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Close to the Mott transition, lattice degrees of freedom react to the softening of electron degrees
of freedom. This results in a change of lattice spacing, a diverging compressibility and a critical
anomaly of the sound velocity. These effects are investigated within a simple model, in the framework
of dynamical mean-field theory. The results compare favorably to recent experiments on the layered
organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl . We predict that effects of a similar magnitude
are expected for V2O3 , despite the much larger value of the elastic modulus of this material.

The Mott transition, which is the metal-insulator
transition (MIT) induced by electron-electron interac-
tions, has been investigated theoretically and experi-
mentally for many years [1, 2]. Some materials are
poised very close to the Mott transition, which can
therefore be induced by varying pressure, tempera-
ture, or chemical composition. This is the case of
(V1−xCrx)2O3 , and of the family of layered molec-
ular crystals κ-(BEDT-TTF)2Xwhere X is an anion
(e.g.,X=I3,Cu[N(CN)2]Cl,Cu(SCN)2). In these com-
pounds, one observes a pressure induced, finite tempera-
ture, first order phase transition. Pressure increases the
bandwidth, reducing the relative interaction strength.
The first-order transition line ends at a second-order crit-
ical endpoint (Pc, Tc). The critical behaviour at this end-
point has been recently the subject of remarkable exper-
imental investigations [3, 4].

On the theory side, our understanding of the Mott
transition has benefitted from the development of dy-
namical mean-field theory (DMFT) [5, 6]. In this the-
ory, electronic degrees of freedom are the driving force
of the transition, and the critical endpoint is associated
with a diverging electronic response function χel (defined
below) [7, 8]. An analogy exists with the liquid-gas tran-
sition. The insulating phase is a low-density gas of neu-
tral bound pairs of doubly occupied and empty sites; the
metal is a high-density liquid of unbound doubly- occu-
pied and empty sites which therefore conduct. The scalar
order parameter is associated with the low-energy spec-
tral weight.

In real materials however, lattice degrees of freedom do
play a role at the Mott transition. This is expected on
a physical basis: in the metallic phase the itinerant elec-
trons participate more in the cohesion of the solid than
in the insulating phase where they are localized. As a
result, the lattice spacing increases when going from the
metal to the insulator. A discontinuous change of the lat-
tice spacing through the first-order metal-insulator tran-
sition line is indeed observed in (V1−xCrx)2O3 [9]. Ra-

man scattering experiments [10] find that in the metallic
state the frequency of certain phonons associated with
the BEDT-TTF molecules has a non-monotonic tem-
perature dependence below 200 K. The effect of the
Mott transition on optical (Einstein) phonons was stud-
ied theoretically in [11]. Acoustic experiments [12] find
an anomaly in the sound velocity of the organic mate-
rials as a function of temperature, with a particularly
dramatic reduction recently observed [13] for κ-(BEDT-
TTF)2Cu[N(CN)2]Cl near the Mott critical endpoint at
Tc ≃ 40K.

In this paper, we propose a simple theory of the effects
connected with lattice expansion through the Mott tran-
sition, and the associated divergence of the compressibil-
ity. We address in particular the critical anomaly of the
sound velocity observed in acoustic experiments. For this
purpose, both the electronic degrees of freedom and the
ionic positions must be retained in a model description.
We adopt the simplest possible framework, previously
introduced in Ref.[7], namely the compressible Hubbard
model (see also [14]), with the electron correlations be-
ing treated within DMFT. Our results compare favor-
ably to the recent acoustic experiments on the layered or-
ganic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl [referred
to in the rest of this paper simply as the organic-
conductor(OC).] Furthermore, we show that effects of a
similar magnitude are expected for V2O3 , despite the
much larger value of the elastic modulus of this material.

In the following, we assume that the free energy density
can be written as

F = F0 − P0(v − v0) +
1

2
B0

(v − v0)
2

v0

+ Fel[D(v)] (1)

The last term Fel, is the contribution of the electronic
degrees of freedom which are active through the transi-
tion (e.g the d-shell for V2O3 ). Specifically we take Fel

to be the free energy of a single band, half-filled Hubbard
model [15] with a half-bandwidth D(v) depending on the
unit-cell volume v. The first three terms arise from ex-
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FIG. 1: The variation of the electronic response function χel

with the bandwidth D for various temperatures. The param-
eters are U/D0 = 2.492 and T/D0 = 0.060, 0.055, 0.050 from
right to left. The results are from DMFT solved in the IPT
approximation.

panding the free energy due to other degrees of freedom
about a reference cell volume v0, P0 and B0 being the cor-
responding (reference) pressure and the bulk elastic mod-
ulus. Expression (1) can be derived from a microscopic

hamiltonian H = Hlat[Ri] −
∑

ijσ t(Ri − Rj)d
†
iσdjσ +

U
∑

i ni↑ni↓, involving both the ion positions Ri and the
electronic degrees of freedom, when all phonon excita-

tions are neglected, i.e all lattice displacements Ri − Rj

are taken to be uniform. It is conventional (see e.g [16])
to use an exponential parametrization for D(v), which
we linearize since relative changes in v are small: D(v) =
D0 exp [−γ(v − v0)/v0] ≃ D0 [1 − γ(v − v0)/v0]. As a re-
sult, the pressure P = −∂F/∂v and the compressibility
K ≡ −(v∂P/∂v)−1 = (v∂2F/∂v2)−1 are given by:

