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The probability P (α, N) that search algorithms for random Satisfiability problems successfully
find a solution is studied as a function of the ratio α of constraints per variable and the number
N of variables. P is shown to be finite if α lies below an algorithm–dependent threshold αA, and
exponentially small in N above. The critical behaviour is universal for all algorithms based on the
widely-used unitary propagation rule: P [(1 + ǫ) αA, N ] ∼ exp(−N1/6 Φ(ǫN1/3)). Exponents are
related to the critical behaviour of random graphs, and the scaling function Φ is exactly calculated
through a mapping onto a diffusion-and-death problem.

Introduction. The discovery of universality in phase
transition phenomena was a major progress in modern
condensed matter and statistical physics. The purpose
of this letter is to point out that universality also takes
place in computer science, more precisely, in computa-
tional complexity theory. There, the goal is to under-
stand whether a computational task consisting in pro-
cessing a large number N of input data can be carried
out in a time scaling only polynomially e.g. N3, and not
exponentially e.g. 2N , with N [1]. Depending on input
data defining parameters, dynamical phase transitions
between these two behaviours may take place [2, 3, 4].
We prove hereafter, for the case of the celebrated Satisfi-
ability (SAT) problem [1], that the onset of complexity at
criticality is universal in that it depends on some struc-
tural features of resolution algorithms and input data
statistics only.

Definitions of computational task and algorithm. In
the random K-SAT problem [2], one wants to find a
solution to a set of M = αN randomly drawn con-
straints (clauses) over a set of N Boolean variables xi

(i = 1 . . .N). Each constraint reads zi1 ∨ zi2 ∨ . . . ∨ ziK ,
where ∨ denotes the logical OR; zℓ is a variable xiℓ

or its negation x̄iℓ
with equal probabilities (= 1

2
), and

(i1, i2, . . . , iK) is a K-uplet of distinct integers unbias-
edly drawn from the set of the

(

K
N

)

K-uplets. We now
study the K = 3 case, the smallest value for which the
problem is NP-complete [1], and K ≥ 4 later.

Our algorithms start from tabula rasa, then iteratively
assign variables to true (T ) or false (F ) according to two
well-defined rules (specified below), and modify the con-
straints accordingly e.g. x̄1 ∨ x̄2 ∨ x3 becomes x̄1 ∨ x3 if
x2 = T [2, 5]. At the end, no constraint is left (a solu-
tion is found — success case), or a contradiction is found
(one variable previously assigned to, say, T is required
to be F from modified constraints — failure case). The
first assignment rule, UP (for unitary propagation) [5],
is common to all algorithms: if a clause with a unique
variable is produced at some stage of the procedure e.g.
x̄1, then this variable is assigned to satisfy the clause e.g.
x1 = F . The second rule is a specific and arbitrary pre-
scription taking over UP when it cannot be used i.e. in

the absence of unique variable clause. In the simplest
algorithm, referred to as R (random), the prescription
consists in setting any unknown variable to T or F with
prob. 1

2
independently of the remaining clauses [5]; more

sophisticated prescriptions [6, 7] will be studied later.
Resolution procedures used in practical applications

are based on the combination of the above algorithm and
a backtracking principle [2]: in case of failure, the last
variable assigned through the prescription (not through
UP) is flipped, and the algorithm resumes from this stage.
At the end, either a solution is found or all possible back-
tracks have failed, and a proof of the absence of solution
is obtained. The resolution time typically scales as O(N)
if α < αA and expO(N) if α > αA, where the thresh-
old αA depends on the algorithm. Intuition suggests and
analyses prove [4, 8] that this poly/exp crossover is due
to the success/failure transition of the pure algorithm i.e.
without backtracking. More precisely, αA can be identi-
fied with the ratio at which the probability Psucc(α, N)
of success of the pure algorithm vanishes as N →∞ [5].
To understand the onset of complexity at αA, it is thus
natural to analyze how Psucc vanishes when the ratio α
is kept close to its critical value and N increases.

