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Abstract

We consider the solution of an interface problem posed inumtied domain coated with
a layer of thicknesg and with external boundary conditions of Dirichlet or Neumaype.
Our aim is to build a multi-scale expansionagoes to0 for that solution.

After presenting a complete multi-scale expansion in a $mooated domain, we focus
on the case of a corner domain. Singularities appear, dattistguthe construction of the
expansion terms in the same way as in the smooth case. Intortee these singularities
into account, we construct profiles in an infinite coateda@mitdomain.

Combining expansions in the smooth case with splittingsegutar and singular parts
involving the profiles, we construct two families of multiede expansions for the solution in
the coated domain with corner. We prove optimal estimatethfo remainders of the multi-
scale expansions.

1 Introduction

The interface problem investigated in this paper origimdtem an electromagnetic model for
bodies coated with a dielectric layer. In many practicalatibns, the layer thickness is small
compared to the characteristic lengths of the body and thedohas corner points.

The problem is of practical importance and has been widelgistl in the mathematical lit-
erature, in particular with respect to the question of apipnately replacing the effect of the thin
layer by effective boundary conditions (cf. e.g. [4], [A12], [13], [5], [3]). The usual technique
is to build the first terms of an asymptotic expansion of tHet&m of the problem in powers of
the thickness: . In the previous works, the body is required to have a smootimthary, which is
often not true for the situations encountered in the apiidina.

The purpose of our paper is to provide arexpansion for corner domains in the two-dimen-
sional case. We point out the arising mathematical diffiesland the difference from the smooth
case in the structure of the asymptotics. Our method hadasitieis with [7], [6], and [20] in
which asymptotic problems involving singularities arecdissed. A detailed comparison of the
effect of the thin layer with impedance boundary conditidngether with numerical simulations
can be found in [25]. Similar problems can arise in otherigptibns, for instance in elasticity for
bonded joints, see [10].

Although we have restricted ourselves to the case of theacapbperator with Dirichlet and
Neumann boundary conditions, our study keeps the fundahfaatures useful for the applica-
tions. The basic tools introduced in this paper have a wiglege of applications.

* Université de Rennes 1, IRMAR, Campus de Beaulieu — 3504ih&ecedex, France.
T ENS Cachan Bretagne, Campus de Ker-Lann — 35170 Bruz, France
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Our paper is organized as follows:

After a precise formulation of the problems that we are gdmgnvestigate, we present an
outline of our results, in both situations of a smooth donzaid a corner domain. Each time, we
consider Dirichlet or Neumann external boundary condgion

Section 2 is devoted to the smooth case: We improve resul€ b¥ the proof of an optimal
remainder estimate. Moreover, the treatment of externainiNen boundary conditions requires
in our case to deal with compatibility conditions on the dataich is not the case in [9], since
the domains considered there are unbounded. The desergdtibe structure of the -expansion
in the interior domain and its coating, together with uniioestimates is one of the fundamental
tools for the study of the coated corner domains.

After recalling some well-known results about the splgtin regular and singular parts of the
solution of Dirichlet or Neumann problems in a corner domaia build in Section 3 new objects
called profilesand denoted by?*. These objects enter the-expansion as contributions in the
rapid variableZ . They substitute for the singular pags of the limit problem.

In Section 4, relying on the results of the two previous sedj we achieve our goal, which
consists in the construction of two families of multi-scaleexpansions of the solution of our
problem in a coated domain with corner. This result is oatiin formulas (1.5)-(1.7) and fully
provided in Theorems 4.12 and 4.13.

We draw a few conclusions in Section 5 before developing énappendix the proof of a
uniform (in ¢) a priori estimate for the transmission problem with a srhdhbin layer.

We denote byH*(2) the standard Sobolev space, endowed with its natural dprnﬂsg :

1.1 Formulation of the problem

As already mentioned we consider both smooth and cornettigins. Let us first define the domain
of interest in the smooth case. L&%,, C R? be a bounded domain with smooth boundary
Foranyt € T let n(¢) denote the unit outward normal at For ¢ > 0 small enough, lef2;,
be the layer of uniform thickness around 2,y given by

QG ={recR} z=t+sn),tcT, sc(0,e)}. (1.1

5
Qext
ext

ext

FE

ext

Figure 1: The smooth and corner domains with thin la§ér
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The “corner case” involves the situation wheg,; is a polygonal domain oR?. By a stan-
dard argument of localization, it is enough to consider areer at a time: In order to simplify the
presentation, we deal with a single corner point in the damiow ;,;  R? is a bounded do-
main whose boundary' is smooth except at the origi@ : We assume that inside a neighborhood
of O, I coincides with a plane sector of opening(# 0, 7, 27). Let us fix some notations:

Definition 1.1 Let V' C V be the two balls centered i with radii 0 < p’ < p such that
Qine NV is a sector. Lety € C3°(V) be a cut-off functiony =1 in V.

We assume that, fob < ¢ < g small enough, insidé@’ the external boundary df2;, is a
sector of openingv too, at a distance from I', with vertex O¢ € V', see Figure 1. Outsid¥,
the external layef2;,, is defined as (1.1) above in the smooth case.

In both regular and corner cases, the whole donfain UT U €2, is denoted by)* and its
boundary (the “external” boundary) ldy:, .

Let a be afixed positive real number. We are interested in thevidtig transmission problem:
Find u. , defined byu, jn; in Qine and u. ot In QZ,; satisfying the equations

aAua,int = fint in Qinty
Au‘s,ext = fext in ngm
Ug,int — Ug,ext = 0 on I, (PE)
aanua,int - 8nua,ext = g on T,
L external b.c. onl's,

whered,, denotes the normal derivative (outer far,. , inner for Q2Z,, ). The right-hand sideg;
and g do not depend om and f.y is supposed to be the restriction @, of an ¢-independent
function. All data are supposed to be smooth enough. Therattboundary conditions (b.c.)

which we consider are either Dirichlet or Neumann condgion

1.2 Dirichlet external b.c.

Here the external b.c. i) is u. xt = 0 on I'; . Problem P;) is a well-posed elliptic problem

ext *

in Hj(Q2¢) whose variational formulation is

a/ Vua,int - Ving d + vu‘s,ext * VUext do =
Qint Qg

ext

— / fint Ving dx — / Sext Vext A + / guvdo, Vv € Hé(QE). 1.2)
4 Q° T

int ext

Existence and uniqueness of a weak solution directly follmn the Lax-Milgram lemma. We
also have an a priori estimate with a constéhindependent ot :

el g < € [l
The limit problem ass — 0 is the following Dirichlet problem without the thin layer:

aAu?nt = f N Qiu,
W, = h onT,

int

+ | fexlloge,, + lgllor] (1.3)

int

(Po)
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with f = fi,y andh =0.
In the smooth case the interior part expansion of the salugfgoroblem P.) has the simple
form, cf. [9],
Ue int(m) - u?nt( ) + Euilnt(x) +--te ulnt( ) + O( ) (14)

eachuf, being independent of. We will see that the term., solves a Dirichlet problem on
Qine With f = 0 and h = k¥ with h* the trace of dlfferentlal operators acting on the previous
termsuf,, for £ < k.

In the case of a corner domain, the expansion (1.4) is nad e&lymore, because the generic
presence of singularities prevents the above traeso belong to the right trace spadé% (T).
Let (r,0) be polar coordinates centered at the origirsuch that—% < 6 < 2 in Q;,; NV The
singularities of the Dirichlet problent() take the form

A

5 =

r*cos(A0) if A = 1T with g odd,
{ (¢ € N).

rrsin(Ag) if A = 2 with g even
The main result of our paper is completeexpansions foru, ;. , see Theorems 4.12 and 4.13.
In the special situation where the support of the data, fex:, and g is disjoint from the corner

point O, and where” is not an integer, the first of our expansions takes the formneéch fixed
integer N > 0, and the cut-off functiony of Definition 1.1:

0,N

) 1,N-1 2,N—2
ua,int(l‘) = uint( )—I—sumt (z )—|—g2umt () + -
QJN 27r 1 7N 1— 27|— 3 N_ﬂ
+elug T @)+ T TN T @)+ eV T () +

int o (15)
+ew(cr+cie+-) x(z) Re (%)
+ % (ea+ che+ ) x(@) RE (2) + -+ 0(eN),

with the following features

e The termsu."" are independent of . The exponent\ is an integer or a number of the
form I + p with ¢ > 2, p > 0 integers. The exponent indicates thatulnt = O(rH)
asr — 0 In the above expansiop = N — A\, which means in particular that these terms

depend on the given precisiaN of the expansion.
e The numbers:;, ¢, ... are real coefficients independent &f.

e The profilesX — £(X) are defined for\ = 4 in a model infinite sector with layer
of thickness1, see Figure 2, p.14. They solve a transmission problem weitb data and
behave likes* as R — oo. In expansion (1.5), only those with < N are involved.

In the general case, new profiles are produced by the Tayparesion of the data. If; is an
integer, terms involvingog ¢ may also appear. The different terms in (1.5) satisfy thiedohg
energy estimates:

O(1) and |[|x()&: O(eM). (1.6)

[l

int HHl(le) HHI(th)

There are fundamental differences between the expansiofisand (1.5): Non-integer powers of
¢ appear and a new scale is introduced in the functi@ns A disturbing feature of expansion
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(1.5) is its dependency on the given precisidit To go from N to N + 1, everything has to
be reorganized, eact™V—* has to give up a few singularities to become’a™*+1~* and these
singularities are transformed into terms .

