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A B S T R A C T

Many workers have found that the recollapse of a dark matter halo after decoupling has a self-

similar dynamical phase. This behaviour is maintained strictly so long as the infall continues,

but it appears to evolve smoothly into the virialized steady state and to transmit some of its

properties intact. The density profiles established in this phase are all close to the isothermal

inverse-square law, however, which is steeper than the predictions of some N-body

simulations for the central regions of the halo, which are in turn steeper than the density

profiles observed in the central regions of some galaxies, particularly dwarfs and low-surface-

brightness galaxies. The outer regions of galaxies both as observed and as simulated have

density profiles steeper than the self-similar profile. Nevertheless, there appears to be an

intermediate region in most galaxies in which the inverse-square behaviour is a good

description. The outer deviations can be explained plausibly in terms of the transition from a

self-gravitating extended halo to a Keplerian flow on to a dominant central mass (the

isothermal distribution cannot be complete), but the inner deviations are more problematic.

Rather than attack this question directly, we use in this paper a novel coarse-graining

technique combined with a shell code to establish both the distribution function associated

with the self-similar density profile and the nature of the possible deviations in the central

regions. In spherical symmetry we find that both in the case of purely radial orbits and in the

case of orbits with non-zero angular momentum the self-similar density profile should flatten

progressively near the centre of the system. The NFW limit of 21 seems possible. In a section

aimed at demonstrating our technique for a spherically symmetric steady state, we argue that

a Gaussian distribution function is the best approximation near the centre of the system.

Key words: galaxies: formation – dark matter.

1 I N T R O D U C T I O N

The study of the radial infall of dark matter and the realization that

the evolution becomes self-similar has by now a long history [see,

for example, Henriksen & Widrow (1999) for a summary of the

relevant references and a nearly state of the art statement of our

understanding]. The salient theoretical behaviour is well known if

not completely understood, but it yields density profiles that are

theoretically distinct from the inverse square law yet observation-

ally indistinguishable from this law. However, the NFW (Navarro,

Frenk & White 1996) law from N-body simulations, even if slightly

steeper when resolution effects are taken into account (e.g. Moore

et al. 1998, but see also Kravtsov et al. 1998), is distinctly flatter

than the inverse square law in the central regions. Moreover, in

some galaxies [low-surface-brightness (LSB) galaxies (de Blok

et al. 2001); some dwarf ellipticals (Stil 1999); and even brighter

elliptical galaxies compared with the fainter ellipticals (Merritt &

Cruz 2001)] the observed density profile is significantly flatter in

these regions than even the N-body profiles (except Kravtsov et al.

1998). Both observed and simulated profiles are steeper than the

inverse square law in the outer regions, but this can be understood

(Henriksen & Widrow 1999) in terms of secondary accretion after

most of the halo mass has fallen in.

We take the view in this paper that, if finite-resolution effects are

at work in the centre of the simulations, and perhaps also in reality,

since obviously real particles cannot yield an infinite-density cusp,

then we may gain some insight by solving analytically the

collisionless Boltzmann equation (CBE) for the distribution

function (DF) in a series expansion in powers of the inverse

‘smoothing length’ (to be defined precisely below). In such an

expansion the lowest order is the coarsest-grained approximation,

and higher orders yield progressively more finely grained

information. It transpires that in this way we can deduce the

radial DF necessary to maintain the strict self-similarity, and place
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some constraints on modifications to this DF that can produce

flattening.

Our method of coarse graining is by non-canonical transforma-

tion on the phase space (we make a special choice of a stretching

transformation here, but the method is more general) which

produces a definite equation to be satisfied by each term in our

series. We illustrate the method first by applying a stretching

transformation to a spherically symmetric isotropic equilibrium.

The bulk of the paper is devoted to exploring the self-similar

‘equilibrium’ maintained by the continuing accretion on to a

relaxed core (Fillmore & Goldreich 1984; Bertschinger 1985;

Henriksen & Widrow 1999).

A consideration of the entropy for the system allows us to

suggest that the central DF in spherical equilibrium is Gaussian in

velocity with a separable radial dependence, while in exact self-

similar secondary infall the DF is everywhere proportional to

the square root of the particle binding energy. Moreover, the

requirement that the coarse-grained entropy be maximal predicts

perturbations that flatten the inner regions of steep self-similar

profiles and steepen the outer regions of flat self-similar profiles.

We show also that the addition of angular momentum to spherically

symmetric orbits does not change these conclusions.

2 C OA R S E G R A I N I N G O F T H E C B E B Y

N O N - C A N O N I C A L P H A S E - S PAC E

T R A N S F O R M AT I O N

We wish to coarse grain the CBE together with the mean field

Poisson equation in some systematic fashion. A simple smoothing

of phase space to obtain a coarser grid over which to define the DF

suffers from non-commutation with the operators in the CBE and

leads to a coarse-grained DF that is defined only qualitatively (e.g.

Binney & Tremaine 1987). Our idea is to use a coordinate

transformation on phase-space that does not preserve phase-space

volume and so is non-canonical. Although this can be applied to

evolving systems it is not very well defined because of a lack of

information concerning the initial conditions of the coarse-grained

(time-averaged for an evolving system) DF. Thus we will restrict

ourselves to systems that have attained ‘equilibrium’ in some

appropriate variables (see below).

The simplest example of this idea is to apply a stretching

transformation to phase space, and in fact this is the only

transformation that we have explored (the scale factor depends on

time in the self-similar examples). However, more general non-

canonical transformations may be found that are useful so we

continue with this label.

The stretching transformation can be readily carried out on an

equilibrium spherical collisionless system for which the governing

equations are

v›rf 2 ›rF›vf ¼ 0; ð1Þ

and

›rðr
2›rFÞ ¼ 4pGrr 2 ; 4pGr 2

ð
f 4pv 2 dv; ð2Þ

where f is the normal phase-space mass density and v is the

magnitude of the isotropic velocity. A scaling or stretching

transformation can be applied to the phase space as

r ˆ r‘ v ˆ uv; ð3Þ

f ˆ fm F ˆ m‘2u 3F; ð4Þ

r ˆ mu 3r; ð5Þ

where ‘, m and u represent constant factors that we may take here

to be dimensionless numbers. The phase-space volume thereby

transforms by the factor ‘
3u 3 and we will take m equal to the

reciprocal of this volume in order to conserve mass (for unbounded

systems). Thus ‘ and u are the theoretical smoothing ‘lengths’ in

phase space. Finally we scale f according to f ˆ f /ð4pGÞ.

The equations are the same in the stretched variables except that

the CBE becomes

v›rf 2R21›rF›vf ¼ 0; ð6Þ

where

R ; u 2‘: ð7Þ

As either or both of the phase-space variables are stretched this

parameter becomes large.

We coarse grain the system by assuming a convergent expansion

of the form

f ¼ Si¼0 f iðr; vÞR2i; ð8Þ

so that the lowest order contains the least information about the DF.

A similar expansion follows for the density and the potential.