Analysis of the R algorithm. Each time a new variable
is assigned some clauses are eliminated, other are reduced
or left unchanged. We thus characterize the set of clauses
by its state (C1(T ), C2(T ), C3(T )), where Cj is the num-
ber of j-clauses i.e. involving j variables (j = 1, 2, 3)
and T is the number of assigned variables [4, 5]. Con-
sider a 3-clause left at ‘time’ T . When T → T + 1,
the newly assigned variable has a probability 3/(N − T )
to appear (as is, or negated) in this 3-clause; if so the
clause will be satisfied or reduced into a 2-clause (with
equal prob. 1

2
). As a consequence the average change of

C3 equals −3C3(T )/(N − T ). In the large N limit, the
density c3(t) = C3(t N)/N of 3-clauses becomes concen-
trated around its average value, solution of the ordinary
differential equation dc3/dt = −3c3/(1 − t). A similar
reasoning leads to dc2/dt = 3c3/2/(1 − t) − 2c2/(1 − t)
for the density c2 of 2-clauses. Solving these equa-
tions with initial conditions c3(0) = α, c2(0) = 0 gives
c3(t) = α(1 − t)3, c2(t) = 3

2
αt(1 − t)2 and the resolution
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FIG. 1: Resolution trajectories for the R algorithm (bold
lines, arrows indicate time direction, from a fraction t = 0
of eliminated variables – right axis – to t = 1 – lower left
corner where a solution is found). For initial ratio α < αR,
C1 keeps bounded (success case). When α > αR, C1 ∼ N
when the trajectory lies above the contradiction line δ2 = 1,
and the density c∗1 is positive (failure case). At the critical
ratio αR(= 8

3
), the trajectory hits tangentially (black dot) the

contradiction line. The critical region is defined by fluctua-
tions ∼ N−1/3 for finite size N around these two lines (dotted
and dashed lines respectively), and is crossed through assign-

ment of a fraction ∆t = N−1/6 of variables. Inset: C1 vs.
T in the critical region for a particular run with N = 105

and α = αR. Reported scalings correspond to the largest
components (S ∼ N2/3).

trajectories of Fig. 1 [4].
The above evolution for c2, c3 is correct as long as no

contradiction has emerged as a result of the production
of two opposite 1-clauses e.g. x1 and x̄1. The probability
PN (C1; T ) that the assignment of T variables has pro-
duced no contradiction and a set of constraints with C1

1-clauses obeys a Markovian evolution from T to T + 1
with a transition matrix [4],

HN [C′

1 ← C1; T, C2] =
∑

s2,r2

MC2;s2,r2

p2

[

1IC1
1IC′

1
−r2

+(1− 1IC1
)
∑

s1

MC1−1;s1,0
p1

1IC′

1
−C1+1+s1−r2

]

(1)

where 1IC denotes the Kronecker function: 1IC ≡ 1 if
C = 0, 0 otherwise. Variables appearing in (1) are as fol-
lows: sj (respectively rj) is the number of j-clauses which
are satisfied (resp. reduced to j − 1 clauses) when the
(T + 1)th variable is assigned. These are stochastic vari-
ables drawn from multinomial distributions MC;x,y

p ≡
(

C
x,y

)

px+y(1 − 2p)C−x−y. Parameter pj ≡ j/2/(N − T )
equals the probability that a j-clause contains the vari-
able just assigned; r1 = 0 demands that no opposite 1-
clauses and thus no contradiction are present. Equation
(1) defines a random motion for a walker moving on the

semi-infinite line C1 ≥ 0 with time-dependent and ran-
dom (through C2) rates. The success/failure transition
takes place when the average number δ2 = c2/(1 − t) of
1-clauses created from 2-clauses (right move) exceeds the
number of 1-clauses (1 [16]) eliminated by UP each time
a variable is assigned (left move) [5].