This is the reason why we have constructed another typee{pansion, by a mere rearrange-
ment of terms inside the former expansion (1.5). This regeeent relies on the asymptotic
structure at infinity of the “canonical” profileg”, which consists of a finite number of homoge-
neous functionsi**~¢ of positive degree\ — ¢ with integer /. Setting

A oah AA—L
N =R E eﬁ ,
we find the new asymptotics fatr. :

U&,int(x) = u?nt (.T) + Euilnt (33) + E2ui2nt(x) +oe

1_;,_2_7" 3 37
w

o 2C 2
e um () F e U v (2) + e g (2) + -

) ) 1.7)
+el(atde+ ) x@DIE)

€
+e (et b+ ) X@) DT (E) + -+ 0(EN),
where, now, the terms” , for v = 0, 1,. .. are no more “flat” nor regular, but they are independent
of the target precisiom (). Moreoveru! . is the solution of problemRy). As opposed to the
profiles &+, the * tend to zero at infinity and, if\ is not integer, have a boundéti' energy on
Qint :
IXOD* O lir e,y = O (1.8)
They deserve the appellation abrner layeralthough they do not decrease exponentially, but as
a negative power of the distance to the origin. The expandiof) fits better the standard idea of
asymptotic expansion, where one only adds term®{a”) with v € (N, N + 1] to get from a
remainder ino(e") to a remainder ino(sV*1),

1.3 Neumann external b.c.

The external b.c. inK;) is now 9,u. xt = 0. Since the problem has now the constant functions
in its kernel, a compatibility condition is needed on théntigand side:

—/ fint dz + / gdo — / fext dz = 0. (1.9)
Qint r Qth
Since we want (1.9) to be satisfied for every- 0, it requires
—/ fint dx + / gdo=0 and Ve >0, fext dz = 0. (1.10)
Qint r QgXt

Under the assumptions (1.10), we can ensure uniquenessobftes to the Neumann interface
problem by imposing the following mean-value property:

/ Ue int dz = 0. (1.11)
Qint

A expansion similar to (1.4) holds in this situation{ , solving the interior Laplace problem
in Q¢ with homogeneous Neumann boundary conditionsTonIn the corner case, we have
expansions analogous to (1.5) and (1.7). The main new diffiithe construction of a suitable
variational space for the profiles.
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2 Asymptotics for a smooth coated domain

This section is devoted to the smooth case whose undenstargdhecessary for the treatment of
a corner domain. In other words, we first focus on the sitnatiayer without corner” before
treating in the next sections the situation “corner withlayer” and, next, "corner with layer” we
are interested in.

In the smooth case the cunteis supposed infinitely differentiable. Lét be its length. The
layer can be represented as the prodQctr) x (0,¢) thanks to the decomposition

Qo ={z(t)+sn(x(t)) ; z(t) e T ands € (0,¢)},
wheret denotes the arclength dn. The introduction of the stretched variable
S =c1s

maps|0, fr) x (0,¢) onto [0, ¢r)x (0, 1). The parameter does not appear anymore in the geometry,
but in the equations through the expression of the Laplaeeabpr in the layer (in the following
formula, ¢(t) is the curvature at the point df of arclengtht):

Aewme2gty ) oo L, L, 2.1)

T IS T ESe() T 1+ eSe(t) \1+eSe(t) ) '
Expanding (2.1) into powers of, we obtain the formal expansiofex = £72 [0% + Y, °A/] .
More precisely we can write

L-1
Ao =203+ > 'Ar+e"RE] forall L>1. 2.2)
/=1

Here the differential operator8, = A,(t, S; 0;, 0s) haveC> coefficients int, polynomial in S
of degreel — 2, and contain at most one differentiation with respecttoNote that, in particular,
A, = ¢(t)ds. The operatorRL also haveC*> coefficients int and S, bounded ins. There
holds

Op = E_las

in the layer. Finally, for a function.y; defined inQ)Z,, , we denote byV,y; the function such that
Vext () = Vext (£,5),  (¢,S) € [0,4r) x (0,1).

2.1 Dirichlet external b.c.

After the change of variables — S in Q¢ , problem p.) becomes

ext !

e? [agUa,ext +3 0. s‘AgUe,ext] - Fe, in [0, fr) x (0,1),
e 05Ucext = QOpUcint —g oN[0,4r) x {0},
Usext = 0 on|0,4r) x {1}, (2.3)
aAueing = fint in Qine,
Ugint = Uecext onl,
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where F5 (t,S) = fext(t,Ss) with fext(t, s) = fext(z). If the function f. is sufficiently

smooth, the Taylor expansion gfy; in the variables at s = 0 leads to the expansion for all
LeN

L
F(fxt (ta S) = Z EZ‘F(fxt (t)SZ + EL-i_l‘Fr(eer—li_l) Wlth F(fxt(t) = %aﬁfext (t7 O) (24)
£=0 ’

and Fr(eLnTl) smooth and bounded. Inserting the Ansatz
Ueint = > uhy and Useq = Y e"Ulky (2.5)
neN neN

in equations (2.3), we get the following two families of pieins, coupled by their boundary
conditions onl" (corresponding ta5 = 0):

QRUN, = FNT2(1)Sn?— Zerp:nAengt for0 < S <1,
ULy = adyup' —go7 for S = 0, (2.6)
v, = 0 for S =1,

ext

{ O‘Au&t = fint58 in Qint, (2 7)

ur, = U» onI.

int ext

In the cases, = 0 andn = 1, the problems (2.6)-(2.7) are simple to solve. From (2.@hwi
n = 0 we obtainU2, = 0 and (2.7) yields that:) . solves the interior Laplace problem) with
f = fims andh = 0. Atstepn = 1, we find successively thdtl, = (S — 1)[a8nu?nt|p — 4]
and thatul, solves problemE,) with f = 0 andh = —ad,u +g.

The whole construction follows from a recurrence argumeéuppose the sequenceés].,, )
and (UZ,) known until rankn = N —1, then the Sturm-Liouville problem (2.6) uniquely defines
UL, whose trace is inserted into (2.7) as a Dirichlet data tordete the interior part.y, .

Note that the variablé only appears as a parameter in equations (2.6) which areoties
dimensional. Therefore there is no elliptic regularizatio the tangential directioni/}%, is not
more regular thamanuﬁgl, which implies that we loose regularity at each step. Howexe
assumption of infinite smoothness on the right-hand sifigs fext , and g ensures that the con-
struction can be performed. This is not true in the case of@eca@omain, as we will see later on,

and the loss of regularity will be a major difficulty.

Theorem 2.1 Let fiy; belong toC® (Qint), fext t0 C°(Q:9,) foran ey > 0, and g to C>(T).
The solutionu,. of (P.) with Dirichlet external b.c. has a two-scale expansion \ultian be written

foreach N € N in the form

N
Ug = Zenu” +rév+1, with u"|q

n=0

e = Ui, and u”|QgXt (t,s) = Ug(t(t,s_ls). (2.8)

The remainders satisfy, with a constafify independent of < ¢:

HTéVHHLQ + \/EHT?[HHLQS“ < Cyet (2.9)

int
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Proof: By construction, the remaindet’ *! is solution of problemF.)

N+1 .
O[Ara,i—ril_t =0 in Qinty
N
N+1 _  _N-1 N+1-Lrre N-1 i €
ATe,ext = ¢ [ - ZéZO Ra Uext + Fr(em ) In Qex‘m
N+1 N+1
eint — Teext = 0 onTl, (2.10)
N+1 N+1 N N N
aa”’r&ijq_t - aﬂrs,e—;t = g 50 —€ aanumt onT,
TN+1 - 0 on I

g,ext ext*

If we denote the data of this system By’ ! and gV *!, we find the estimates

,ext

1

If5 e =0(="72) and g, = OE"):

coxt |lo.0z,,

Using the a priori estimate (1.3), we immediately obtain

1
[P, e < CENT2. (2.11)
Moreover by definition,
PN NALNFL L N42, N+2 N3, 2.12)
Since for every integen, |[u"||,, = O(1) and |[u"[|, ;. = O(c~2), we obtain the stated
result from (2.11) and (2.12). - [

Remark 2.2 The estimate (2.9) is optimal, sineg” ™! does not vanish, in general. u]

Observing the inductive solution of problems (2.6)-(2. 8 e&n write the relations between its
interior termswu? . without mention of the exterior termS’;; . We can also give an expression of

Ul as a function of the interior terms, only. This is done thanks to the introduction of four
series of partial differential operators, according to:

Proposition 2.3 Let n € N, n > 1. The interior solutionu, of problemg2.6)-(2.7) solves the
Dirichlet problem(Py) with f = 0 and h = A™ where

nt=g'g+ » (huly + HM R (2.13)
k+4=n

Here g* is a differential operator in¢ of order < k—1, H** a differential operator int of order
< k — 2 — ¢ (with the convention thaH*‘ = 0 if k —2 — ¢ < 0) and h* a partial differential
operator h*(¢; 9, d,,) of order < k. The coefficients of the operators are smooth function§ on
depending on the geometry Bf. The first terms are given by’ =0, g' =1, g? = —%c(t)I,

h° =0, h' = —ad,, h*=%c(t)0,, and H*?=H'"=0, H*’=-1l1 (2.14)
The exterior partU?, is given by a similar formula ag.13), with operatorsg”, h*, and HF
replaced by operatora” , b* , and B** which are polynomial of degreg % in the variable S':

Uiy =a'g+ > bruj, + B FL,. (2.15)
k+l=n
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The first terms are given by’ = 0, a' = (1 — 9)I, a = 3¢(¢)(S? — 1)1,
b =0, b' = (S —1)ad,, b*=—3c(t)(S%—1)ad,, (2.16)
and B®? =B'? =0, B** = (5?2 — 1)I
As practical consequences of the above formulas we obtain:

Corollary 2.4

() If fix =0, foxx =0, and g # 0, the serieg2.8) starts witheu! .

(i) If finx =0, foxt # 0, and g = 0, the serieg2.8) starts in general withe?u? .

(iii) More precisely, if fix =0, g =0, and 0% foilr = 0 for & = 0,...,¢ — 1 with 9%, foxs|r
non identically 0, the serieg2.8) starts with/*24,//+2

2.2 Neumann external b.c.

If we consider the boundary conditia®), u. ext = 0 on IS, in problem @), a similar algorithmic
construction can be done. Due to compatibility conditidhs, situation is more complex than in
the Dirichlet case.