Proceeding in this fashion we find first that f 0 ¼ f 0ðv
2Þ, and

consequently that

r0 ¼

ð
f 04pv 2 dv: ð9Þ

The limits in this equation would normally be set so as to include

just the bound particles. However, the stretched specific energy

ðE ˆ u 2EÞ is related to the other stretched quantities as E ¼

v 2/2þR21F and so is purely kinetic to lowest order. Thus we

take the upper limit for r0 to be simply vm, some maximum speed

at r ¼ 0, and the lower limit to be zero. The integral so defined is

denoted r0(vm). Consequently, one finds the harmonic potential in

lowest order (so that all particles are bound and turn where E ¼

R21FÞ to be

F0 ¼ r0r 2/6: ð10Þ

The first-order term in the DF expansion is now found to be

f 1 ¼
r0r 2

3

df 0

dv 2
; ð11Þ

and consequently

r1 ¼
4p

3
r0r 2

ðvm

0

v 2 df 0

dv 2
dv; ð12Þ

F1 ¼
p

15
r0r 4

ðvm

0

v 2 df 0

dv 2
dv; ð13Þ

assuming no central point mass. The next-order terms in these

series may be found to be proportional to r 4, since for example

›rf 2 ¼
2r2

0r 3

9

d2f 0

d2v 2
þ

2

5
r1r

df 0

dv 2
; ð14Þ

and so on. In this way we are generating an expansion of the type

necessary in general for polytropes (e.g. Chandrasekhar 1957, p.

94), but here we are able to relate the coefficients directly to the DF,

which is not necessarily a polytrope. In essence since most of the

physical system will be at small r for an arbitrarily stretched

coordinate, we are able to reinterpret the polytropic expansions in

terms of progressively finer graining.

The second-order term in the DF is proportional to r 4, but more
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importantly it involves the second derivative of f0 with respect to

v 2. This behaviour will continue to all orders for which the

highest-order derivative of f0 appearing is equal to the coarse-

grained order. One must therefore be careful to ensure that these

derivatives are sufficiently well-behaved to all orders that a

divergent density is avoided, which would render the expansion

invalid. For example, if we try to imitate a polytrope by setting

f 0 ¼ Aðcþ v2
m 2 v 2Þðn23=2Þ (A is a positive constant), then all

derivatives are well-behaved for v # vm at the cost of a

discontinuity in the DF at vm. The quantity c appears as a negative

constant potential (which is stretched by the factor u 2) to be added

to F0, and we keep only the negative-energy particles if we set

vmðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc 2R21r0r 2/6Þ

p
. However, the presence of R in this

last expression breaks the ordering of our expansion (8). Thus we

continue to treat vm as a constant and leave the corrections to

higher orders.

To obtain a continuous transition to zero at vm, we might take for

f0 one of a Gaussian DF,

f 0 ¼ A exp½ðv2
m 2 v 2Þ=2s�; ð15Þ

or a King-type DF (a constant potential is absorbed into v2
mÞ,

f 0 ¼ A{exp½ðv2
m 2 v 2Þ=2s�2 1: ð16Þ

Ultimately the choice of f0 must be that which best reflects the

coarse-grained image of the system in question. This seems to

require us to know something about the gross properties of the

system a priori, so that in fact our procedure is more like a

progressive ‘fine graining’. Each choice of coarse-grained DF f0
will generate by this procedure (provided that it may be carried out

properly as discussed above) a progressively more precise DF as

the fine-graining terms are added.

We may seek general principles concerning the form of f0
however. We note that the choice of the Gaussian is unique in the

present context in that it will be maintained in the DF to all orders.

In addition, it will maximize a version of the statistical entropy

(Nakamura 2000; Lynden-Bell 1967). The expansion is well

defined to all orders for the Gaussian, but we can only expect it to

apply to the central regions of finite systems (otherwise mass will

not be conserved as the scale is stretched).

The expansion of the Gibbs’ statistical entropy (essentially the

generalized ‘H function’ of Boltzmann when there are no

correlations) in the form (f0 is normalized by the total mass of

the system)

S ¼

ð
dt f 0 ln 1/f 0 2

f 1

R ð1 2 ln 1/f 0Þ þ · · · ð17Þ

shows that, since f0 is a small number (non-degenerate system) and

since f 1 , 0 (actually true for all three cases mentioned above

although we require n . 3=2 for the polytrope), the entropy

decreases as the fine-graining terms are added. This is as expected.

Moreover, with the choice of the Gaussian for f0 the DF is

separable. This makes the velocity distribution at all r the same as

one might expect in the central equilibrium region.

Our conclusion in this section is that the best-behaved coarse-

graining expansion is consistent with the proposition that a

Gaussian should be the DF in the central regions of finite spherical

systems that have undergone relaxation and hence the evolution

towards maximum entropy. Our arguments do not, of course, prove

this proposition, but they support the statistical arguments

(Nakamura 2000; Shu 1978, 1987; Lynden-Bell 1967). We have

essentially used the idea that in a relaxed system we expect the

fine-grained DF and the coarse-grained DF to be the same; that is,

that the DF should be independent of cell size. In fact the principal

advantage of our method is that the coarse-graining expansion

dispenses with the necessity in the combinatorial statistical

treatment of making an arbitrary distinction between microcells

and macrocells (Shu 1978). Moreover, it is in agreement with the

maximum entropy approach of Nakamura (2000).

It may seem contradictory to infer a DF that remains the same at

all radii, as found above, while at the same time restricting our

proposition to the central regions of the system. In fact, in a

completely relaxed system the DF should be the same at all radii, as

in fact is true for the Gaussian DF. We know this, however, to yield

an infinite system (Lynden-Bell 1967), and so presumably

deviations from the relaxed state increase with radius in any finite

system. This means that at large radii the coarse-grained DF and

the fine-grained DF no longer coincide, and the coarse-grained DF

need no longer satisfy Liouville’s theorem. Moreover, our

stretching transformation cannot be applied too close to the

boundary of a finite system.

These ideas suggest, for example, that polytropes are not in a

maximum entropy condition, but have to be constructed rather

carefully. The density profile consistent with a Gaussian DF does

not have a central cusp, so simulations that predict such cusps are

presumably not sufficiently relaxed near the centre. Our

investigations of the next two sections suggest that progressively

finer resolutions of the central regions of self-similar infall produce

flatter density profiles.

3 C OA R S E G R A I N I N G O F S E L F - S I M I L A R

I N FA L L W I T H R A D I A L O R B I T S

When we restrict ourselves mainly to radial orbits, we introduce

the usual canonical distribution function Fðt; r; vrÞ such that the

complete phase-space mass density is given by

f ; ð4p2GÞ21dðj 2ÞF; ð18Þ

where j 2 ; r 2ðv2
u þ v2

fÞ. The mean-field treatment is then given by

the combined CBE and Poisson equation in the forms (see e.g.

Henriksen & Widrow, 1995)

›tF þ vr›rF 2 ›rF›vr
F ¼ 0; ð19Þ

and

›rðr
2›rFÞ ¼

ð
F dvr ¼ 4pGr 2r; ð20Þ

where Fðt; rÞ is the gravitational potential and rðt; rÞ is the mass

density.

In the previous section we pointed out that our procedure made

the most sense when applied to a system that is in ‘equilibrium’,

since otherwise the coarse graining would also be over the history

of the system. However, a time-dependent case which is never-

theless in a kind of equilibrium is the self-similar phase of the

formation of the system. In fact by changing to variables

appropriately scaled by time (Fillmore & Goldreich 1984;

Bertschinger 1985; Henriksen & Widrow 1997, 1999) this phase

is transformed to an equivalent steady problem.