Successful regime (δ2 < 1). If elimination of 1-clauses
is faster than creation, C1 keeps bounded throughout the
search process. On time scales 1 ≪ T ≪ N , C1 reaches
equilibrium, with a distribution p0(C1, t) function of slow
variables only i.e. c2, t. This, and the probability of suc-
cess can be derived with the simple Ansatz PN (C1; T ) =
p0(C1, t) + p1(C1, t)/N + O(N−2) and sending N → ∞.
We find that p0(C1, t) ∼ exp(−ρ C1) at large C1, where ρ
is the time-dependent positive root of ρ/δ2(t) = 1− e−ρ.
As expected, ρ > 0 and C1 is bounded as long as δ2 < 1.
At fixed ratio α, δ2 reaches its maximum δM

2 = 3
8
α

along the resolution trajectory for a fraction tR = 1
2

of assigned variables; the transition takes thus place at
αR = 8

3
[5]. The probability of success is given by Psucc =

∑

C1
p0(C1, 1) = exp[ 1

2r − arctanh(1/
√

r − 1)/2/
√

r − 1]
with r = αR/α, and is shown in Fig. 2 (top inset). Note
that − lnPsucc[αR(1− ǫ)] ∼ π

4
ǫ−1/2 as α reaches its crit-

ical value αR from below [9].
Failure regime (δ2 > 1). When α > αR, the resolution

trajectory crosses the contradiction line δ2 = 1 (Fig. 1).
C1 then becomes of the order of N and each assignment
has a finite probability to produce some contradiction;
the probability of success is thus exponentially small with
N [10]. Later the trajectory crosses the contradiction line
back and C1 = O(1) again. This behaviour is captured
with the Ansatz PN (C1; T ) = exp(−Nω(c1, t)) where ω
is the rate function associated to the large deviations of
the density c1 of 1-clauses. ω fulfills a first order partial
differential equation [4, 10], which can be explicitly solved
for ratios slightly above the threshold i.e. α = αR(1 + ǫ).
The coordinates c∗1, ω

∗ of the minimum of ω i.e. the most
likely trajectory are, at time t = 1

2
(1+s

√
ǫ): c∗1 = 0, ω∗ =

0 if s < −1; c∗1 = 1
2
(1−s2)2ǫ2, ω∗ = [− s5

20
− s3

6
+ s

4
+ 2

15
]ǫ5/2

if |s| < 1; c∗1 = 0, ω∗ = 4
15

ǫ5/2 if s > 1. Thus, − lnPsucc ∼
4
15

ǫ5/2N to the lowest order in ǫ.
Critical regime (δ2 ≃ 1). For N large but finite and α

close to αR, finite-size scaling [2] applies if

− lnPsucc

(

(1 + ǫ)αR, N

)

= Nλ Φ
(

ǫ Nθ
)

(2)

for some regular function Φ. In the infinite size N
limit, this expression should agree with the above re-
sults for the successful (ǫ < 0) and failure (ǫ > 0)
regimes. Matching the powers in N and ǫ, we find
λ− θ

2
= 0, Φ(x) ∼ π

4
|x|−1/2 as x→ −∞, and λ+ 5θ

2
= 1,

Φ(x) ∼ 4
15

x5/2 as x → +∞. As a result, λ = 1
6

and
θ = 1

3
. Figure 2 (lower inset) shows the good agreement

of numerical experiments performed at the critical point
with the prediction − lnPsucc ∼ N1/6.
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FIG. 2: Scaling function Φ (solid line) compared to numerical
simulations for N = 1000 (empty), 20000 (filled symbols)
and algorithms R (△), GUC (�) and HL (©). Error bars
(with ≃ 105 samples) are smaller than symbol size. Data
for GUC and HL are rescaled horizontally and vertically, see
text. Dotted lines serve as a guide for the eye. Bottom

inset: − ln(Psucc)/N
1/6 vs. N−1/6 at the critical thresholds

αR, αGUC ≃ 3.003, αHL ≃ 3.425. Linear fits (dotted lines)
extrapolate to theoretical predictions for Φ(0) (available for
R and GUC) on the left axis. Top inset: Psucc vs. α showing
the algorithm-dependent success/failure transition. Curves
are analytical for R, GUC, and numerical for HL, KCNFS.