The compatibility conditions (1.10) in the exterior parhdae written as

¢ 1
0= /0 /F [1+ sc(z)] fexs(x + sn(z))dzds = ¢ /0 /F [1+eSc(t)] ey (t, S)dtds, (2.17)

where ¢(t) denotes the curvature df at the point of arclengtht and n(x) the unitary outer
normal to i, ; see (2.4) for the behavior afg,, with respect toe. Since we want (2.17) to be
satisfied for everye > 0, we shall assume

Ve >0 / [FLo(t) +c(t)Figt(t)]dt =0  (with the conventionF,{ = 0).  (2.18)
r

Note that for analyticFx , relation (2.18) is a consequence of (2.17).

We now explain the construction of the first terms in the tieeaprocedure. Starting from
the same Ansatz (2.5), we get again problems (2.6) (whosetlthe is replaced by the Neumann
condition 9,U%, = 0) and (2.7). Atstepn = 0, U%,(t,-) solves a totally homogeneous one-
dimensional Neumann problem, hentg,, (¢, S) is a function of the arc length, denoted by
Bo(t) which cannot be determined at this stage.

For n = 1, we get (note thal\, U, = ¢(t)9s5o(t) = 0)

UL, = 0 foro < S <1,

osULy = adyuld, —g forS =0,

osUL, = 0 for S =1,
which is solvable ifad,ud, = g on I'. Thus, letu), be solution of the Neumann problem:
alAud = finr IN Qipy and adpud = g on I' (whose data satisfies the compatibility condi-

tion (1.10)). Thensy(t) is determined as.

Let us now present the general construction: Let us assumhétermsU, and uf, were
built for k& < n, satisfying the condition of':

r, thanks to the continuity condition acrofs

Ve 0,6r), aduulsl(t) = By (t) (Hp1)

int
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where ®,,_; is defined as

By (1) L g o — /1 (Faz?)s2 = 3 AL (t,9)) dS.
0

l+p=n
The construction o/}, and ], consists of three steps.

e Step 1. Definition o/, up to a constantThanks to assumptiort(,_;), the problem

RUL, = Fr2(t)S" 2 - Z:MD:”AZUg’Xt for0< S <1,

ext

osU, = a@numt - gy for S =0, (2.19)

ext
8SUext = O fOf S — ].
satisfies the compatibility condition. Thu8., can be determined up to a constant &f 5" (t) .

e Step 2. Compatibility condition fot/”:! and construction oful',. Let us consider prob-

ext

lem (2.19) at rankn + 1. The right-hand side
Fer)Lctl( )Sn_l - Z Aé ext
l+p=n+1

is well defined sinceA;5"(t) = 0 (rememberA1 = ¢(t)0s). The compatibility condition is
nothing but (,,): It readsad, ui., = ®,

If we insert the previous conditiorf{,, ) into the interior problem at rank , we obtain

{ aAulnt = flntég In Qint7

(2.20)
adpuly, = @, onI.

Therefore, we can uniquely determing,; with the condition [, uf,, = 0, provided the com-
patibility condition for this Neumann problem is fulfilled:

Lemma 2.5 The interior Neumann probleif2.20)is compatible.

Proof: For n = 0, ®, = g and it directly follows from the compatibility condition fo
problem §.), see (1.10). Fon > 1, we must show that the integral @, over I" vanishes.
Thus, the condition to be satisfied is the following:

/ t)dt = // Fg;tl H = > AU ds dt = 0. (2.21)
{+p=n+1

In the sum, we isolate the term correspondingte 1 and p = n; integrating the first equation
of (2.19), we obtain an expression fogU.. which can be used to obtain

ext

// A UL (t,S)dSdt = /// R O ()) Gha Z AUP ( dy ds dt.

l+p=n
(2.22)
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Inverting the integrals in5 and Y yields

// AU (t,5)dS dt = // —c(OFEMY™ 4+ ) Ye(t)AUL(5Y)| dY dt.

l+p=n
(2.23)
Using equality (2.18), we can deduce from (2.23) the corbpiyi condition (2.21) if
/ / [Sc(t)Ar+ A1 UL, (¢, S) dtdS = 0. (2.24)

l+p=n

From (2.1) and (2.2), it follows thaB, = Sc(t)A,—1 + A, is nothing but the operator of rank
in the formal expansion

T. E [1 4 eSe(t)][2 Aexe — 2] — ec(t)ds = Y e'By.

1>2

But for any smooth functionr defined onl’, (2.1) gives
/ T.(t) dt = £2 / O [(1+eSc(t)) o] dt =0,
r r

sinceI is a closed curve. ThereforﬁF By = 0 for every ¢ > 2 and every smooth functiop.
This implies (2.24). [

e Step 3. Complete determination bf; . The continuity requirement/}, = i, determines
A" () = iy lr-

We have just shown that the construction of the terifls, and ul!
induction. We can obtain a similar result as Theorem 2.1:

int

can be achieved by

int

Theorem 2.6 Let fins € C*°(Qunt), fext € C(Q2,) foran gg > 0, and g € C°(T") satis-
fying the assumptiond.10) The solutionu. of (P.) with external Neumann b.c. determined by

fQA , Ue,int dx = 0 has a two-scale expansion which can be written for eACk N in the form

N
= Z g™ + N withug,, = ul

int
n=0

and u"[qs  (t,5) = Ugu(t, e 1ls).

The remainders satisfy, with a constafify independent of < ¢:

=", + VE IS e, < O™ (2.25)
Remark 2.7 For external Neumann boundary conditions we also haveensgait like Proposition
2.3, with the following distinctive feature: Ifi,; =0, g = 0, and fe # 0, the series (2.8) starts
in general withsu! instead ofs2u? for external Dirichlet b.c., and more preciselydf fo.|r = 0
for k=0,...,0 —1 and & fox|r # 0, then (2.8) starts witl*+1u‘*1. O
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2.3 Uniform a priori estimates

Since the transmission problei.f is elliptic, the solutiomu. has an optimal piecewise regularity
depending on the regularity of the data and satisfies canekpgly a priori estimates. In fact, it
is even possible to prove that such estimatesuaiorm with respect toc. Using techniques of
differential quotients like in [1] or [2] we prove in the appix the following local estimates: We
assume thafl;,; is a smooth domain or a corner domain as introducegilii. We fix a point
AeTl, A#Oif O isthe corner of);,;. Let Br be the ball of centerd and radiusR. We
chooseR small enough, so that in particula®) ¢ By . Let p be fixed,0 < p < R.

The following result applies both to Dirichlet and Neumamuibdary conditions:

Theorem 2.8 With the above assumption il and p, let m > 1 be an integer. Fore small
enough, we consider the solutian of problem(P.) with a right-hand side satisfying the regular-
ity assumptionsfi, € H™ 1 (Qune N BR), fext € H™"1(Q5,, N Br), and g € H™ 2(I' N Bg).
Then

Ue it € H™ T ( Qe N B,)  and  ug e € H™TH(Q5, N B,).

Moreover, there exists a consta6t, independent of, f, and g such that

H“&inthJrl,Qimme + H“&exthH,Qf nB, = C[Hfinth—l,QimmBR + erxth_l,Qf NBg

ext ext

+ HgHm—%IﬂBR + H“EHO@EnBR]'
(2.26)

As a consequence, for a smooth domgig; there holds the following global estimate for the
solutionu. € H'(QF) of problem P.) with a right-hand side satisfying the regularity assuomgi

1
fint € H™" 1 (Qint) s foxt € H™1(QE,,), andg € H™ 2 (T):
Ueing € H™ T (Qune)  and g e € ™5

Moreover, there exists a constafitindependent ot such that

etz sotll 1 + Izt e, < € el Mestl

+llgllmsr + Hueng]. (2.27)

For external Dirichlet b.c., one can remove the contributjos.||, ,. in the right hand side of
(2.27). ’

When comparing (2.27) with the expansions given in Theor2rhsand 2.6, we can remark
that uniform estimates are corroborated by the fact thatidggee inS = 2 inside the exterior
stretched part/, is less thann, see Proposition 2.3.

3 Corner singularities and profiles at infinity

From now on we consider the corner case. In this section, epape for the special treatment
needed by the corner poi of €;,,; . Now the solutionu. has singular parts, not only &, but
also at the external verte®® . We refer to [17], [11], or [8] for singularities of elliptiboundary
value problems and to [23] for interface problems.
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Examining problems (2.6)-(2.7) and their solution via Rrsipon 2.3 we see that the singu-
larities of problem Py) are of importance: The application of formula (2.13) pmsases that the
traces ofh*u! . on T are at least inf'/2(T"). Since the operatoh® is of degreek in general,

fm should belong toH*+1(Q;,,:). But the presence of singularities stops the regularithat t
level of H'*% | in general.

We propose the following strategy in order to overcome tWs: use the standard splitting of

u{ . into regular and singular parts, areplacethe singular parts bprofilessuitably constructed,
so as to solve the whole transmission problem in a neighiooriod O .

3.1 Dirichlet and Neumann corner singularities

Before constructing and investigating these profiles, wseidlge the singularities of the interior
problem @), see [11]. We first introduce the following notations.

Definition 3.1 (i) The set of singular exponents for the Dirichlet probl@rg) is
S={L;qeZ q#0}. (3.1)

The singular function associated with the Dirichlet prahleorresponding to\ € & is

(3.2)

{MaMM)WA:%Wqud
S5 prnd

r*sin(A\g) if A = L with g even

where (r,0) are polar coordinates centered i such that the plane sectors < 0 < 3
coincides withQ2;,; in a neighborhood oD .

(i) The set of singular exponents for the Neumann prob{2r@0)is & U {0}. The singular
function associated with the Neumann problem correspanttin\ € S is

5>\:

rrsin(\0) if A = 2= with ¢ od
{ (A9) I with q odd, 33

r*cos(A9) if A = L= with g even

The singularity associated with = 0 is s° = log 7.
(iii) For any positive numberK let &(K') denote the finite se® N (0, K).