Here we adopt these variables in a formalism given by Carter &

Henriksen (1991; see also Henriksen & Widrow 1995, 1999;

Henriksen 1997), where we adopt an exponential time T:

eaT ¼ at; dT/dt ¼ e2aT : ð21Þ

Coarse-graining the distribution function of CDM 425
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It is convenient to take time to be measured in units of some

fiducial value so that a, the stretching scale for time, is also a

dimensionless number. We introduce the scaled phase-space

variables X and Y for the radius and radial velocity, respectively, as

X ; r e2ðd/aÞaT ;Y ; vr e2ðd/a21ÞaT ; ð22Þ

where d provides for an independent spatial stretching scale (in the

previous section the scaled quantities were not given new labels,

but we do this here to agree with previous practice). In a self-

similar system, however this ratio is constant. In addition, we scale

the radial canonical phase-space DF according to

PðX; YÞ ; F e2ðd/a21ÞaT ; ð23Þ

where the lack of a dependence on T in the scaled DF P is the

condition for self-similarity. The potential is correspondingly

scaled to C(X), where

C ; e22ðd/a21ÞaTF; ð24Þ

and the density is scaled to u(X), where

u ; r e2aT : ð25Þ

Consequently,

u ¼
1

4pX 2

ð
P dY : ð26Þ

We observe that the phase-space volume element DrDvr has been

scaled according to

DrDvr ¼ DXDY eð2d/a21ÞaT : ð27Þ

The scaling ‘preserves’ mass, since

PDXDY eð3d/d22aÞT ; FDrDvr ; Dm; ð28Þ

together with 3d 2 2a ¼ m, where m is the mass scale (e.g.

Henriksen & Widrow 1995) give the correct time dependence for

the mass element Dm during the self-similar phase (which is only

constant for Keplerian self-similarity wherein d/a ¼ 2=3Þ.

Equations (19) and (20) now become, respectively,

d

a
2 1

� �
Pþ

Y

a
2

d

a

� �
X

� �
›XP 2

d

a
2 1

� �
Y þ

1

a

dC

dX

� �
›Y P ¼ 0;

ð29Þ

d

dX
X 2 dC

dX

� �
¼

ð
P dY : ð30Þ

These are the equations to be coarse-grained in this case.

We make use of the parameter a in the transformation to the self-

similar phase-space variables to effect the coarse graining. We note

that equation (27) shows that a fixed-volume element DXDY at a

fixed time corresponds to an ever larger volume element DvrDr as

a is increased while holding the ratio d/a constant so as to maintain

the similarity class. This is true so long as the similarity class is

.1/2, which is usually the case of interest since the Keplerian

value of 2/3 tends to be the minimum value encountered. The value

d/a ¼ 1=2 gives a canonical transformation by equation (27), and

no change in the volume of phase space is effected. Increasing a

amounts to a parametric way of stretching time and space so that it

becomes the theoretical smoothing length parameter. Normally we

take a ¼ 1, which can be regarded as the fine-grained limit. Here,

however, we use the freedom in its absolute value to allow it to adopt

large values and thus yield a coarse-grained limit (with the similarity

class fixed, the spatial scale is stretched in proportion to a).

The expansion we use is again of the form

PðX;YÞ ¼ Si¼0Pia
2i; ð31Þ

and similar expansions apply to the density and the potential. We

begin with the zeroth-order equations, which become

d

a
2 1

� �
P0 2

d

a

� �
X›XP0 2

d

a
2 1

� �
Y›Y P0 ¼ 0; ð32Þ

d

dX
X 2 dC0

dX

� �
¼

ð
P0 dY : ð33Þ

(it is easy to write the nth order formally but this is not very

transparent).

We readily find P0 by the method of characteristics to be

P0 ¼ P00ðzÞX
ð12a/dÞ; ð34Þ

where P00 is an arbitrary function of z, which is constant on

characteristic curves of P0. These curves are in turn given by

z ¼
Y

X ð12a/dÞ
; ð35Þ

and the actual arc-length s of a characteristic in phase space may be

taken to be

s ¼
a

d
ln X; ð36Þ

and this can be used to give X(s), Y(s) if desired.

If we recall equation (26) and combine it with (35) for dY and

(34) for P0, we can write

u0 ¼
X 22a/d

4p

ð
P00ðzÞ dz: ð37Þ

Thus the zeroth-order coarse graining already produces the self-

similar density profile in r, namely r 22a/d (cf. Henriksen & Widrow

1995, 1999). This is not surprising once the self-similarity is

imposed since it is essentially a dimensional argument (e.g.

Henriksen & Widrow 1995). Since, however, at this level no

potential enters the calculation, it does suggest that elements of a

simulation such as smoothing length may not be essential to

finding this profile if the other elements that impose the self-

similarity (such as the initial density profile) are in place. We shall

see in a shell code application below that there is some evidence for

this.

The zeroth-order potential is

C0 ¼
I00X ð222a/dÞ

ð3 2 2a/dÞð2 2 2a/dÞ
; 2gX ð222a/dÞ; ð38Þ

where I00 is the integral over P00 occuring in equation (37) and g is

defined to be positive when a/d . 1. The cases a/d ¼ 1 and a/d ¼

3=2 are logarithmic rather than power law, and must be treated

separately. The potential is not in general simply harmonic (except

in the steady case where a ¼ 0 which does not concern us here: an

expansion in positive powers of a would allow a ‘fine graining’

about this state).

Finally at this order we note that the energy of a particle scales as

E ¼ exp½2ðd 2 aÞT�e , where

e ¼ Y 2/2þCðXÞ; ð39Þ

and with e0 ¼ e00X 2ð12a/dÞ we find that z is related to the
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zeroth-order energy through

z ¼ ^
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðe00 þ gÞ

p
: ð40Þ

Consequently the limits of the integration over z at this order are

½2
ffiffiffiffiffiffi
2g
p

;þ
ffiffiffiffiffiffi
2g
p
� when g is positive, in order to include only the

bound particles, while when g , 0 we have a case similar to the

harmonic potential of the previous section and z varies between

plus or minus some maximum value.

We now proceed to the first-order terms, for which the following

equations must be solved:

ðd/a 2 1ÞP1 2 ðd/aÞX›XP1 2 ðd/a 2 1ÞY›Y P1

¼ 2Y›XP0 þ
dC0

dX
›Y P0; ð41Þ

d

dX
X 2 dC1

dX

� �
¼

ð
P1 dY : ð42Þ

Once again the method of characteristics yields a solution as

P1 ¼ X ð122a/dÞ½ða/d 2 1ÞzðP00 2 zP000Þ þ I00P000/ð3 2 2a/dÞ�

; P11ðzÞX
ð122a/dÞ; ð43Þ

where the shape of the characteristics (for P1) is the same as for P0

above, and the prime indicates differentiation with respect to z. In

addition, the form for u1 follows as

u1 ¼
X ð23a/dÞ

4p

ð
P11ðzÞ dz: ð44Þ

Thus the solution to first order in the coarse-graining parameter

(i.e. a finer-grained solution) takes the form

P ¼ X ð12a/dÞ½P00ðzÞ þ a21P11ðzÞX
2ða/dÞ�; ð45Þ

u ¼
X 2ð2a/dÞ

4p
½I00 þ a21X 2ða/dÞI11�; ð46Þ

where I11 is the integral occurring in u1, which is not, however,

positive-definite in this case.