Introduction of the oriented graph G representing 1-
and 2-clauses allows us to understand the above scalings.
G is made of 2 (N − T ) vertices (one for each variable
xi and its negation x̄i), C1 marked vertices (one for each
1-clause zi), and 2 C2 edges (zi ∨ zj is represented by
two oriented edges z̄i → zj and z̄j → zi) [11]. δ2 is
simply the average (outgoing) degree of vertices in G.
A step of UP corresponds to removing a marked vertex
(and its attached outgoing edges), after having marked
its descendents; steps are repeated until the connected
component is entirely removed (no vertex is marked).
Then a vertex is picked up according to the prescription
and marked, and UP resumes. A contradiction arises
when two ‘opposite’ vertices i.e. associated to opposite
variables are marked. The success/failure transition co-
incides with the percolation transition on G i.e. δ2 = 1
as expected. From random graph theory [11, 12], in the
percolation critical window |δ2 − 1| ∼ N−1/3, the prob-
ability that a vertex belongs to a component of size S
is Q(S) ∼ S−3/2, with a cut-off equal to the largest
size, N2/3 [13]. From Fig. 1, departure ratios α have
to differ from αR by N1/3 for resolution trajectories to
fall into the critical window. Hence θ = 1

3
. The time

spent by resolution trajectories in the critical window
is ∆t ∼

√

|δ2 − 1| ∼ N−1/6, corresponding to ∆T =
N ∆t ∼ N5/6 eliminated variables. Let S1, S2, . . . , SJ be
the sizes of components eliminated by UP in the crit-

ical window; we have J ∼ ∆T/
∫

dS Q(S)S ∼ N1/2.
During the jth elimination, the number of marked ver-
tices ‘freely’ diffuses, and reaches C1 ∼

√

Sj (Inset of
Fig. 1). The probability that no contradiction occurs is

[(1 − q)C1 ]Sj ∼ e−S
3/2

j /N where q ∼ 1
N is the probability

that a marked vertex is ‘opposite’ to the one eliminated
by UP. Thus − lnPsucc ∼ J

∫

dS Q(S)S3/2/N ∼ N1/6,
giving λ = 1

6
. Notice that, while the average compo-

nent size is S ∼ N1/3 (and thus PN (C1 = 0) ∼ N−1/3),
the value of λ is due to the largest components with
S ∼ N2/3 i.e. C1 ∼ N1/3 marked vertices. The dis-
tribution of c = C1/N

1/3 is calculated below.
Scaling function. To calculate Φ in (2), we magnify

the critical region in Fig. 1 and consider ratios α = 8
3
(1+

ǫ0 N−θ) and times t = 1
2

(1 + t0 N−τ ), where θ and τ are
scaling exponents to be determined. We then decompose
the probability of having C1 clauses in the critical region
into the product PN (C1, T ) = exp[−Nλϕ(t0)]×F (C1, t0);
the first term is the probability that no contradiction
has been found up to ‘time’ t0, and F is the (nor-
malized) probability distribution of 1-clauses. Clearly
ϕ(t0 → −∞) = 0 since the probability that the search
process has ended is not vanishingly small before the
trajectory enters the critical region (Fig. 1). We make
the Ansatz F (C1) = N−γf(c = C1N

−γ) where f is the
probability distribution of the rescaled number c of unit-
clauses (Fig. 3). Last of all, the probability that a vari-
able is set through a free choice and not UP, PN (C1 = 0),
is assumed to scale as f0/N

γ0 .
The evolution equation for PN based on matrix (1)

imposes θ = γ = γ0 = 1
3
, λ = τ = 1

6
in agreement with

the above scaling arguments [17]. In addition, we find
dϕ/dt0 = c(t0), the average value of c with distribution
f solution of

1

2

∂2f

∂c2
+ v0

∂f

∂c
+ (c− c) f = 0 (3)

with v0 ≡ t20 − ǫ0. Boundary conditions are (∂cf +
v0 f)|c=0 = 0 (reflecting wall) and f0 = f(0)/2. The dif-
fusion term in (3) reflects the Gaussian stochastic nature
of 2- to 1-clauses reductions, the drift term favors small
(respectively large) values of the density c when v0 > 0
(resp. v0 < 0) – corresponding to δ2 < 1 and δ2 > 1
respectively – and the third term expresses the relative
death-rate of search processes with respect to the aver-
age rate c̄ (the higher c, the more likely it is to encounter
a contradiction)[18]. The solution of differential equa-
tion (3) reads f(c) ∝ exp(−v0 c) Ai[ 3

√
2 c + z(v0)], where

Ai is the Airy function, z(x) is the inverse function of
x(z) = − 3

√
2 Ai′(z)/Ai(z). Distribution f is shown on

Fig. 3 for several values of the drift. Positive (respec-
tively negative) v0 correspond to trajectories below (resp.
above) the contradiction line (Fig. 1), with distributions
f peaked around c = 0 (resp. c > 0).