P = P0 − B0(v − v0)/v0 − (γD0/v0)Tel (2)

(K v)−1 = B0/v0 − (γD0/v0)
2 χel (3)

Here Tel is the (dimensionless) electronic kinetic energy
Tel (T, D(v), U) ≡ −∂Fel/∂D, and χel is the electronic
response function: χel (T, D(v), U) ≡ −∂2Fel/∂D2.
Both quantities are associated with the purely electronic
Hubbard model. Within DMFT, χel is found [7, 8] to
reach a peak value χmax

el (T, U) for a given temperature
T at a specific value of D = Del

m(T, U) , and eventually,
to diverge at T = T el

c , D = Del
c . This is illustrated in

Fig.1 using DMFT together with iterated perturbation
theory (IPT) [5] in which case T el

c ≃ 0.02 U, Del
c ≃ 0.4 U .

In the compressible model, as pointed out in Ref.[7], the
Mott critical endpoint will therefore occur at Tc > T el

c

and will be signalled by the divergence of K. From (3),
this happens when χmax

el has reached a large enough
(but not divergent) value such that D0 χmax

el (Tc) =
B0v0/(γ2D0). The corresponding critical half-bandwidth
is Dc = Del

m(Tc, U) and the critical cell volume is deter-
mined from (vc − v0)/v0 = −(Dc − D0)/(γD0). The
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FIG. 2: Temperature dependence of the sound velocity at
various pressures for parameters corresponding to OC. Inset:
position and amplitude of anomaly below Pc

critical pressure can then be determined using Eq. (2). If
Tc is close enough to T el

c then (for T > T el
c ) the ap-

proximate form χmax
el ≃ αel(U)T el

c /(T − T el
c ) can be

used , with αel(U) = α/U where α is a number (≃
0.5 in our calculations). Hence one obtains: ∆Tc/Tc ≡
(Tc − T el

c )/T el
c = α [γ2D0/(B0v0)](D0/U).

The inverse compressibility K−1 is directly propor-
tional to the square of the sound velocity s: s ∝ 1/

√
K.

At Tc, since the compressibility diverges, the sound-
velocity vanishes. Hence, right at the critical point the
acoustic phonon branch under consideration disperses
anomalously. If the crystal has inversion symmetry, the
dispersion should go as ω ∝ q2. Thus from a calcula-
tion of the inverse compressibility along lines similar to
that in Ref. [7] one can determine the dependence of the
sound velocity on temperature and pressure, including its
critical anomaly, as reported below. Note that a similar
critical behaviour of the sound-velocity is well known in
the context of the usual liquid-gas transition [17].

The compressibility K in Eq. (3) is associated with
a change of the total density ρ = ρion + ρel, keeping
fixed the ratio ρel/ρion between the number of valence
electrons and the number of ions. It obeys the gen-
eral thermodynamic relation K−1 = ρ2∂µ/∂ρ, with µ
the chemical potential of the whole system. We em-
phasize that K has nothing to do with the charge com-
pressibility κel = ∂nel/∂µel of the Hubbard model itself,
which measures the sensitivity to doping away from half-
filling, i.e to a change of the electron density per atom
nel = ρel/ρion. Hence, sound velocity measurements do
not provide information on a possible divergence of κel

(studied theoretically e.g in [18]) but rather on the total
compressibility K.

The details of the calculational procedure have been
described in Ref. [7], and we avoid repeating them here.
The parameter values we have chosen for the two mate-
rials are given in Table 1. Our approach is to consider
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FIG. 3: Temperature dependence of the sound velocity at
various pressures for parameters corresponding to V2O3

Parameter V2O3 OC

D0 1 eV .13 eV

v0 100 Å3 1700 Å3

B0 2140 kbar 122 kbar

γ 3 5

B0v0 133 eV 129 eV

U/D0 2.468 2.492

B0v0/(γ
2D0) 14.7 40

TABLE I: Table of parameter values for V2O3 and the
organic-conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl (OC)

pure V2O3 and the OC at ambient pressure (i.e., P0 = 1
bar is essentially zero) as reference compounds, for which
v0 and B0 are taken from experiments. For the OC, we
take the values D0 ≃ 0.13 eV and γ = 5, which were
found in [19] to be consistent with transport data. For
V2O3 , we take D0 = 1 eV and γ = 3 (values considered
standard for d-electron systems [16]). Finally, the value
of U/D0 is adjusted so that the critical pressure is repro-
duced correctly (Pc ≃ −4 kbar for V2O3 , Pc ≃ +200 bar
for the OC). This requires U/D0 to be poised very close
to the Mott critical value for the pure electronic prob-
lem (1.26 in our calculations). Using the parameters in
Table. 1, one sees that the (dimension-less) combination
B0v0/(γ2D0) is large for both compounds (≃ 14.7 for
V2O3 and ≃ 40 for the OC). This implies that the Mott
transition arises for large values of D0χel, i.e., the ex-
perimentally observed transition is definitely driven by