Now, what is remarkable about these forms is that they suggest

that at small X (large t and/or small r) there are deviations from the

coarse-grained self-similar behaviour as the resolution or

information content is increased. Indeed, should P11 be negative

there would be a flattening of the density profile in this limit. We

know from the numerical simulations, however, that there is a

region where the self-similar behaviour is maintained so long as the

infall continues. This leads us to impose a condition similar to that

which was posed in the previous section. There we asked for

separability in the DF so as to yield the same velocity distribution

at all radii. Here we can ask for the DF that maintains the self-

similar density profile for all X. This requires P11 ¼ 0, since then

all higher-order tems in the expansion will vanish and the density

profile will be exactly self-similar. We can write this term from

equations (43) and (40) in the form

P11 ¼ ða/d 2 1ÞzP00 1 2 2
d ln P00

d ln e00

� �
; ð47Þ

so that the condition that all higher-order terms vanish is simply

P00 ¼ constant £ je00j
1=2 ; constant £ jz 2/2 2 gj

1=2
: ð48Þ

Retracing the various definitions and scalings, we discover that this

last result gives for the canonical radial DF

FðEÞ ¼ constant £ jEj
1=2
; ð49Þ

and hence the full DF is

f ¼ constant £ ð4p2Þ21dðj 2ÞjEj
1=2
: ð50Þ

This tends to confirm the conjecture of Henriksen & Widrow

(1999). This was based largely on the argument for a continuous

transition to the steady state [a steady state found also in Henriksen

& Widrow (1995)], together with some weak evidence from a shell

code simulation. Our present argument is related since in the limit

that a ! 1 we obtain a steady state, and in fact it is readily verified

from (35) that z is independent of time. By requiring all higher

orders to vanish we have effectively selected this steady state.

In the next section we shall provide some increased numerical

evidence for this DF. The evidence is best when a point mass is

allowed to be present at the centre, even if it is a negligible fraction

of the total halo mass. This might be termed a ‘black hole’, but in

reality it simply imitates the density singularity expected from the

self-similar density profile. That profile does not yield a finite mass

at the centre but it does predict a cusp that the numerical work has

difficulty expressing in the absence of a central point mass. When

the point mass is small compared to the halo mass it serves to

imitate a cusp without a finite-mass singularity. Thus we might

well expect the DF in this case to be closest to the (2E)1/2

behaviour (see below).

The real significance of this result is to show that deviations from

the self-similar infall profile of radial orbits in spherical symmetry

(a subsequent section will deal with more general orbits) will be

expressed as deviations from the (2E)1/2 law. These may be due to

incompleteness of the self-similarity at the centre, to angular

momentum or to geometric effects. We have already seen that an

abrupt cut-off at high binding energies does create a deviation in

the density profile, but only to logarithmic order (Henriksen &

Widrow 1999). More global changes must occur in the DF in order

to produce substantial changes in the density profile, even near the

centre.

Finally it is also of interest to consider the entropy expansion.

We follow custom (e.g. Binney & Tremaine 1987) in writing the

Gibbs’ entropy as

S ¼ 2

ð
f ln f dt; ð51Þ

where dt ¼ 4pr 2 dr2pj dj dvr/r
2. This is the generalized (i.e. to

inhomogeneous systems) H function of Boltzmann in the absence

of particle–particle correlations. Then if we scale the entropy and

mass of the system according to

S ¼ S e2ð3d22aÞT ; ð52Þ

M ¼ M e2ð3d22aÞT ; ð53Þ

we find that

S ¼M½lnð4p2Þ þ ð1 2 d/aÞaT�2

ð
dX dYP ln P; ð54Þ

where the scaled mass is related to the scaled density in the natural

way

M ;
ð

4pX 2u dX: ð55Þ

Thus the only time dependence in this self-similar entropy is the
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explicit logarithmic increase with t (through the term in T), which

is not very significant (it is, in fact, strictly zero when d/a ¼ 1Þ.

The true entropy increases in direct proportion to the mass, as is

seen from the respective scalings.

Let us now substitute the coarse-graining expansion from

equation (46) to find to first order

S ¼M½ln 4p2 þ ð1 2 d/aÞaT�

þ

ð
dXX 2ð12a/dÞ dzP00½ln 1/P00 þ ða/d 2 1Þ ln X�

þ

ð
dXX 2ð12a/dÞ dz

P11

a
X 2a/d½ða/d 2 1Þ ln X þ ln 1/P00 2 1�:

ð56Þ

We consider first the undisturbed self-similar state wherein

P11 ¼ 0. The integrals over z and X are independent (when a/d . 1

the integral over z goes from 2
ffiffiffiffiffiffi
2g
p

to þ
ffiffiffiffiffiffi
2g
p

, when a/d , 1 it

varies from an arbitrary negative number to the same positive

number), so we may treat the double integral as a product. We

observe that when a/d . 1 the mixing part of the entropy (i.e. the

integral over phase space) has a well-defined value provided that

a/d , 3=2. However this mixing entropy should be positive, and,

since the integral over X is dominated by the behaviour at small X

when a/d . 1, we see that this requires roughly that

X ða/d21Þ . exp 2

ð
dzP00 lnð1/P00Þ=

ð
dzP00

� �
: ð57Þ

In other words, as is usual we expect that there will be an inner

limit to the extent of the steep self-similar state after which

distortions must arise.

When a/d , 1 the negative mixing entropy will arise at large X

so that the same inequality (57) yields an upper limit to the extent

of the self-similar state. In general this limit may overlap with the

non-self-similar starting conditions for the accretion of a dark

matter halo.

In the limiting case with a/d ¼ 1 [which from equations (26) and

(37) has the density profile of a singular isothermal sphere], we see

that the self-similar entropy is strictly constant in the scaled

variables. This suggests a certain stability for this profile, but if we

look at the coarse-grained mixing entropy we see that it diverges for

an infinite system. Consequently such a state can never exist over all

space, as well as, of course, because of the infinite mass that would

imply. It does, however, suggest that this might be the most stable

self-similar state in a finite relaxed region (Lynden-Bell 1967).

We turn now to the fine-graining term involving P11. This term

represents a departure from the strict self-similar density profile, as

we have seen. Given, however, that it represents a finer graining of

the system, we should expect its contribution to the entropy to be

negative. Assuming that we are at small enough X (the fiducial X

may be taken as the boundary of the core and the integral over X in

this case is dominated by values at small X) that the bracket in the

first-order term of equation (56) is negative, ða=d , 1Þ; we require

I11 . 0 for a negative first-order term. From equation (47) if P00 is

symmetric in z (such as a power law in e00) then a sufficient

condition is that the perturbed P00 satisfy P00 / je00j
ðnÞ

, where

n , 1=2. This last condition together with equations (37) and (38)

shows, however, that the disturbed coarse-grained density will be

flattened ðu0 / X 22a/dX ðn21=2Þð12a/dÞ) when n , 1=2. Thus the

deviation from strict self-similarity will be such as to flatten the

steep self-similar density profile from the centre outwards. One

expects the disturbances to arise near the centre of the system by

our considerations of the coarse-grained entropy.