The probability of success remains unchanged (to the
leading order in N) once the trajectory exits from the
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FIG. 3: Histograms of the numbers C1 of 1-clauses for sizes
N = 102 (�), 103 (©) and 104 (△) right at criticality (time
t = 1

2
and ratio α = 8

3
). Note the sharp increase of the

probability around C1 = 0, in quantitative agreement with
the theoretical prediction f0 = f(0)/2. Insets: theoretical

distributions f for c = C1/N
1/3 at criticality (A, same data

as main figure), and for drifts v0 = 0.5 (B, dotted), v0 = −0.7
(B, dashed curve) compared to numerics.

critical region, thus − lnPsucc/N
λ = ϕ(t0 → +∞). This

proves the existence of the scaling function defined in (2),
with

Φ(ǫ0) =
1

4

∫ +∞

−ǫ0

dx√
ǫ0 + x

[

x2 − 22/3 z(x)] (4)

Scaling function Φ is plotted and compared to numerics
in Fig. 2. It is an easy check that all the results related
to the successful and failure regimes e.g. the values c∗, ω∗

listed above for finite ǫ and N →∞ are found back when
ǫ0 → ±∞ respectively.

Universality. The critical point of R, or any algorithm
A that implements UP e.g. GUC [5] or HL [6] where vari-
ables are chosen to satisfy 2-clauses or according to their
occurrences respectively, is reached when the resolution
trajectory is, for some time tA, tangent to the δ2 = 1
line: δ2(tA + ∆t) − 1 = b (∆t)n with n ≥ 2 even integer
and b determined from the derivatives of the density c2 of
2-clauses at tA. The tangency condition reflects that the
creation of new edges in G, from the reduction of 3- into
2-clauses, precisely compensates the elimination of edges
by UP. Although the resolution trajectory strongly de-
pends on A, the critical behaviour depends on n, b only,
and is thus universal.

The value of n is 2 for R, GUC, HL and generic al-
gorithms A. Therefore, θ = 1

6
, λ = 1

3
independently of

A; the scaling function is ΦA(ǫ0) = rΦ
A Φ(rǫ

A ǫ0) where
the rA’s are functions of b e.g. rΦ

GUC ≃ 0.9423, rǫ
GUC ≃

0.5706. Fig. 2 illustrates that GUC and HL fall in this
UP universality class. Numerical investigations suggest
that more complex algorithms as KCNFS [7] do, too.
This universality class is robust against any change, ei-
ther induced by algorithms or present in the input data
distribution, in the degree sequence of the clauses graph
G, a consequence of the robustness of the critical compo-
nent size distribution Q(S) [13].

Higher values of n(≥ 4) are exceptionally found for
finely-tuned input data statistics e.g. with clauses of dif-
ferent lengths ℓ(≤ K) and appropriate ratios αℓ (so far
we have restricted to K = 3 with α3 ≡ α). If the ratios
at the critical point δ2 = 1 are such that the reduction
of (ℓ+1)- to ℓ–clauses compensates the disappearance of
ℓ–clauses for all 2 ≤ ℓ < K, then the resolution trajec-
tory will stay longer in the critical region, making Psucc

decrease. The precise condition is αℓ = 2ℓ−1/ℓ/(ℓ− 1) at
criticality [14], leading to λ = n−1

3n with n = K − 1 [17].

It would be interesting to extend our study to struc-
tured input data distributions e.g. leading to clause
graphs G embedded in finite–dimensional spaces, and
possibly to θ 6= 1

3
. In this context, developing renor-

malization tools to capture the critical behaviour of al-
gorithms would be the natural yet apparently difficult
next step. It would also be worth to study universality
for other types of algorithms e.g. local search procedures
[15], or other computational tasks [3] e.g. graph coloring
[9], where poly/exp transitions take place.
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