the growth of this
population is limited. In case of overpopulation, the indi-
viduals will tend to look for new territories to be explored.
The major way of controlling a Genetic Algorithm being
through its fitness function, a simple strategy is to lower
the fitness of an individual with respect to its neighbors
in the current population. It is based on the use of a dis-
tance defined on the search space and computed either on
chromosomes (genotypic distance) or on the search space
itself (phenotypic distance). In the current problem, we
shall keep the Hamming distance.

Another simple way to maintain genetic diversity and
to avoid fitness recalculation of the same individual, is to
forbid identical individuals inside the current population.
The application of a then so-called “elitist” strategy has
also proven to be efficient in order to reduce the effects of
fitness sensitivity to a small genetic change. In this case,
only a part of the population is replaced at each genera-
tion, this part being generally made of individuals having
the lowest fitness values. This elitist strategy has also the
advantage of keeping mainly those individuals that repre-
sent “good” solutions in the current population.

Moreover, the joint use of a sharing and an elitist strat-
egy raises the problem of the preservation of some ge-
netic diversity inside the selection process. The sharing
method presented by Miller and Saw in [34], thereafter
called Dynamic Niche Sharing, seems to us particularly
well adapted to combine the advantages of elitism and
sharing strategies. An improved version of this technique
is used here (see Appendix for details).

Finally, according to Baker [35], who has compared
several selection methods, the Stochastic Universal Sam-
pling selection method (instead of a classical Roulette
Wheel Selection) seems to us more appropriate in the
present problem. The Roulette Wheel Selection has a
larger variance with respect to the number of offspring
of a given individual, while these methods both produce
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Fig. 4. Spectrum In(q) generated with the Prouhet-Thue-
Morse sequence of size 32 (see text).

in average the same expected number of offspring p(i) that
is for individual i of a population of size N :

p(i) =
fitness(i)∑N

j=1 fitness(j)
· (5)

3 Results

Three types of sequences with three different length have
been tested to generate the target spectrum for the Genetic
Algorithm: a Prouhet-Thue-Morse sequence, a periodic se-
quence (strict alternance of 0 and 1), and a randomly gen-
erated sequence. Their sizes have been successively 32, 64
and 128.

3.1 Sequences of length 32

Figures 4, 5 and 6 show the intensities In(q) as a function
of the wave vector q for the target spectra corresponding
to the three different types of sequences of size 32.

The Genetic Algorithm parameters are:

• Population size: 160 individuals.
• Use of two points crossover, with a crossover probabil-

ity pc = 0.85.
• Mutation probability pm = 0.02.
• Use of the dynamic niche sharing, with the num-

ber of niches to be identified P = 8, the parame-
ter σshare = 12, that controls the mean radius of a
niche (the Hamming distance is used for a metric on
the search space).

• The survival rate ts = 0.5. It corresponds to the pro-
portion of individuals in a population subset being au-
tomatically transferred to the next generation.
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Fig. 5. Spectrum In(q) generated with the periodic sequence
of size 32 (see text).
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Fig. 6. Spectrum In(q) generated with the random sequence
of size 32 (see text).

The dynamic niche sharing parameters have been chosen
in order to take into account several facts:

• Two binary chains of length l uniformly randomly cho-
sen differ on the average by l/2. A value of σshare

too close to or larger than l/2 would induce too many
overlaps.

• A value σshare too low would induce a too large num-
ber of population subsets considering the number of
desired niches. The majority of the population indi-
viduals would then belong to the non-peaks category.

• For a given size of population subset, a too large num-
ber of niches would induce an average population sub-
sets size too low.

The parameter P is thus chosen as a function of the
population size, so that the population subsets be not too
small. The parameter σshare has thus been fixed in or-
der to perform a classification of the major part of the
population.

Table 2. Parameter setting of the GA for sequences of
length 32.

Population size 160

pc 0.85

pm 0.02

Number of niches P 8

σshare 12

Survival rate ts 0.5

Number of sample points Ns 210

Table 3. Number of generations to find the target for se-
quences of length 32.

Sequence Ng Ng Ng Standard

minimum maximum average deviation

Periodic 24 47 35.5 7.5

PTM 33 163 66 35

Random 46 447 104 90

Finally, the number of sample points Ns is 210, this
number directly influences the computation time, but a
subsampling of the spectrum would diminish the efficiency
of the fitness function.