For a/d , 1, the integral over X is dominated by the behaviour at

large X. Thus the requirement for a negative first-order entropy

(assuming the term in ln X to be dominant and negative) is now

I11 , 0, and hence following the argument above and referring to

equation (47) we see that once again n . 1=2. However an

examination of the dependence of u0 on X as above now shows that

the profile will be steepened. In this case we can expect

disturbances to arise at large X by our coarse-grained entropy

argument. That is, the deviation from strict self-similarity for the

shallow initial profile is such as to steepen the profile from the

outside inwards. This steepening is observed in the simulations to

continue until the r 22 profile is obtained.

Thus this exploration of the entropy function suggests that the

flat self-similar behaviour (as determined by initial conditions) is

unstable to the development of steeper behaviour, while the steep

self-similar behaviour is unstable to flattening in the central

regions. Ultimately, incompleteness dominates both at the centre

and at the edge of the system, as discussed above. Although this

predicts no real ‘universal’ profile in the sense of Syer & White

(1998), it does yield a universal qualitative behaviour in three

sections: namely a middle section that is close to a profile of r 22,

an outer incomplete section that is more like r 23, and an inner

section that is flatter than r 22 for a variety of reasons. This may be

in accord with the simulations if not the observations.

We should also observe that Evans & Collett (1997) have found

a remarkable self-similar steady-state solution to the collisional

Boltzmann system that is an attractor and yields a flat r 24/3 cusp.

This is suggested to be applicable to galaxy formation by way of

mergers, where the collisional ensemble is the set of merging

clumps. Our approach focuses on the collisionless dark matter

particles and stars and is therefore independent of this result.

However it would be interesting to apply the present method of

coarse graining to a collisional system to see how the Evans &

Collett solution emerges.

The analysis of this section has served primarily to test our

coarse-graining expansion against relatively well-known results,

although the results regarding the inevitable deviation from strict

self-similarity are new. In the next section we turn to the more

challenging problem of coarse graining the DF for a spherical

system in self-similar evolution with velocity space anisotropy;

that is, j 2 – 0 for each particle, but no net rotation of the system

(Henriksen & Widrow 1995).

4 C OA R S E G R A I N I N G O F S P H E R I C A L S E L F -

S I M I L A R I N FA L L W I T H E L L I P T I C A L O R B I T S

In this section we show how our procedure can be applied to more

complex systems. In principle we can dispense with spherical

symmetry and consider axially symmetric and three-dimensional

systems; however, the Green’s function solution of Poisson’s

equation then leads to algebraic complexities that tend to obscure

the method, so this will be attempted elsewhere. The example

presented is new and physically interesting.

The fundamental equations can be written in the form (after

Fujiwara 1983)

›tf þ vr›rf þ
j 2

r 3
2 ›rF

� �
›vr

f ¼ 0; ð58Þ

›rðr
2›rFÞ ¼ 4p2G

ð
dj 2

ð
f dvr; ð59Þ
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where the particle density is given by

r ¼
p

r 2

ð
dj 2

ð
f dvr : ð60Þ

We now define the anisotropic analogue of the self-similar radial

infall of the previous section. The definitions of X, Y and T are as

given previously, while we introduce the extra scaled phase-space

variable Z according to

Z ; j 2 e2lT ; ð61Þ

for which on dimensional grounds we require

l ¼ 4d 2 2a: ð62Þ

In addition we use the scaled potential C as in equation (24), while

the scaled DF is written as

PðX; Y ; ZÞ ; 4p2Gf eð3d/a21ÞaT : ð63Þ

The equations that define an anisotropic self-similar infall model

(ASSIM) are, then,

2 3
d

a
2 1

� �
Pþ

Y

a
2

d

a
X

� �
›XP

2
d

a
2 1

� �
Y þ

1

a

dC

dX
2

Z

X 3

� �� �
›Y P

2 4
d

a
2 2

� �
Z›ZP ¼ 0; ð64Þ

and

d

dX
X 2 dC

dX

� �
¼

ð
dZ dYP: ð65Þ

Moreover for the same scaling as in (25), the scaled density

becomes

u ¼
p

X 2

ð
dZ dYP: ð66Þ

Once again the coarse graining consists in expanding all quantities

as in equation (31).

In this case we have scaled the phase-space volume to

DrDvrDj 2 ; DXDYDZ eð6d/a23ÞaT ; ð67Þ

so that the condition for coarse graining at fixed T in the limit

a ! 1 remains d/a . 1=2. One should note that, should

d/a , 1=2, the expansion is about the fine-grained limit since

infinite a yields P0 as the exact result.

Proceeding with the expansion, the zeroth-order equations

become

3
d

a
2 1

� �
P0 þ

d

a
X›XP0 þ

d

a
2 1

� �
Y›Y P0

þ 4
d

a
2 2

� �
Z›ZP0 ¼ 0 ð68Þ

d

dX
X 2 dC0

dX

� �
¼

ð
dZ dYP0: ð69Þ

We can solve for P0 by the method of characteristics to find

P0 ¼ P00ðz1; z2Þ e
2ð3d/a21Þs; ð70Þ

where the characteristic constants are

z1 ; Y /X ð12a/dÞ; ð71Þ

z2
2 ; Z/X ð422a/dÞ; ð72Þ

and the arc-length along the characteristic s may be taken as in

(36).

It is interesting to note that the scaled density may be written as

u ¼ pX 22a/dI00 ð73Þ

; pX 22a/d

ð
P00ðz1; z2Þ dz1 dz2

2; ð74Þ

which shows that, provided the integral I00 goes over the same set

of characteristics at every X, the usual self-similar density profile

holds even to zeroth order, just as for the radial orbits. Since there is

no potential term in the governing equations at this order, this must

be set solely by the initial conditions, which determine the

similarity class a/d. Consequently, the zeroth-order potential in

this case is as in equation (38), except that the integral I00 is here

defined as the integral over z1 and z2 that appears above in the

scaled density.

Using the same notation as in the radial case, the scaled energy is

e ¼ Cþ
Y 2

2
þ

Z

2X 2
; ð75Þ

and so to zeroth order with e0 ¼ e00X ð222a/dÞ as for radial orbits,

e00 ¼ 2gþ
z2

1

2
þ
z2

2

2
; ð76Þ

where g is defined as before in terms of the current I00.

Proceeding to the first order in the expansion, we find the

governing equations to be

d

a
X›XP1 þ

d

a
2 1

� �
Y›Y P1 þ 2

2d

a
2 1

� �
Z›ZP1

¼ 2
3d

a
2 1

� �
P1 þ Y›XP0 2

dC0

dX
2

Z

X 3

� �
›Y P0; ð77Þ

d

dX
X 2 dC1

dX

� �
¼

ð
dZ dYP1: ð78Þ

Thus the characteristics remain the same as in equations (71) and

(72), and the solution for P1 by the method of characteristics yields

(plus a term that may be absorbed into the zeroth order since it has

the same dependence on s)

P1 ¼ 2exp 23
d

a
s

� �
P11ðz1; z2Þ ¼ 2X 23P11ðz1; z2Þ; ð79Þ

where

P11 ;
a

d
2 1

� �
z2

1 2
I00

ð3 2 2a/dÞ
þ z2

2

� �
›z1

P00

þ 2
a

d
2 2

� �
z1z

2
2›z2

2
P00 2 3 2

a

d

� �
P00: ð80Þ

Consequently, the solution to first order in the coarse-graining

parameter for the DF is

P ¼ P00ðz1; z2ÞX
2ð32a/dÞ 2

1

a
X 23P11ðz1; z2Þ; ð81Þ

and the corresponding density profile becomes formally that of
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equation (46), but for a numerical factor, namely

u ¼ pX 22a/d I00 2
1

a
I11X 2a/d

� �
: ð82Þ

Here, however, the integrals are defined as Iii ¼
Ð

Pii dz1 dz2
2.