We recall the result of splitting into singular and regulartpof the solutions of the Dirichlet
problem @), in the situation where the data dfat” in O, i.e. belong to some weighted spaces
of Kondrat’ev type, see [17]:

Definition 3.2 Lety € R and m € N. Let

HY (Qing) = {0 € Lie(Qin);  7771710%0 € L2 (Qune), 18] < m}.

m—1/2

We denote b)HWJrl/2

(') the trace space oH (Qint) - Finally HS® is defined af),, .y HY' .
Theorem 3.3 Letm € N and K > 0 be areal number such tha&t” ¢ &, and let the data satisfy

m— m+1/2
fit € H™h (Qne) and he H_;g_/l/z(F).
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Then the solution:? . € H(Q4,,;) of the Dirichlet problen(P) admits the following decomposi-

int
tion:
u?nt = 0K + x Z cns® with 2% ¢ H’ZL;gl_l(Qint) and ¢, € R. (3.4)
AEB(K)

Here y is a smooth cut-off function as introduced in Definition 1.1.

Remark 3.4 (i) If m > 1, the regular part.®X isa O(rX).

(i) For the Neumann problem there holds a similar decompodikier{3.4) with an extra constant
term corresponding ta = 0. In fact there are two “singular” functions associated with= 0,
namely 1 andlogr. The latter does not belong ! (€2;,;). However, we will have to take it
into account as far as singularities at infinity will be comesl. a]

3.2 Introduction to the profile analysis

As already mentioned, the solution algorithm of Proposittb3 does not apply because of the
singularities in the splitting (3.4). An essential ingrEali to obtain are -expansion for problem
(P.) in this case is the construction pifofilessolving an associated problem on an infinite domain,
see [6] or [7].

Gext

G

Figure 2: The infinite domaird) .

Focusing on the corner poir®, we perform the dilatationc — X = Z. Whene goes to
0, the domainQ2¢ becomes an infinite sectd@p (see Figure 2):(Q consists of an interior plane
sector Qi Of openingw and of a straight layef).,; of thicknessl. Let Gy be the external
boundary of@ and G denote the common boundary @%,; and Qcxt -

A standard feature of the singularities is to solve the Dirichlet (or Neumann) problem on
the sector();,,; of openingw with zero data, and to be homogeneous of degre@he associated
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profiles & are solution of complete transmission probldPg, |

OZA.ﬁint = fint in Qint»
Aﬁext - fext in Qext>

ﬁint - ﬁext = 0 on Ga (POO)
aanﬁint - 8nﬁext = 9 on G?
external b.c. oNGext,

for zero datafint , fext @andg. The external b.c. is of coursg..; = 0 for Dirichlet and 9, Kext = 0
for Neumann. Moreoverg? has to imitates* at infinity, namely

AMNX) —sMX) =0o(RY), R— oo (3.5)

In this §3, we prove the existence & solving the homogeneou®4{,) problem together with
condition (3.5) for external Dirichlet and Neumann corafi8. For each case, this requires three
steps:

(i) An algorithmic part providing an asymptotic serigd', solution of a model transmission
problem ) with zero data,

(i) Truncating this asymptotic series solution, we define function 8* on the infinite sector
Q@ thanks to a variational formulation,

(iii) The expansion of the latter solution at infinity.

Throughout this section we use the following cut-off “at iitfy”:

Definition 3.5 Let py be the distance)O’ between the internal and external corners@f Let
1 be a smooth cut-off function equal tofor | X| > 2py and 0 for | X| < pg.

3.3 Existence of Dirichlet profiles

3.3.1 Variational formulation

We need a variational framework for probler.{) . Our variational spac& is defined as

U = {n : Vo e L2(Q), % e L*(Q) andv|g,, = 0}, (3.6)

endowed with the natural norm
2 2 1112
olls = [1Vollg o + 1) ollg o

where the weight is X) := (|X|? + 1)!/2. This is a standard space for the solution of exterior
problems, see [22]. The variational formulation is: Find U such that

Vint - Vo do + Vilext * VOext do =
Qint Qext

/ fintbint dx + / fextnext dx + / go do, Vb e*l. (37)

Qint Qext G
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Proposition 3.6 If (X)f € L2(Q) and (Xﬁg € L%(@), then problem(P,,) admits a unique
solutionv € 7.

Proof:  The bilinear forma associated with the variational formulation d?.{) is obviously
continuous ortJ. For the ellipticity, we use the polar coordinates centened’ (see Figure 2),
denoted by(p, ¢) . Thanks to the Dirichlet conditions i6Fcy; , We can write a Poincaré inequality
in the variabley: There exists a constarit independent ofp and v such that

3 3
/}JM@@N%MﬁECa/wR%Wm¢N%M%
-3 -5

Multiplying this inequality byp~! and integrating, we gdtp—lnHQQ < C’HVUHQQ , which gives
the coercivity of the bilinear form ofJ.

The same technique shows that the prescribed conditiorisdad g ensure the continuity of
the linear form associated to the right-hand side. [

3.3.2 Algorithmic construction of kernel elements

We recall that for any fixed\ > 0 in &, we are looking for a solutior®* of (P.) with fi, =
fext = g = 0, behaving at infinity likes* . This is possible because does not belong t83. We
proceed by constructing a series of terms decreasing mdrenare at infinity, until they belong
to the variational spacgJ, which allows the determination of*.

IRzO

: S 0=%+1
)+

: T_’R Qext w

- e

|

0 “

|

: T_’R ant

|

I — _w

[ 0 o 0= 2

| L, @

S — 0=—-2—1

R—0

I

Figure 3: Definition of(R, #) coordinates, after polar transformation in the interiomam.

The first step involves an algorithmic construction in siagdunction spaces. It is more
canonical to define these spaces on a new dorgainstead of(@, see Figure 3:

Definition 3.7 In Qin¢, We denote by R, 6) the polar coordinates centered it . Thus, consid-
ering (R,0) as new variableg);,; is transformed into

C?int = {(Ra 0); R >0, NS (_%7 %)}7
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and G becomes
G = {(R,0); R>0, 0 =+%}.

We consider the exterior Iayer(zi)ext = Qext U Qe‘xt around Qim

)}

Thus, in the exterior laye? and # are the tangential and normal coordinates. Fare R, we
set

Qe ={(R,0); R>0,0€ (£,%+1)} and Qo ={(R,0); R>0,0¢(-1-%, —

I

@) = { Y RMog'Ru0) ;v e c*[-4,41},
£>0, finite
S)‘(Cu?) = { Z cztR’\logeR for 0 ==+%; cj,cé_ € ]R}, (3.8)
£>0, finite
Q) = { D 0 edR); e e SN
£>0, finite
Let Q the union ofQiy , G, and Qext We denote b)SA(Q) the space of functions, continuous

inside Q and whose restrictions t@mt and Qext belong toSA(th) and S* (Qext) respec-
tively.

It is important to note thafl does not represent any more an angular variabtg n . Rather,
(R,0) are cartesian coordinates. The change of variables defmégliq by

(R,0) — X = (Rcos &, Rsin%) + (0 — ¢)(—sin ¢, cos &)

2 9

ext 1 maps Qex: either onto a subset af)e; (if w < ) or a superset of
Qext (if w > 7). Nevertheless, inside the supportf cf. Definition 3.5, this correspondence is
one to one. This is the reason why we can introduce:

and accordingly onQ_

Definition 3.8 We assume that the cut-aff = ¢)(R) in Definition 3.5 does not depend @h For
A € R, let S*Q) be defined as the space of functiansuch that

Jue SMNQ), u(X) =v(R)u(R,0).
A direct consequence of the definition is:
Lemma 3.9 For any \ < 0, the spaceS*(Q) is contained in the variational spac® .
The problem inQ corresponding to problemP{,) can be written as
aAXéint = \fint in Cu2int>
(892 + 8}22)~éext — fext in Qext»
‘éint - Juaext =0 on éa (f)oo)
%aﬁﬁint - 8G-ﬁext = é on éa
Rt = 0 onf==+(¢+1),

Problem ) can be solved in the sense of “asymptotic series at infinity”
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Proposmon 3.10 Let A € &. Let s) denote the extension of tfle singularity in (3.2)by 0 on
Qex: - The functions) belongs toSA(Q) We initialize the serie®M* for p = A+2,A+1, and
A by setting

GIM2 _ AAML _ g gnd AN = 5.

Then there existt» ¢ € SA4(Q), ¢ = 1,2,..., satisfying the following sequence of equa-
tions: >\)\ V4 AA—L+2
86' ext = _8Rﬁext AS i(%’ % + 1)’
DRy = LR 0=y, (3.9)
At = 0 §=+%+1,
AR = 0 in Qint, 210
[ AV O T AP S (3.10)
int - ext org = if?

forall £ > 0. The degree ird of AM L in Qe is equal tol. For each integerp > 0 the
partial sum)_)_ &2 ¢ solves(P.,) for

fie =0, foxt = —0% [ﬁj@ PN g = —ad RN (3.11)

Proof The terms,é*v*—ﬁ are built by induction. For = 0, the algorithm is initialized with
ﬁext = 0 and ﬁmt = s* solving the homogeneous Dirichlet problem@,;. Then we solve
alternatively problems (3.9) and (3.10): #**~" are constructed fon = 0,...,¢ — 1, the
exterior problem (3.9) is a one-dimensional Sturm-Lidevproblem with parameteR and we
check that it has a unique solution Sr\—f(cu)ext) , Whereas the interior Dirichlet problem (3.10)
with boundary data from the trace spasé—*(G) of S* “(Qex:) has a solution inS*(Qins) ,

cf. [8, Ch.4]. Then (3.11) is an easy consequence of equa(®A) and (3.10). [

Remark 3.11 Since the terms in (3.11) a®(R*P~!) as R — oo, we may say that the series

RENT et (3.12)
>0

)

solves P..) with f = § = 0 in the sense of “asymptotic series at infinity”. o

Remark 3.12 (i) If 7/w ¢ Q, the termsg»*~¢, ¢ > 1, are unique in5*~4(Q) sinceA\—( ¢ &,
and as a consequence the kernel of the Dirichlet problen®Y&15*~¢(Q) is reduced to zero.
Moreover, 2*~¢ contains no logarithmic ternbg R .