These parameters are summarised in Table 2.
For 20 tests performed according to these condi-

tions, we present in Table 3 the number of the genera-
tion Ng used to find the target sequence, or its mirror,
whose spectrum in the case of the Prouhet-Thue-Morse
and periodic sequence as quasi identical to the target spec-
trum.

The computation time for 100 generations is near
5 minutes on a dec-alpha station (DEC-3000-M300X).

It is interesting to note the extent to which, the more
the spectrum depends on a regular underlying structure,
the more efficient the Genetic Algorithm is.

3.2 Sequences of length 64

The results are shown in Figures 7, 8 and 9. The Genetic
Algorithm parameters are presented in Table 4.

The average computation time for 100 generations is
40 minutes on a dec-alpha station. For 5 tests we obtain
the results of Table 5.

For this parameter setting, the performances of the
Genetic Algorithm on a random sequence are very bad,
confirming the fact that spectra based on sequences hav-
ing a regular structure are more easily inversed (we have
already noticed this with the experiments on length 32 se-
quences). A modified parameters setting (see Tab. 6) led
to a computation time of almost 2 hours for 100 genera-
tions, results are presented in the last raw of Table 5.

For comparison, the Genetic Algorithm needs around
20 000 fitness evaluations to converge in the case of a peri-
odic sequence, whereas it needs 50 000 fitness evaluations
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Fig. 7. Spectrum In(q) generated with the Prouhet-Thue-
Morse sequence of size 64 (see text).
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Fig. 8. Spectrum In(q) generated with the periodic sequence
of size 64 (see text).

Fig. 9. Spectrum In(q) generated with the random sequence
of size 64 (see text).

Table 4. Parameter setting of the GA for periodic and PTM
sequences of length 64.

Population size 400

pc 0.85

pm 0.01

Number of niches P 16

σshare 24

Survival rate ts 0.5

Number of sample points Ns 416

Table 5. Number of generations to find the target for se-
quences of length 64.

Sequence Ng Ng Ng Standard

minimum maximum average deviation

Periodic 63 136 103.6 28

PTM 221 341 262 47

random 567 1712 1068 462

Table 6. Parameter setting of the GA for random sequences
of length 64.

Population size 1000

pc 0.85

pm 0.01

Number of niches P 20

σshare 24

Survival rate ts 0.5

Number of sample points Ns 520

for the Prouhet-Thue-Morse sequence, and 500 000 for
the random sequence (the search space is always of size
|S| = 264 � 1.84 × 1018).

3.3 Sequences of length 128

In this case, experiments on the Prouhet-Thue-Morse se-
quence of order 7 and on a periodic sequence have been
performed (Figs. 10 and 11 show the associated target
spectra). The size of the search space increases in an ex-
ponential way with respect to the preceding test, and at
the same time, the computation time of the spectra also
increases in a significant way. If we increase the number
of sample points proportionally to the sequence length,
the complexity would be O(n2). Experiments prove that
increasing the population size is sufficient to make the
Genetic Algorithm converge to the solution.

The Genetic Algorithm parameters are summarised in
Table 7.

The Genetic Algorithm finally found the Prouhet-
Thue-Morse sequence after 884 generations, i.e. near
900 000 fitness evaluations (due to rounding errors during
the computation of the number of survivors of a popula-
tion subset, an average of 1000 individuals are created at
each generation). For the periodic sequence, 184 genera-
tions were necessary, i.e. near 200 000 fitness evaluations.
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Fig. 10. Spectrum In(q) generated with the Prouhet-Thue-
Morse sequence of size 128.

Fig. 11. Spectrum In(q) generated with the periodic sequence
of size 128.

Table 7. Parameter setting of the GA for sequences of
length 128.

Population size 2000

pc 0.85

pm 0.01

Number of niches P 30

σshare 48

Survival rate ts 0.5

Number of sample points Ns 624

The computations time was near 1 hour for 10 genera-
tions. The Genetic Algorithm parameter setting certainly
needs further adjustments (also the choice of the num-
ber of sampling points), but it is obvious that such com-
putation times discourage systematic tests. We can still
consider as quite satisfactory the fact that it is definitely
possible to solve this problem with a Genetic Algorithm.

-4

-3

-2

-1

0

1

2

65.5 66 66.5 67 67.5 68

 

Fig. 12. Experimental spectrum, showing the diffracted inten-
sity I(q) in arbitrary units as a function of wave vector q, for
a Prouhet-Thue-Morse GaAs-AlAs multilayer with N = 128
(courtesy F. Laruelle, L. Leprince and J. Schneck, CNET-
Bagneux).