the electronic degrees of freedom, and very close to the
purely electronic Mott transition. Specifically, we find
that the relative shift ∆Tc/Tc of the critical tempera-
ture due to the coupling to the lattice, is as small as
1.4% for V2O3 and even smaller for the organic con-
ductors. In fact it is remarkable that despite the very
different values of the bulk modulus of the two materials
(the OC being much softer than V2O3 ), the combina-
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FIG. 4: The sound velocity as a function of pressure at various
fixed temperature for parameters corresponding to OC

tion B0v0/(γ2D0) only differs by a factor of 3 between
them. As a result, the order of magnitude of the sound-
velocity anomaly is expected to be similar in both ma-
terials, since K0v0/Kv = 1 − (γ2D0/B0v0)D0χel. We
emphasize that there is a significant difference between
our choice of parameters and that made in Ref. [7] for
V2O3 : there, a much smaller value of B0 (much smaller
than the measured experimental value) and somewhat
larger values of U/D were used in order to obtain vol-
ume jumps comparable to what is seen experimentally,
resulting in a large relative shift ∆Tc/Tc, on the scale of
40%. Because the contribution of the electronic degrees
of freedom to the total bulk modulus is comparatively
small, it is hard to reconcile the choice made in Ref. [7]
with experimental data for this quantity. On the other
hand, with our choice of B0, the calculated fractional
volume jump ∆v/v0 through the transition is ∼ 0.2%,
too small compared to the observed [9] jump (∼ 1%).
We comment on a possible resolution of this problem to-
wards the end of this paper.

Figs. 2 and 3 show our results for the temperature-
dependence of the sound velocity computed using the
method described above, for the parameters representa-
tive of the OC and V2O3 and for several pressures. At
the critical pressure P = Pc, the sound-velocity vanishes
according to the mean-field law s ∝ (T − Tc)

1/2 (K di-
verges as 1/(T − Tc)). A pronounced dip remains visible
in a rather extended range of pressure both above and
below Pc. The overall shape of these curves, as well as
the typical order of magnitude of the effect are in quite
good agreement with the experimental data for the OC,
recently published in [13]. For example, we obtain a dip
of relative size ∆s/s0 ≃ 10% for P ≃ 1.3Pc, consistent
with the experimental observation.

In Fig.4 and 5, we show the sound- velocity as a func-
tion of pressure for various temperatures. This has been
studied in a less systematic manner in the experiments
on the OC, but the overall shape and magnitude of our
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FIG. 5: The sound velocity as a function of pressure at various
fixed temperatures for parameters corresponding to V2O3. In-
set: The corresponding phase diagram. The central line and
the lines on either side correspond to the transition pressure
Ptr and the spinodal pressures respectively

results are again consistent with the published data [13].
In particular, the curves in Figs.4-5 show a marked asym-
metry: on the low-pressure (insulating) side the pressure
dependence is rather weak and a dip appears only very
close to Pc, while a more gradual and sizeable pressure-
dependence is observed on the high- pressure (metallic)
side. This reflects the asymmetry in the electronic re-
sponse function χel observed on Fig.1. It is expected
qualitatively, since electrons participate much less to the
cohesive energy on the insulating side, and is also ob-
served experimentally [13].

The inset of Fig. 5 shows the temperature-pressure
phase diagram for parameters corresponding to V2O3 .
The slope dPtr/dT obtained is too large compared to
the observed value. We believe that this, as well as
the problem mentioned above, namely the smallness of
the calculated ∆v/v0, can be resolved as follows. Let
Del

tr(T ) = D(vel
tr(T )) be the half-bandwidth for metal-

insulator coexistence in the purely electronic problem at
temperature T . For T well below Tc, the fractional differ-
ential volumes δvi,m/v0 ≡ (vi,m −vel

tr(T ))/v0 of the coex-
isting insulating and metallic phases and the transition
pressure Ptr in the presence of lattice coupling are ap-
proximately δvi/v0 ≃ −δvm/v0 ≃ γ(Tm−Ti)/(B0v0/D0)
and Ptr ≃ B0(D

el
tr(T )−D0)/(γD0)−(γD0/v0)(Tm+Ti)/2

(compare 2). Here Ti,m are Tel evaluated in the coexist-
ing insulating and metallic phases respectively. These
expressions are in good agreement with the numerical
results reported above and in Ref. [7]. In the context
of more realistic models for the electronic problem, one
expects that differential screening effects would reduce
(enhance) the effective Hubbard U and correspondingly
enhance (reduce) T , in the metallic (insulating) phase,
leading to an overall enhancement of (vi−vm)/v0. An ad-
ditional enhancement factor might come from the orbital

degeneracy in V2O3 . These effects could be addressed
in future studies of multi-band Hubbard models, includ-
ing screening effects in a self-consistent manner. High-
precision experimental measurements of optical spectral
weights in the coexisting insulating and metallic phases
would also be very interesting, and could provide infor-
mation on the kinetic energies Ti,m.
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