(i) If 7/w e Q, for each? such thath — ¢ € &, a resonance phenomenon may occur, exciting a
logarithmic singularity (the degree ot~ as a polynomial inlog R is at most/). In that case,

the asymptotic serieg* contains arbitrary choices. Any other asymptotic seﬁés_ > oo R RPN
satisfying the sequence of equations in Proposition 3.10beacompared to the specmed one.
There exist coefficient$y;)) for eachr =\ — ¢ € &, £ > 1, such that

SA _ BA P
Re=R +Zu:>\—666%ﬁ ’
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3.3.3 Effective construction of profiles

Using the asymptotic serie§ &2+, we are able to construct genuine solutions for prob-
lem (P,,) with zero right hand side and asymptotics (3.5) at infinity:

Theorem 3.13Let A € &, A > 0, and letp, denote the smallest integer such that
A—1<p (3.13)

Recall that is the cut-off function from DefinitioB.5. There existsu’P> in the variational
spacey such that

P
fr=y Y A (3.14)
=0

defines a solution?* of problem (P,,) for § = g = 0, such that& ~ s* as R — oo.

int

Moreover for any integep > p, , the functionu™” defined asf* — ¢ 3°7_, &3¢ also belongs
to °J.

Proof:  For any integerg, we defineo™? as the sum—+ °¢_ & ¢, By construction, the
function v*? solves problem®..) with, compare with (3.11):

](int = Pint; fext = Pext — ?M}%, E;\)’é‘_q + j%g\;(i\_q—i_l y 9= _w%aﬁ “i);;tk—q (315)

where ¢ comes from the cut-off: Its support is containedsimpp(V1). For ¢ large enough,
ie. ¢ > A+ % the above right-hand sides satisfy the assumptions ofdBitign 3.6. As a
consequence, there exists? € 9, solving the same problem ag-?. Then

q
=)y /Mg (3.16)
(=0

solves problem ¥..) with f = g = 0. Finally the statement concerning'? for p = py,px +
1,... follows directly from Lemma 3.9. [

3.4 Expansion at infinity of the Dirichlet profiles

Equality (3.14) provides the expansion &t up to o(1) as R — oo. But we need to know the
expansion of&* at any ordero(r—F) for the construction of the expansion of the solution of
problem @.) in Section 4. The theorem below provides the complete esiparof £*. For this,
the introduction of several sets of indices is useful:

Definition 3.14 Let Q~ be the set of negative exponents defined as
Q" ={-"_g; hgeN with h>1, ¢>0}. (3.17)
For any A > 0 we introduce the infinite set of exponents depending on
D=9 U{-1,A-2...,A(...} (3.18)

and for any numberP > 0 the finite setQ*(P) = Q* N [-P, \).
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Theorem 3.15Let A € &, A > 0.
(i) The solution®* of problem(P..) introduced in(3.14) has the following expansion at infinity:

VP>0, fR'=s3+ > &M +o(RF), R- . (3.19)
peQ(P)

where for anyu € Q* the function 82* belongs to the spacé*(Q) cf. Definition 3.8. The
degree ofﬁj);‘t‘ as a polynomial in6 € £(%,% + 1) is < A — u. Moreover, one can take
derivatives of expansiof8.19), still having estimates on the remainder, $8e30)

(if) More precisely, we have the identity between asympgsries:

sp+ Y/ =/ Y gRY, (3.20)
penr 1/:—%"<0

with the & defined by(3.12) and ¢} are real coefficients, characteristic for the domain

The proof of this theorem requires regularity results fervariational termsi»? and uses the
Mellin transform. It is performed in the next Sections 3.4rH 3.4.2.

3.4.1 Regularity of the variational terms in weighted space

We are going to study the regularity of the variational tenm¢ , cf. (3.14) and (3.16), in a scale
of weighted Sobolev spaces, as is usual for corner probleeed,17]. Rather than in the seci@r,
we work in the stripQ obtained from@ by the change of variabl®* > R — ¢ = log R € R,
see Figure 4.

ffffff ; =2 41
iiiiii L., Qs .
eLt Crjint
ffffffffffffff =4
i o
ffffffffffffff o=—2—1

Figure 4: The strip@.

Let us now introduce the scales of weighted spaces.

Definition 3.16 (i) Let m be a non-negative integer angd a real number. The spacK;”(@int)
is defined by

K’Tyn(@int) = {E ; e’ e Hm(@int)}v
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endowed with the natural norrjio = ||e"*v]| . We define similarly

HKT(@im) m,Qint

" (Qest) = {5: 5 € H(Gur)} and K 2(G) = {5; 5 € H"H(G)}.

(i) We setKgﬁ_%(@) ={b; by € Kg(@im), Dext € Kg_%(@ext)} ,and form > 1

KTV”(()) = {E; Oint € K7(Qint), Dext € K;’L_%(@ext) and Biy; = Dex ON é} (3.21)

1~ ~ ~
Last, we denote bK;ﬂyf; (G) the space of traces CIK;”V_l (Q) on the interfaceG .

’ 2 ’ 2
Remark 3.17 (i) The above definitions are inspired by Kondrat'ev spaces[k8e Namely,
K?(Qint) is the image oﬂ{gl_l(Qint) , see Definition 3.2, by the change of variablEs— (¢, ).

(i) If (X)"tu € L2(Q) (and in particular, ifu € ), then (¢,6) — ¥u belongs tng,_l/z(@).

i)y The natural trace spaces @h of the spaces”(Qi:) and K™, /z@ext) do not coincide.
Thus the transmission conditian,,; = v enriches the topology of the space (3.21). o

Using the elliptic regularity away from the corner (see Tiee02.8), we can prove the follow-
ing “shift theorem™. Note in the following result that moregularity is required foff..; than for
fint due to the inhomogeneity of the operator in the strips.

Theorem 3.18 Let i be solution of problem(P.,) with data f and §. Leti, §, and § denote
their transforms on) . We assume the following on the data for some integer 2 and v € R:

%int S K?—;ﬁ(@int N [t > 0])7 fext € KZ:_ 2 (@ext N [t > 0])7 g € K’y—i—l (é N [t > O])

If & belongs toK” v—l(@ N[t > 0]), then it also belongs té{%—l@ N[t >n)) forall > 0.
) P ’ 2

Proof:  In the variables(t, §), the Laplace operators present in the first two equation®0f) (
become
Tint = e_zt[ﬁf + (93] and Toxt = 6_2t [8152 — 8t + €2t892] .

Let us fix the real number; > 0 and consider for some arbitray > 0 the rectangleR :=
QNto+n <t <ty+ 2n]. Onsuch arectangle, the non-principal parts of the aboeeatqrs
can be neglected and the variable coefficients can be frozeép. iFinally we use the following
dilatation of the exterior strips:

s=+Y4e@FY) in QL.

As a consequence, the domalkh becomes a rectangle with layers of thickness e~% and the
considered operators can be written as
Tiy = e 20007 + 03] and T5, =e 2 [07 +07],

ext T

which are nothing but the Laplace operator (multiplied byastant). Moreover the transmission
condition onG becomes

—t ~ —ton ~
e Paldpling — € O slext = -
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This is the same as irPY), since Jy and J; are the normal derivatives along the transmission
boundary. Using Theorem 2.8 and going back to the variafiled) , we obtain the estimate, with
C' independent of, — in the following the derivation multi-indices with respeao the variables

t and 6 are denoted by = (5, 3p) :

Hﬁinth,’Rim + < Z e2ﬁeto—t0HaﬁﬁeXtHz’Rext)
|B1<m

1
0| il sy, + (X 0 enli,)’
[B]<m—2

[N

to || ~ —to/2||
# il yp + [l + e ol 322
where R is the rectangleQ N[ty < ¢t < to + 3n], T its boundary along= . If we multiply
inequality (3.22) bye?* and use0 < 3 < m, we get

1
7 0720w |
€ Uint m,Rint + € Uext m,Rext —

C e el 0_o +€(7+m_%)t°“¥ext“

"2 R + g,

m_277/€ext - % ,/F\

0l g, € [Tl 2 |

Sincet ~ t, in the rectangles, we can replace the noufis||v|| . by ||e’*v||, . Summing up all
these inequalities fot, € nN*, we get the result. |

As a consequence there holds the following result on thdagguof the variational term.

Proposition 3.19 Let p be an integer,p > py, and letu*? denote the “variational” function
YuMP (3.14), (3.16) in the variables(t,6), t € R,and § € (—1 — £, % + 1). For every integer
m > 0, we have

Q) (3.23)

e K

D=

Proof:  We apply Theorem 3.18 fory = 0. Sinceu™? € U, we haveu’? ¢ Kg,_m(@),
cf. Remark 3.17 (ii). It remains to check the assumptionsherright-hand side, which is defined
by (3.15). Since it is smooth with compact support, the fionctp belongs to every weighted
space. On the other hand, thanks to the structure of theidmsan S*(Q), we can check that for
p>A+m-—1,

- ~ m—3 ~
foxt €K™ %(Qext) and ge K| 2(G).

Theorem 3.18 yields that € K?_l/z(@) in this case. To examine the situation wherés such

thatpy <p < A+m —1, let us write

p+m
u)\,p — u)\,p—i-m _ w 2 : ﬁk,)\—f.
£=p+1
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Sincep > py, we havep+m > A\+m—1, thusuhPt™ ¢ Kgl_m(Q) by the first step. Besides,
forall £ > p+12>py+1,the exponenth — £ is < 0. The structure of the space®’(Q) allows

to show that for any. < 0 they are embedded iKg')(Q) , thus in Kg”_l/Q(Q) , which concludes

the proof. [

3.4.2 Proof of the expansion of the profiles at infinity

We can now prove the asymptotic expansion (3.19) of the profil constructed in Proposi-
tion 3.13. The main tool for this study is the Mellin transfgrwhich is a Fourier-Laplace trans-
form in the variablet whose argument is complex, see [17], [8] or [21].