 

Fig. 13. Computed spectrum from the model of [10] with a
simple substrate model.

4 Conclusion

We presented an application of Genetic Algorithms to the
analysis of high resolution X-Ray diffraction spectra of
binary multilayer heterostructures. The method actually
allows the accurate retrieval of the binary generating se-
quence from the analysis of spectra of an unknown multi-
layer sample up to a layer number of 128.

Other target spectra should be investigated, so as to
enable us to know the extent to which this technology al-
lows satisfactory structure determination in systems with
aperiodic order.

The authors thank E. Cockayne for sending them his com-
puter program of reference [10], F. Laruelle, L. Leprince and J.
Schneck for stimulating discussions, and the anonymous refer-
ees for their remarks.
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Fig. 14. An elitist strategy for dynamic niche sharing.

Appendix: Dynamic niche sharing

This method rests on the two hypotheses usually made for
sharing:

1. the number of peaks P can validly be estimated;
2. the peaks are all situated to within a minimum relative

distance of 2 × σshare (this is the threshold value for
the distance between two individuals under which they
are considered to belong to the same niche).

The essential characteristic is that for a Genetic
Algorithm using sharing this way, the individuals grad-
ually occupy the niches as generations develop. The dy-
namic niche sharing tends to identify P peaks of this form-
ing niches and uses the dynamically identified peaks to
classify all the individuals as belonging either to one of
the dynamic niches (because they are within a distance
smaller than σshare of a dynamic peak), or belonging to
the class of the “non-peak”.

Within this framework, the modified fitness
value Fshare of an individual belonging to a dynamic
niche equals its initial fitness divided by the size of the
dynamic niche population. The fitness of the individuals
belonging to the category of non-peaks is divided by the
meter mi used for the classical sharing (see [32]). So the
new fitness value Fshare is given by

Fshare(i) =
fitness(i)

mdsh,i

where the dynamic niche meter, mdsh,i is given by:

mdsh,i =

{
nj if i belongs to the dynamic niche j,

mi if i belongs to the “non-peak”class).

with

mi =
N∑

k=1

Sh(dik).

The peak identification technique proposed by Miller
and Shaw (Greedy Dynamic Peak Identification) can be
described as follows:

1. Sorting of the population based on decreasing initial
fitness.

2. Extraction of individual i from this sorting.
3. If i belongs to one or several niches, it is classified in

the niche the dynamic peak of which is the closest to
i. Else i becomes a new dynamic peak and the number
of identified niches increases by 1.

4. If the number of identified niches is less that P or if i is
less that the population size, one goes back to step 2.

5. Else: end.
Essentially, the dynamic niche sharing is different from

the classical sharing by the distribution of the population
inside a niche. In this last case, the count of the individ-
uals inside a given niche is done separately for each of
the individuals. And since it knocks down the shared fit-
ness, the Genetic Algorithm tends to reduce this count
with the effect of making more uniform the population
distribution inside a given niche. This process then slows
down the convergence speed of this population subset to-
wards the optimum of the considered niche (under the
hypothesis, however, that inside a given niche, there can
be only one optimum). On the contrary the dynamic niche
sharing identify the niches in a more global manner and
knocks down identically all the individuals of a given niche.
The selective pressure inside a given niche then depends
only on the initial fitness value of the individuals, yet un-
changed by sharing.

This value easily lends itself to the application of an
“elitist” strategy, since one indeed can use the explicit di-
vision of the population into subsets: one subset per iden-
tified niche and possibly the subset of unclassified individ-
uals. The operational choice to keep a fixed proportion of
the population then naturally extends to each population
subset.

Figure 14 is an illustration of this idea.
• The left table shows a population classified in decreas-

ing order (A1 has the best fitness value, C4 the lowest).
The population is divided into three population sub-
sets corresponding to niches A, B and C, where A1 is
the best individual of niche A, A4 the worst, etc ... This
example illustrates the case where the whole popula-
tion is taken into account for the choice of survivors
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(the proportion of survivors is 0.5, survivors being in-
dividuals selected to be transfered directly from the
former the the latter population class). All the individ-
uals of niche A survive, contrary to those of niche C.

• The right table illustrates the case when the choice of
survivors is performed, still with a proportion of 0.5,
out of the individual population subsets. The individ-
uals are gathered in each niche and internally classi-
fied in decreasing order. Each niche having the same
number of individuals, they all have equal numbers of
survivors.

It can be clearly seen that the first method goes against
the aim of sharing which is to keep each niche populated,
or at least the interesting ones if there are too many.
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