We arrive then at a conclusion similar to the one found for purely

radial orbits, namely that deviations from the self-similar density

profile must arise as X ! 0. With P11 . 0, for example, so that

I11 . 0, we see that the profile will be flattened near the centre of

the system as the resolution increases. Should P11 ¼ 0 then we

have the condition on P00 that the system should remain self-

similar at all X to all orders. This requires redefining P00 to be

P00 þ a21P01 þ . . ., where the P0i are the contributions to the

zeroth-order variation from the ith order. If these functions are

taken to be zero, the argument is exact.

The argument based on entropy (which we do not reproduce here

for reasons of brevity) suggests that there should be flattening at the

centre, and so we turn to consider the condition P11 $ 0. Just as in

the radial case we may hope to establish the DF that maintains the

coarse-grained self-similarity exactly and to put some constraints

on deviations that maintain P11 . 0.

The equation P11 ¼ 0 is a partial differential equation for the

exact self-similar DF. We can solve this equation once again by the

method of characteristics to find

P00 ¼ FðkÞ eð32a/dÞ‘; ð83Þ

where

k ;
z2

1

2
þ

z2
2

2
2 g

� �
ðz2

2Þ
2b; ð84Þ

and setting v ; z2
2 for convenience

^2ða/d 2 2Þ
d‘

dv
¼

1

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kv 2b 2 vþ 2g

p : ð85Þ

In these formulae the constants are

b ;
a/d 2 1

2ða/d 2 2Þ
;

g ;
I00

2ð3 2 2a/dÞða/d 2 1Þ
: ð86Þ

The preceding solution holds for a/d – 1, and in that special

(isothermal) case we find

P00 ¼ FðkÞ e2‘; ð87Þ

where now

k ;
z2

1

2
þ
z2

2

2
þ

I00

2
ln z2

2; ð88Þ

and with v as above

d‘

dv
¼ ^

1

2v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k 2 v 2 I00 ln v
p : ð89Þ

Now it is readily found using the previous definitions that this

coarse-grained self-similar or power-law solution is a steady state.

In fact, we have the relations

z2
1 ¼ ðv

2
r Þr

22ð12a/dÞ; z2
2 ¼ j 2r 2ð422a/dÞ;

k ¼
v2

r

2
þ

j 2

2r 2
2 g

� �
ðj 2Þ2b; f ¼

1

4p2G
r 2ð32a/dÞFðkÞ eð32a/dÞ‘:

We can observe as a kind of verification of our procedure that, in

the special case a/d ¼ 3, the distribution function is simply

f ¼ f ðkÞ. In fact, it is a member of the steady-state solutions found

for the anisotropic spherically symmetric case in Henriksen &

Widrow (1995), and used previously to model galaxies by Kulessa

& Lynden-Bell (1992), although it is one of the unbound cases. It

appears here in zeroth order because in this case, as may be seen

from equation (67), our expansion is actually a fine-graining

expansion for a/d . 2. This means that the zeroth order is the exact

solution as a ! 1. For a/d , 2 we appear to have a further set of

steady solutions which develop as limits from the time-dependent

system.

The function ‘(v) is not readily found analytically, but it is in

general an elliptic function. This function serves to establish a

finite range in permitted values of v ; z2
2 ; j 2/r 2ð422a/dÞ. Thus for

example when a/d ¼ 1 we see that large r at a given j 2 is

permitted, but small enough r is forbidden. This is as expected.

Similarly, if 3=2 . a/d . 1 so that g and b are positive but k may

be negative, or if a/d , 1 so that g is negative but b and k are

positive, small r is also excluded for a given j 2.

An obvious application of this coarse-graining procedure is to

the virialized core that develops from a recollapsing dark matter

halo. We do not now impose that the high-order terms in the

coarse-graining expansion vanish. In the self-similar infall model

of dark matter halo formation (e.g. Henriksen & Widrow 1999) the

similarity ‘class’ a/d is given by

a/d ¼
3e

2ðe þ 1Þ
; ð90Þ

where 2e is the index of the density power law in the primordial

density fluctuation. From equation (82) we find

d ln u

d ln X
¼ 2

2a

d
þ

a

d

ðI11ÞX
2ða/dÞ/a

I00 2 ðI11X 2ða/dÞ/aÞ
: ð91Þ

Thus for example with e ¼ 2 or a/d ¼ 1 and allowing the first-

order term I11X 2ða/dÞ/a to be as large as (1/2)I00, we see that the

normal index of self-similar infall has flattened to 22þ 1 ¼ 21.

Thus the flattening at or inside this radius (where higher-order

terms in the coarse-graining expansion must be taken into account)

is in agreement with the NFW profile. However such a value for e

is only reasonable on the largest halo scales. On the scale of

galaxies the observed power spectrum index of n < 22 can be

interpreted (Henriksen & Widrow 1999) as requiring e ¼ 1=2 and

hence a/d ¼ 1=2. In this case the central flattening changes the self-

similar index of 21 to flatter than 21/2 inside the same radius as

above.

5 N U M E R I C A L E X P E R I M E N T S

In what follows we use a second-generation shell code written in

the scaled variables that were used in the previous sections (Le

Delliou 2001; Henriksen & Widrow 1999) to test the predictions of

the section on radial orbits. The details of the code may be found in

Le Delliou (2001), but it is important to realize that these results

are based in part (the DF figures) on an analytical estimate of the

core particle potential energy in an effort to suppress the noise in a

small-number shell-code simulation. This allows us to take the core

shell potential energy to be proportional to 2GM(r)/r since the

additional term in the potential energy 4pG
Ð r

rc
rðr0Þr0dr0 (where

rc . 0 is a central reference radius) is itself proportional to GM/r

when the analytic expression for the density is used. Since the

eventual steady state of the core appears to be reflected first in
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the density profiles, this seems to be a reasonable way to remove

the noise that is due to shell crossing and arises during a discrete

evaluation of the integral term. We are in fact able to reproduce

known steady-state distribution functions by using this technique.

The second noise-reducing ingredient is the addition of a central

point mass, which assists the density profile in obtaining stable

values. As a result of the rapid establishment of a steady core we

are also able to reduce noise in the PDF by averaging over

individual stable epochs.

We turn first to the question of whether in the radial self-similar

infall phase the DF of a dark matter halo can really be taken as the

‘one-half law’ (49). To this end we have simulated the standard

cosmological model of radial self-similar infall (e.g. Fillmore &

Goldreich 1984; Bertschinger 1985; Henriksen & Widrow 1999

and references therein) of collisionless matter using 10 000 equal-

mass spherical shells. We have found that the self-similar

‘equilibrium’ phase is greatly stabilized microscopically by the

addition of a central point mass. This point mass is negligibly small

(<5 £ 1024) compared with the mass of the halo, so it does not

affect the global dynamics but imitates a central density cusp of

zero mass as found analytically in the self-similar phase. This

cannot be realized numerically otherwise. It is particularly

effective in the ‘shallow’ case (e , 2) where the halo mass tends

to zero with the radius.