Let A € C; if vy is defined in the strig);,; , we set, when meaningful

Bt (A, 0) = / M B (,0)dt, 0 € Oy 1= (—%,2). (3.24)
R

The variable§ is a parameter: IfA = £ + in, Emt(-,e) is the Fourier transform of —
e b (-, 0) evaluated at the poing. Similarly, we define a Mellin transform in the exterior
strips:

ext ext T

5. (A, 0) :/e‘AtEext(t,O) dt, 0€ 0%, = (2,9 +1). (3.25)
R

The weighted spaces defined above can be characterized by tveahsform:
Bine || ~ [ |l in)||? d 3.26
HnintHK:’\/n(éint) — R “Uint(_7 + ”7) HHm(Gim,\?ﬂ‘i‘l) n, ( . )

2 . .
whereHgHHm(@ )= Y gt B % 0% g|[2 o. . Conversely, if the integral

int,P

/R HUint(_/Y + Z'7])|’I%Im(@int,‘77|‘f‘l) dn

is finite, thenU;,,; is the Mellin transform of a functiom;,; € K?(vat) onthelineRe A = —~.
The functionv is reconstructed by the inversion formula:

~ 1 . .
Uint(tv 9) = M:’ly(Ulnt) = % /R e(_PH_m)tUint(_’V + m, 0) d77

These results are consequences of the Plancherel idefiti.same equivalences hold for the
exterior domainQext .

We are ready to study the asymptotics®f. Thanks to equalities (3.14), (3.16), it is sufficient
to investigateyu™? for p > py :

Proposition 3.20 Let A belong to& and letp be an integerp > p, . Let x denote the Mellin
transform of the function»? ~ ¢u*? , cf. Proposition3.19 There holds:

(i) x is holomorphic in the half-plan&e A > % :

(i) Let b be a positive number such that> X\ + b — 1. The functionx admits a meromorphic
extension in the half-plan®e A > —b. The set of its poles is contained @, cf. (3.17).
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Proof: (i) Since by Proposition 3.19 the variational teim? belongs to the weighted space
Kg _1(Q), the equivalence above shows that: (A, 6) is well defined forRe A > 0 (remember
T2

uMP vanishes neaR = 0) and that, similarly,<ext (A, 0) is defined forRe A > % Therefore, it
is clear thatA — «(A, 6) is holomorphic in the domairﬂé , Where

II,={A € C; ReA > a}. (3.27)

(i) After Mellin transformation the problem satisfied by? becomes

(A% + )k (A) = Fine(A —2) 0e(-%%),
Hint(A) = ﬂext(A) 0=+ 5
Okext(A) = Joxt(A) —AA = Drext(A+2) Oe£(2,241),  (328)
89Hext(A) = a8951nt(A+1) @(A) 0=+ %’
Fext(A) = 0 0 =+(%+1),

where the termé;mt , fext ,and g* come from the Mellin transform of the terms defined by (3.15)
and from the truncation. Sincg is sufficiently large § > A + b — 1), this right-hand side is
holomorphic forRe A > —b.

We will build the meromorphic extension @f(A) in II, by descending induction over,
starting froma = 3.

If such an extension is known in the half plafig,, we can definex=,(A) as the unique
solution of the last three equations (whose right-hand sidewown). As a second step we put
RZ.(A) in the right-hand side of the second equation of (3.28) andet/&;,(A) to the solution
of the interior problem given by the first two equations ir28, which is possible iA ¢ S.

For A € I1,, we obviously haves(A) = x(A) since both satisfy problem (3.28), which has
a unique solution because it corresponds to the variatignadllem @) in the Mellin variables.
The functionk is hence an extension of. Moreover, ¥ is meromorphic inll, 1, the poles
being inherited froms by translation by negative integers and coming from therimitgoroblem

(the singular exponents). [

Thanks to the Mellin inversion formula, we are able to dedhesasymptotic behavior af?
from meromorphic properties of its Mellin transform.

Proposition 3.21 Let \ belong to& and let p be an integer,p > p,. The functionu?? is
defined through equalitie@.14), (3.16). Let P be a positive number such that> A+ P — 1.
There exist functiong** € S#(Q) (cf. Definition 3.8) such that

W= N @l where w = o(R") asR — +oo, (3.29)
MEQ_7 N’Z_P

and the set of indicef)~ defined by(3.17) Moreover the first order derivatives of the remainder
satisfy the decay properties

Or(u(p) =o(R ") and dp(uf) =o(R™F) asR— +oo, (3.30)
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Like in Proposition 3.20x(A) is the Mellin transform ofu*? ~ uP. Let us fix
a, ¢ Q° suchthate < f andp > A\ —a — 1. Forn > 0, the boundary of the rectangle

Proof:
a<ReA<p and |ImA|<n

tA 9 tA
e k(A)dA = 2ir Z [P\{:eze K

/G” a<u<pf

will be denoted byG,, . By Cauchy’s formula, Proposition 3.20 gives that
(A),
with residues foru € Q. We letn) go to infinity in the above identity. The vertical sidesGf,

give inverse Mellin transforms:
/ ey + )i dny — 2in MM R(A)], Y = a, B,
-n

where/\/l;1 denotes the inverse Mellin transform along the liReA = ~.
Standard resolvent estimates for the system (3.28) combbirth the descending induction

argument of the proof of Proposition 3.20 show tk&§ + in) is rapidly decreasing ag)| — oo .

Thus, there is no contribution of the horizontal sideghf. In conclusion, we obtain

1

5 anda = —P — 4 for somed such that

We can check that, fop € 97, the function &2+ := v Resp—, e'*x(A) belongs to the space

SH(Q). The expansion (3.29) is obtained fgr =
[-P—-46,-P)nQ~ =0.
It remains to prove that the remainde?ﬁ) satisfies the decay properties in (3.29)-(3.30). We
setﬁ?j%(t,@) = 71’“?}% (X). Thusﬁ?l’f) coincides with M 1[k(A)] for large t. Since k(£ + in)
is rapidly decreasing ag)| — oo, the norms
. 2 d

. [0 + i) [m o 1) A7
are finite for anym > 0. This shows thaﬁ?lgp) belongs toKTIQLM(@) forany m. Form > 1,
this implies thatu)‘l’f) = o(R~F) as R — oo, and, for larger values ofn, it proves the decay

]

properties (3.30).
Let us fix P > 0. Let us takep > X such thath — p < —P.

Proof of Theorem 3.15:
According to Theorem 3.13, there holds

p
R =y Z};{)\,A—é Ly,
=0

Proposition 3.21 yields that
P = Z
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Therefore we obtain the expansion (3.19) for tlits By virtue of the uniqueness of asymptotic
expansions in powers aR at infinity, the termsg&™#* do not depend orP .

The expression of* as a formal series — see (3.20) — follows again from the Caiahyula:
indeed the termg&*»—¢), satisfy the equations (3.10) and (3.9).

The assertion about the degre&jirof Rext in the layerQ.x: results from the equality (3.20):
ﬁext is a linear combination of terms of the formr” ¢, with . = v—¢ and v < X. According
to Proposition 3.10, the degree fhof gvtis e, Whenceg A— . [

3.5 Neumann boundary conditions

In this section, we try to follow the same arguments as bdtréhe Dirichlet boundary conditions.
The variational formulation is the same as above, but dusg@absence of the Poincaré inequality,
the previous variational space cannot be used in this casgertleless, it is possible to find a
suitable variational space: L& be defined as

o
(1+ R)log(2+ R)

X = {n : Vo € L*(Q) and € LQ(Q)} , (3.31)

endowed with its natural norm (agaif is the distance to the interior corner poift). Since the
constant functions belong t&, we introduce the quotient spa®@ = X/R. The spacel is
clearly a Hilbert space and we will show that tHe -seminorm is an equivalent norm &g :

Proposition 3.22 The bilinear forma(u, v) = fQ Vu - Vo dz is continuous and coercive dij .

Proof:  Only the coercivity needs to be checked. For> 0, let Br denote the ball of radiu®
centered inO’ (exterior corner point of) , see Figure 2) angt a smooth radial cut-off function,
supported inB; and equal tol in Bj.

Let v € X, we denote by(v) its mean value orBx N Q) :

1
(o) = meas(Bs N Q) /3ng o) dz.

By the Poincaré-Wirtinger inequality in the bounded dam&h, N @, there exists a constardt
such that

lo =<0 lo, 5,0 = ClIVOllo pyne:
which gives the following estimate fog(v — (v)):

Ix(o = (o))[|x < €[ Vo]l 01 (3.32)

where C' is another constant, independentwfLet thenu be defined ast = (1 — x)(v — (v)).
If we denote by(p, ) the polar coordinates centered @', thenu = 0 on the circular arc
corresponding t = 2. We can use this information to get a Hardy inequality (irs timit case,
it corresponds to a “weighted Poincaré inequality”, seg)flfor any R > 2,

R
// |21 pdpds0<0//\3up, ©)]>pdpde.
og? p

Together with (3.32), we obtain the result. |
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Corollary 3.23 If (1 + R)log(2 + R)f € L?(Qin) and (1 + R)7 log(2 + R)g € L2(G), with
the compatibility condition (note that the integrals makese)

/ fdx+/ gdo =0, (3.33)
int G

then problem(P,,) admits a unique solutiom € 5.

With the spacel5, we get a suitable variational framework which allows us éfirce unique
solutions for problem K..) in the case of Neumann boundary conditions. We will comitauuse
X instead of5, i.e. functions instead of equivalence classes modulotantss but we have to

make sure that elements of the dual space are orthogonahs$tacas, i.e. satisfy the compatibility
condition (3.33).

Similarly to the Dirichlet case, we start from a singularity (A > 0) of the interior problem
(with Neumann condition o’ this time). Since it does not belong to the variational spaiceve
perform a few algorithmic steps in order to decrease theegeigrthe variableR at infinity.

Proposition 3.24 Let A € & U {0}. Let s denote the extension et (3.3)in () such that

s)(R,0) = 5*\92%(3) inQ=,.