We consider the two cases referred to as ‘flat’ and ‘steep’ in the

relevant literature depending on whether the initial cosmological

density profile is flatter or steeper than r 22. The steep cases all

achieve an intermediate self-similar phase wherein the stable

density profile is given by the initial conditions, while the flat

cases, although growing self-similarly, all establish a ‘universal’

r 22 density profile in the intermediate self-similar phase. That is,

the r 22 profile serves as a one-sided ‘attractor’ for the self-similar

infall. The cases that we show here, however, are selected for their

stability rather than to show the evolution towards the attractor.

This evolution has been demonstrated elsewhere at length (Henriksen

& Widrow 1999 and references therein). We are primarily

interested here in the stable density and PDF profiles.

In Fig. 1 we show the PDF averaged over the self-similar phase

of the simulation for a ‘slightly flat’ case where the initial power

law is / r 21.9. The expected core profile in this case is that of the

attractor, namely r 22. In the top panel we attempt to fit a negative-

temperature Gaussian multiplied by an energy power law. This

serves mainly as an indicator (at the maximum of the curve) of the

limit to which the power-law fit of the lower panel may be

extended. This is the ‘dominance limit’ indicated on the figures.

Such a law was suggested in Merrit, Tremaine & Johnstone (1989)

and subsequently in Henriksen & Widrow (1999) for radial infall

with the power equal to 1/2. We see from the figure that this does

not provide a very good fit to the simulated PDF. If we focus only

on the region where a simple power law may apply, as in the lower

panel, however, we find strong evidence for the expected behaviour

(the slope of the averaged PDF over nearly one and one-half

decades is 0:54 ^ :07Þ. The eventual steep cut-off at large negative

energies may arise in part due to the finite nature of the simulation,

wherein the most negative energies are cut off at large radii, but the

preceding curvature may be evidence of a central (assuming that

the most negative energies are now near the geometrical centre)

Gaussian PDF. We would expect such a cusp based on the

arguments of Section 2, to the extent that the averaged behaviour

approximates a steady state.

In Fig. 2 the density profile established in the dark matter core

Figure 1. In both panels the data give the PDF of the simulation for a

shallow initial density profile ðe ¼ 1:9Þwhen averaged over the self-similar

phase. The simulation was run with a small central point mass ð5 £ 1024 of

the total mass of the halo), which substantially reduces the noise in the core

without affecting the global behaviour. The upper panel shows an attempt to

fit a power law times an exponential, while the lower panel fits a power law

up to the point where the curvature may not be ignored.

Figure 2. Density profile established near the end of the self-similar phase

for an initially slightly flat perturbation. The smoothing scale is shown by a

vertical line, but the straight-line fit with slope 22 extends to the interior of

this scale. The particles in the outer mixing zone of the halo have been

neglected. The NFW profile provides a poor fit in this purely radial case.
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near the end of the self-similar phase is shown. We see principally

that the theoretical attractor profile of r 22 is quite convincingly

established over an intermediate range of scales that extends to the

interior of the smoothing scale. We take this to be confirmation of

the idea that the main relaxation of the core occurs near the

boundary turning point, since in this case more than the initial

conditions are required to achieve the attractor profile as found.

The profile steepens at the outside due partly to the absence of

particles [the ‘Keplerian effect’, see for example Henriksen &

Widrow (1999)] and partly perhaps due to the fine-grained entropy

effect (the outer parts of the core retain the pure phase mixing)

suggested at the end of the section on radial orbits. The flattening at

small radii here is largely due to the dominance of the point-mass

potential. For this purely radial model with a central point-mass the

NFW profile provides a poor fit, as shown.

In Figs 3 and 4 the same information as above but for a ‘slightly

steep’ case is presented [the expected slope of 2a/d ¼ 2:03 by

equation (90)].

The PDF is again shown fitted by a negative temperature

exponential times a power and by a pure power law. The power-law

fit yields 0:50 ^ :03 when it is taken from the outer core regions to

the maximum of the exponential curve, some one and one-half

decades. However it is a poor detailed fit to the data here and must

be considered a weaker result than is the shallow case. The steep

cut-off at high negative energies probably comes in this case from

the finite numerical resolution of the central regions (where now

the most negative energy particles initially originate), but once

again there is a hint of a Gaussian just before this cut-off.

Fig. 4 shows that the steep simulation has reproduced the

expected density profile in the intermediate scales fairly accurately,

and that the profile continues well inside the smoothing length as

anticipated. There is also the outer Keplerian steepening and an

inner flattening due to the potential of the central point mass. Once

again no globally good fit with the NFW profile is possible.

We believe that these numerical experiments offer some

confirmation of the ideas expressed earlier in this paper and in

Henriksen & Widrow (1999). In particular the radial PDF is more

strongly suggested to be (2E)1/2 in the relaxed self-similar region.

This cuts off at large negative energies due to a combination of

initial conditions and finite mass resolution, but, before this occurs,

there is slight evidence for a Gaussian form in the central regions as

suggested by our coarse graining in Section 2.

The density profiles agree with previous work in the self-similar

infall phase, but we have reduced the noise in the simulation by the

device of including a central point mass of negligible size. The fact

that the slopes continue substantially inside the smoothing length

suggests that the key behaviour determining the profile occurs in

the mixing region near the boundary of the core, combined with the

initial conditions. This also agrees with and supports the coarse-

graining determination of the density in Section 3. It is also clear

from these figures that the NFW profile cannot provide a global fit

to these radial infall models. This, then, requires an exploration of

the effects of angular momentum, which we reserve for the next

paper in this series.

6 C O N C L U S I O N S A N D S U M M A RY

Our main interest in this paper has been to test the usefulness of a

proposed coarse-graining (actually a progressively finer-grained

series) technique that uses non-canonical coordinate transform-

ations in the phase space of a dynamical system. This was used in

Figure 3. In both panels the data give the PDF of the simulation for a steep

initial density profile ðe ¼ 2:1Þ when averaged over the self-similar phase.

The simulation was run with a small central point mass ð5 £ 1024 of the

total mass of the halo), which substantially reduces the noise in the core

without affecting the global behaviour. The upper panel shows an attempt to

fit a power law times an exponential, while the lower panel fits a power law

up to the point where the curvature may not be ignored.

Figure 4. Density profile established near the end of the self-similar phase

for an initially slightly steep perturbation. The smoothing scale is shown by

a vertical line, but the straight-line fit with slope 22.03 extends to the

interior of this scale. The particles in the outer mixing zone of the halo have

been neglected. The NFW profile can provide a good fit to the outer part of

the halo but it is far too flat in the inner regions for these purely radial orbits.
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two cases in Sections 2 and 3 respectively. Section 2 concerned

itself with the coarse graining of an equilibrium, spherically

symmetric system by a stretching transformation in phase space.

This allowed us to conclude that, near the centre of such a system

the regularity of the coarse-graining expansion imposed some

conditions on the coarse-grained f(v 2). The DF that maintained its

form to all orders, and that gave the same form at all sufficiently

small r, was a Gaussian. We also checked that the entropy

decreased in the higher orders (finer graining) of the expansion.