We setg** = s} and, for convenienceg* 1 = gAA2 =,

There existi** ¢ € S*4(Q), ¢ =1,2,. .., satisfying the following sequence of equations
BRse ' = —ORRTT 0ex(5.8+ 1),
Dhye ™t = LR 9=y, (3.34)
PR = 0 §=+%+1,
AR = 0 iN Qins,

int

5 S L (3.35)
ad, RN = / ORI R ) Y forf = +%,

int w
32

The exterior part is defined up to a constant, which is deteeghiby the conditio vi);?_g =

g onr.

int
For each integerp > 0 the partial sumy_?_, #**~¢ solves the Neumann problefR..) with
i =0, fou = OR [R0A PR g=a0uR T (3.36)

Proof: Due to the compatibility conditions for Neumann problerhg, ¢onstruction of the terms
£MH is not as straightforward as in the Dirichlet case. Let ug gibrief description: /M~

are constructed fof < k, then consider equations (3.34) for= £+ 1. This is a one-dimensional
Neumann problem (with parametét) whose compatibility condition reads

g+l H% EIA—(k=1) Qg ANk SAA—k
R Vext (R> 19) dd = Eagﬁint - iaa”ﬁint )
+5
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this gives the Neumann data for the interior problem (3.88) & = k£ (whose compatibility
condition is fulfilled). As for the Dirichlet case, the inker boundary value problem with data
in SA*~1(&) always has a solution i5*~*(Q;,;) . We can then definet,: " ; the condition
RaAF = g% on G completely determines the exterior part. n

Here is now the analogue of Theorem 3.13 in the Neumann case.

Theorem 3.25Let A € &, A > 0, and let p, be defined by3.13) There existau*? in the
variational spaceX and, if A € N, a constant/*, such that the sum

P
R = ) e if A ¢ N

&0 (3.37)
o= ) APt A eN

=0

defines a solutiorR* of problem(P,) for § = g = 0, satisfying &, ~ s* as R — oo.

Proof:  For any integerg, we define
q “
oM = —p Y " /M (3.38)
=0

By construction, the functiom™? solves problem®..) with

fint = QYq, (339)
for = g —0R (R R (3.40)
g = —U%opRy Y (3.41)

where ¢, comes from the cut-off; its support is containedsitpp(V)) .

For ¢ large enough, i.e.q > A + % the above right-hand sides satisfy the assumptions of
Corollary 3.23. If we are able to verify the compatibilityratition (3.33), we can conclude that
there existsu™? € X, solving the same problem as-¢. Then

q
ﬁ)\ — w Zé)\,)\—f + u)\,q
=0

solves problemK..) with f = g = 0; the statement concerning*? directly follows from the
inclusion 6* C X for u < 0.

Let us focus on the compatibility condition (3.33). FBr> 0, we defineQ” as Q N Bg,
where By denotes the ball of radiug, centered inO. Similarly, G (resp. GE,) denotes
G N Br (resp. Gext N Br). With the help of an integration by parts, we get

I déf'/ fda:+/ gdaz—/ 9™ do, (3.42)
QR GR QnABR
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the terms onG® and G, vanishing by construction off**. Thanks to definition (3.38) of

v, we get the following expression for the integi) :

M L
Ip=>" amR ™ log'R, (3.43)
m=1 {=0
with unknown coefficients:,,,. For ¢ large enough, expressions (3.39)—(3.41) show fhamd
g have finite integrals ovef) and G. Hence,Iﬁ2 has a finite limit72, as R — +oc, which
imposesa,,, =0 for A\—m >0 or (A =m and/ > 0).

If X\ is not an integer, we can dedudg = 0: This is the expected compatibility condition.

If X\ is an integer,I2, does not necessarily vanish. But the compatibility condittan be
fulfilled with the help of the logarithmic singularity. Indd, if we apply the same technique as
above, starting withs® = log R ¢ X, we obtain7%, = —1. Hence, forA € N* we do not know
if 12, vanishes but

p
pAP — _1/}< Zﬁ/\,,\—z n 13052)
=0
satisfies the compatibility condition. [

Then we can prove by the same tools ag$34.1 and33.4.2 that the Neumann version of
the 8 satisfies an expansion at infinity like (3.19) with the sameo$@xponentsQ* (3.18).
At this stage there is essentially no difference betweertlat and Neumann external boundary
conditions.

3.6 Non-homogeneous profile problems

The same techniques apply to the non-homogeneous proBlgh (

Theorem 3.26 Let A € R. Under the following assumptiongine = ¥fint » fext = Ufext» 8 = ¥
with

fint € SN 2(Qint)s Fext € SN (Qexe) and §e SNG), for Dirichlet b.c.

fint € S*72(Qint)s fext € SM HQext) and §e S* (@), for Neumann b.c.

problem (P.) with Dirichlet or Neumann external boundary conditions dsna solution 25*
which has an asymptotics at infinity of the form
wr=wt 4+ > whto(rF) (VPeN), (3.44)
HEQN(P)
with 207+ in the spaceS*(Q) of Definition 3.8, for ally € {\} U Q™.
Proof:  We have only to check that the algorithmic construction grenied in Proposition 3.10
can be started in the situation of a non-zero right-hand. sitle still have to solve the series of

problems (3.9)-(3.10) with the initializatiog** 1 = 0**+2 = 0. For ¢ = 0 and Dirichlet
b.c., problems (3.9)-(3.10) are now:

RWy = fer 0€ (2,9 +1),

ext

Wy = 6 0=+%, and {

<A ¢ .
aAm]int - fint n Qinty
Wt = Wy ford =+,

int ext

ext

Wor = 0 O=+2+1,

ext
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The problem inQ.« can be explicitly solved in5*(Q). Then the problem irQ;,; is a Dirichlet
problem with boundary data iSA((?) and interior data inS’A—z(Qint). According to [8, Ch.4]
for example, it is solvable il’S*(Qim) .

For Neumann external b.c., we have to take into account fifereft order in the iterative
algorithm, see Proposition 3.24. The right hand sifies and § then only appear in the equation
for 2021 see also the Remark below.

The whole construction and analysis is then similar to that® . [

Remark 3.27 In the case of external Neumann b.c.jdf, and g satisfy the compatibility condi-
tion "
y :|:5:|:1 .
VR, §(R.+2)= / Foa(R ) dv
£9

then one can alloWey € S*(Qext) and § € S*(G) in the hypotheses of Theorem 3.26. o

This result will be used fopolynomial right hand side%m , that is why we introduce:
Definition 3.28 Let k € N, k£ > 2. For any multi-indexs = (31, 32) of lengthk — 2 we set:

2959 solution of (Pa) for:  fine = XP( = R* 2 cos™ 0sin™0), fee =0, g=0.

The function20%(®) has the form(3.44)with A\ = k. The first term205%*:(%) of its expansion
(3.44)satisfies

oRWER) = 0, 0e (2,4 +1), y
o 22 aAgEE P — 8 in Qint,
920 7t,(6) =0, 0==%, and y

ex @I@kz,(ﬁ) _ Qﬂk7k’(52 0 — 4@

ext 2"

(3.45)
WEEP =0 g=x2 41, e
Remark 3.29

() For Neumann external boundary conditions, the profig%(®) are pertaining to the second
case in (3.37). Thus a term ilog R may appear in their expansion (3.44) at infinity (even if

T ¢ Q), together with lower order terms of the forRJlog" R, j =1,2,... andk < j.

(i) Itis also possible to introduce profiles solving polynonright sides forg and fex, . There
we have to take into account the different degrees appearithge Dirichlet and Neumann cases,
cf. Remark 3.27. o

4 e-Expansion in the coated domain with corner

In this section, we reach our initial aim, that is to build aymptotic expansion ire for the
solution u. of problem @.) with Dirichlet or Neumann external boundary conditionghe case
where Qi+ has a corner at the origi® .

We recall thatz are the Cartesian coordinates centeredafthe “slow” variables in;, ),
(r,0) are the polar coordinates centered(at ¢ is the arclength along the interfade, s is the
normal coordinate td" inside QZ; (this is well defined outside an-neighborhood 0f0).
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We also recall the cut-off functiory introduced in Definition 1.1, which allows a localization
independent of=, in the region where)® coincides with a sector. In order to avoid non-zero
commutators ofy with the normal derivative®)y and d; on I', we assume for simplicity that

Xx=x(r)in Qe  and x = x(t) in Qext - (4.1)

We first deal with external Dirichlet boundary conditions jwoblem @.), the Neumann case
is similar and will be discussed in Section 4.5. We assuna fiow on that

fint S Coo(Qint)y g € Coo(r)v and fa,ext € Coo(ﬁgxt)v (42)
allowing a priori some dependence fif.; on €. Moreover, in a first stage we assume that
supp(fint) NV =0, supp(g) NV =0, and supp(feext) NV =10, (4.3)

where )’ is the neighborhood of) introduced in Definition 1.1.

Then we consider the more general case where we do not impgsmadition of support on
fint - This will be done by taking the Taylor expansion fif; at O into account, and using the
result with the support condition. By the same techniques, auld treat non-vanishing Taylor
expansions off.; and of g, but for the sake of brevity we will not formulate the most geai
result.

4.1 Arecursive approach of thes -expansion

Let us consider the case of a smogth: , independent ot , as we did until now, and let us start
with the algorithm we have already used for a smooth domain.

Considering equations (2.6) and (2.7) fer= 0, we find U, = 0 and the homogeneous
Dirichlet problem with source ternf;,,; for ud

int *

Forn = 1, UL, is explicitly given by UL, = (S — 1) [a0,udy|r — g] . Its trace onl is

ext X

g — ad,ul . and has to be inserted as a Dirichlet data into the problemidgfi. . . But, due

int *

to the corner, we cannot ensure a sufficient regularity: Asarity in r& can arise inu ., cf.

(3.4). Thusd,ul,,|r is like 75—, which does not define aH'!/2(T") -function as soon ag < 1,
and the problem defining,, is then not solvable i () .