The coarse-graining expansion led naturally to the small r

expansion for the density profile that is familiar from the theory of

polytropes.

In Section 3 we treated the radial self-similar infall model that is

of significance for cosmological dark matter haloes. The

coordinate transformation used for the coarse graining was also

the transformation that renders the system stationary. We found

that the coarsest-grained density profile was that dictated by the

self-similarity class implicit in the initial conditions. Some

evidence for this behaviour was found in the numerical simulations

of Section 5 in that the density profile extended well inside the

smoothing length of the simulation. We concluded that the actual

relaxation of the system took place near the ‘boundary’ of the core.

The requirement that the self-similarity be stable in these

coordinates to all orders of the coarse-graining expansion (i.e.

essentially that the coarse-grained and fine-grained DFs be equal)

yielded the self-similar DF as f / dð j 2ÞðjEjÞ1=2. This had been

previously conjectured in Henriksen & Widrow (1999), but the

present argument is more direct. Moreover, from our simulations

the evidence presented in support of this result appears stronger

than before, although we incorporate a partly analytical estimate of

the shell energy here rather than using the much noisier numerical

calculation. Had we not done this, our evidence would have been

weaker than in Henriksen & Widrow (1999). We also found that the

presence of a point mass at the centre of the system greatly reduced

the noise throughout the core in our simulations.

Eventually the DF is cut off in the central regions of the system

(large negative energies) due to finite mass resolution and/or initial

conditions. There is weak evidence for a Gaussian in velocity (an

exponential in energy) before this cut-off, as might be expected

from the work of Section 2. This is because the central regions of

the core resemble a steady state, as discussed in Henriksen &

Widrow (1999), due probably to the fact that the relaxation time is

short compared with the ‘accretion time’ (the time to significantly

change the mass) in this region.

By expressing the entropy in the scaled variables and requiring

the coarse-grained entropy to be positive, we saw that there was an

inner limit to the self-similarity for the cosmologically ‘steep’ case.

Similarly there was an outer limit to the extent of the cosmo-

logically ‘flat’ case. The limiting case, which has an inverse-square

density profile, has an exactly constant entropy in self-similar

variables that is always positive. It diverges for an infinite system

but it is likely to be the most stable intermediate profile for finite

systems.

By requiring the next finer-grained entropy contribution to the

total entropy to be negative (corresponding to the increased

information at this order) we inferred that the initially steep self-

similar infall should flatten, primarily at the centre of the system,

while the initially flat self-similar infall should steepen, primarily

near the exterior. In this way an intermediate attractor behaviour

exists in the self-similar infall model. However the behaviour at

small radii is sensitive to the presence of point masses, while the

behaviour at large radii (exterior to most of the mass) tends to be

Keplerian (Henriksen & Widrow 1999). Thus the global profile is

more subtle in the manner of the NFW fit. However these purely

radial systems are not well fitted by the NFW profile.

We also studied theoretically (but not numerically) the

spherically symmetric infall model in the presence of non-zero

angular momentum. We showed that the coarse-graining expansion

can be carried out in just the same way as for radial orbits. The

expected density profiles are not changed, and flattening is

expected in the central regions. The flattening is of a progressive

nature and becomes even flatter than r 21 of the NFW profile as

r ! 0. This is compatible with the expected Gaussian DF in the

central regions of the system, although this can only be established

definitely by examining higher orders in the expansion. There is an

interesting dependence of the expected outer power law and

flattening on scale through the index of the initial density

perturbation (related to the power spectrum index n). This is such

as to predict flatter cusps for galaxies than the NFW profile, which

in turn is most appropriate on cluster scales or above ðn ¼ 1Þ.

We were able to constrain the form of the DF in the relaxed state

when the coarse-grained and fine-grained functions are the same as

expressed in (83). These relaxed DFs are steady states, as is the

radial equivalent. They appear to be consistent with a possible

Gaussian DF modulated by a function that allows for inner and

outer turning points at a given j 2. This is presumably due to the

somewhat artificial constraint of spherical symmetry, which

restricts the relaxation in angular momentum.

We have found elsewhere that the NFW profile can be produced

in such a spherical system with an appropriate distribution of

angular momentum (and no central black hole). However the

angular momentum has to be correlated with the initial radius of a

particle in a power-law fashion that is consistent with the self-

similarity. Once again this may work only in the absence of strong

relaxation in angular momentum. We intend to explore this question

by coarse-graining axially symmetric systems in a subsequent paper.

AC K N OW L E D G M E N T S

RNH acknowledges the support of an operating grant from the

Canadian Natural Sciences and Research Council. MLD wishes to

acknowledge the financial support of Queen’s University.

R E F E R E N C E S

Bertschinger E., 1985, ApJS, 58, 39

Binney J., Tremaine S., 1987, Galactic Dynamics, chapter 4. Princeton

Univ. Press, Princeton

Carter B., Henriksen R. N., 1991, J. Math. Phys., 32, 2580

Chandrasekhar S., 1957, Stellar Structure. Dover, New York, p. 94

de Blok W. J. G., McGaugh S. S., Bosma A., Rubin V. C., 2001, AJ, 122,

2396

Evans N. W., Collett J. L., 1997, ApJ, 480, L103

Fillmore J. A., Goldreich P., 1984, ApJ, 281, 1

Fujiwara T., 1983, PASJ, 35, 547

Henriksen R. N., 1997, in Dubrulle B., Graner F., Sornette D., eds, Scale

Invariance and Beyond. les Houches Workshop, Springer, Berlin, p. 63

Henriksen R. N., Widrow L. M., 1995, MNRAS, 276, 679

Henriksen R. N., Widrow L. M., 1997, Phys. Rev. Lett., 78, 3426

Henriksen R. N., Widrow L. M., 1999, MNRAS, 302, 321

Kravtsov A. V., Klypin A. A., Bullock J. S., Primack J. R., 1998, ApJ, 502,

48

Kulessa A. S., Lynden-Bell D., 1992, MNRAS, 255, 105

Le Delliou M., 2001, PhD thesis, Queen’s Univ. at Kingston, Canada

Lynden-Bell D., 1967, MNRAS, 136, 101

Coarse-graining the distribution function of CDM 433

q 2002 RAS, MNRAS 331, 423–434

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/331/2/423/1043584 by guest on 16 D
ecem

ber 2020



Merritt D., Cruz F., 2001, ApJ, 551, L41

Merritt D., Tremaine S., Johnstone D., 1989, MNRAS, 236, 829

Moore B., Governato F., Quinn T., Stadel J., Lake G., 1998, ApJ, 499, L5

Nakamura T. K., 2000, ApJ, 531, 739

Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563

Shu F., 1978, ApJ, 225, 83

Shu F., 1987, ApJ, 316, 502

Stil J., 1999, PhD thesis, Leiden Observatory, Netherlands

Syer D., White S. D. M., 1998, MNRAS, 293, 337

This paper has been typeset from a TEX/LATEX file prepared by the author.

434 R. N. Henriksen and M. Le Delliou

q 2002 RAS, MNRAS 331, 423–434

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/331/2/423/1043584 by guest on 16 D
ecem

ber 2020