Our technique consists in splitting) . according to (3.4), into a regular and a singular part
which are handled separately. The singular part is a linearbination of the singular functions
s* (3.2). Taking advantage of Theorem 3.15, we replace ea¢h) = =*s* () by its counterpart
e*&*(2) solution of the homogeneous transmission problem.

Then we are left with a residual transmission probléh) @ssociated with the regular part of
the expansion of.’ and a finite number of problem®.) generated by the localized differences
x(x) (e*&MZ) — s3(x)) . The structure of these latter terms is given by the expan@d.9) of
/", resulting insmaller (in thee -scale)right hand sides, smooth with compact support like in
(4.2)-(4.3), but with anore general structuréor f. ... Thus, for technical reasons which will
become clear in the course of the proof, we assume fthat satisfies

feet =Y N0 with OEff|L=0,k=0,... -1 (4.4)
(€N, finite

We may immediately note that, despite its apparent morergefoem, f. .« is simply a superpo-
sition of cases already treated. Moreover, as a consequé@arollary 2.4(iii) , such an exterior
data in a smooth coated domain corresponds to a solufiomhosec -expansion starts with%u° .
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4.2 The first terms in the € -expansion in the Dirichlet case

In order to define a correct splitting strategy for the irdeterms«}, , we have first to decide a
target precision ine, i.e. to choose a positive numb@f with the aim of writing ans -expansion
with a remainder of ordee” . For technical reasons, we have to dimother positive numbef<
such thatK ¢ &. We will see in the course of the construction thdt has eventually to be
chosen (at least) larger tha¥i + 3 .

In the more general case of exterior data satisfying (4.8)fisst solve the exterior equation:

U = S, 4oL fok(t, 008" foro< S <1,
osU%, = 0 for S =0, (4.5)
us. = 0 for S = 1.

ext
Since the functionsf. -t vanish in a neighborhood ab, the extension by zero of the solution of
problem (4.5) uniquely defines a functidi’,, in the entire layerQ:, .. Thenu!  solves Py)
with f fmt andh = xt‘F
Since fi,; and U2, |1 are smooth and infinitely flat near the corner, we can applyfira 3.3
to obtain the splitting:

ud = umt +Xx Z A sMNr, 0) (A €R), (4.6)
AES(K)

int

where u> X = (’)( K near the corneD : More precisely,u®® € H* | (Qint). In QF

int ext !
do not modify U2, and setuext (t,s) = Ud(t, ), — notice here that the equality makes sense
since U2, vanishes in a neighborhood 6f, see (4.22). Thus we have defineti” in the entire
domain° .

Considering the solutior®* of the homogeneous proble®.(), see Theorem 3.15, and the
homogeneity of degrea of s*, we find that the difference

e* &ME) —53(r,0)

is of ordere. We recall that the transformation to the new coordinates the homothecy centered
in the interior corner point with ratio e~! and thats) denotes the extension ef by 0 in the
exterior part.

Taking advantage of the fact tha*(Z) solves exactly problemP) with zero data in the
neighborhoodV of O, we set as a replacement faf :

W=y Y A RE), @.7)
AeB(K)

which will be our starting point for the expansion of . Let

il =wu, — @ (4.8)

3 €

be the actual remainder. Let us set = @2 — u° in Q;,, and Q% , that is:

€

w_x§:s { —ﬁhg. (4.9)

AeS(K

ext ’
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Then7! = u. — u® —w? and the problem satisfied b} is

( aAf&,int _aAwg,int in Qin‘m
Afal,ext = _Awg,ext + (fa,ext - fao,ext) in ngh
Flint — Taoxt = 0 onT, (4.10)
aaﬂf;,int - 8nf;,ext = _(aanwg,int - 8nwg,ext) +g-— aanu?nt on Fa
fal,ext =0 on PZXt'

Here f2.,, = >, e 42405 5 (t,0) s . Moreover, thanks to (4.1), (4.6) and (4.9) we find that

ext
—(a@nwgim — &ﬂugext) + g — adpu’ = g — adu®* on T. (4.12)

Here we have taken advantage of the fact thatsatisfiesad, &), — 9,82, = 0.
Comparing then problem (4.10) with the problem (2.10) fatisby the standard remainder
u. — u®, we find the presence oﬁwg inside Qi and Q5 instead of0, and a@nuior’f instead

of ad,uf, onT'. Thus we have gained regularity dh but, in return, have to evaluatkw?, see
Lemma 4.2. New sets of indices have now to be introduced:

Definition 4.1 Let  be the infinite set of non negative numbers
U=NU{p="Z4p;p>0h>2}, (4.12)

and for any P > 0, let 4{(P) be defined as( N [0, P].
Moreover we denote the subset of the positive elemeritshf L(*:

=4\ {0} and U*(P)=s(P)\ {0} (4.13)

Lemma 4.2 In Q; and Q¢ _, , for all number N > 0 the residuaIAwg can be written as

ext

07
Awg,int = Z Eyke,ilzlt + k?em(g) Qint
veuw(N) ; 0 N
0 With || kpe (€)[| o o = ©(€™).  (4.14)
Awg,ext = Z Eyka,gxt + k?em(g) Qext o 0.0
veU*(N)

The functionskg:i’;t and kg:gxt are C* and vanish near the corner poiri® . Their behavior ine
is the following

kXt = ki lloge] i.e. possible polynomial dependencddpe,
vy = 3 e T oge] with 95k%y | =0, k=0,....e—1. “419
€N, finite

Remark 4.3 The degree inog e of k2" is < v. Moreover, if Z ¢ Q, no logarithm appearso

Proof: From the definition (4.9) ofw?, and since, by constructiod 8* = Asé = 0 inside
Qint and Qext , We find insidef;,; and Q&

ext

Awd = z(: )cg)\ e (QVX Y, [(ﬁ’\ —5(})(%)} + Ay (8 - 53) (%)) :
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We now use the expansion (3.19) &t given in Theorem 3.15 withlP = N — \:

SoA Y (29 VRG] + Ax R (E)) + kenle),  (4.16)

AeG(K) REQMN(N-X)

with a remainderk’, (¢).

@) In Q4 each term& " satisfies an homogeneity property modulo logarithms, c8)(3

int

fot' (2) =3 M logel(x) and V(81(2)) = VEM floge] (),

int

Thus equation (4.16) becomes ih,

Z Z At (ZVX - VEM[log €] + Ax §VH[log 5]) + k2 (e), (4.17)
AES(K) pe(N-A)

where the remaindet?

rem

(e) satisfies, thanks to (3.29)-(3.30) and to assumption (4.1):

e ( Z e [25_1VX -F(2) + Ax F(%)} ., with
AES(K

F(X):O(\X|’\_N> and ﬁ(X):o(|X\A‘N‘1> when |X| — +oo.

To estimate the norm of this remainder, we notice that itpstgs contained in an annulus defined
by 0 < r; < |z| <ry. Hence

—2N
t dt = o(e?V).

T2 t
Km0, <o) | 7|2

T1

Finally, we check that the set of the= A\ —x when\ € G(K) and u € Q*(N — ) is contained
in the setu*(N). We reorder the sum (4.17) according to the valuesf A — 1, defining the
functions £/, , and we obtain (4.14) iy .

(i) In Qex¢ €ach term&™* satisfies

ext

A—p]
R () = 3 e g log e (1) s
=0

and a similar formula for its gradient. Again, we reorder suen (4.17) according to the values
v of A — u+ 2, defining the functions:”"”., . The above splitting ofﬂ*’“(%) yields expression

ext
(4.15) for k2

e,ext *

The estimate of the remainder is similar. ]

e,ext *
Gathering all the results obtained up to here we can state:

Lemma 4.4 The solutionu. of problem(P.) with (4.2)-(4.4) satisfies for allN > 0

ue = uE 4+ y Z et Z "0 [loge] + 0 + o(e), (4.18)
AEG(K) v €U (N)
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where thev? “[loge] solve problem(P.) with data satisfying the same conditiof%2)-(4.4) as

u. , and r>! is solution of
aArg:ilnt =0 in Qing,
Arg,’;xt 0 in Q.
g:ilnt - Tg:;xt 0 onl,
aa” 6 mt 8” gc}xt = g- ad u?nf( OnF
Tg,;xt =0 onl'g.

Proof:  Relying on (4.7)-(4.11) combined with (4.14), we obtairl@).if we definevg’”[log €]
as the solution of the problen®J) with data

fint = ak2V[log e, fox = k24 [log ], if v # 1,
fint = ki logel,  foxt = komlloge] + e (feoxt — flext)s T v =1,

and g = 0. Indeed we check that

(i) By construction,e ! (f ext — f2ox;) Satisfies assumption (4.4),

(ii) Thanks to the a priori estimate (1.3), the residual righnd side generated in (4.10) by the
remainderk’, = of (4.14) contributes to the(c") in (4.18). [

rem

The continuation of the expansion construction requiregudy the term:!, and only this
term, being understood that each of the other teothis reproduce the same structure ags itself,
but shifted by the positive powet' of ¢

" [log e] = e"u" KV [loge] + x Z "t [log e] & (£ Z eV vV llog €]
AEG(K—v) v e ¥ (N—v)

+e’rtt o). (4.19)

Note that the equalityl + 4{ = &I ensures that the exponents generate(tlbgg”’ for v € U
remain inif.

To explore the content of%!, applying the formulas of the smooth case, cf. PropositiGy 2
we defineu] , as the solution of the Dirichlet problem

int

alAui, = 0 in Qi
—adyul

Slp+g onT.

mt

Since ulonf{ belongs to the weighted spad&™ . (Qin), the normal traced,u’X belongs to

HiOKH/Q(F), and the above Dirichlet problem ifd;,; has a solution which can be itself split
according to Theorem 3.3
ub, = u}nf{ " x Z ¢k s™(r,0)  with u}nf{ b e H®% (Qint), (4.20)
AeS(K—1)

if we assume thaf — 1 ¢ &. We note that ! = O(rK-1).

int
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According to the formulas for the regular case, we defiffg (¢, 5) = ULX71(¢, 9) by

ext

ULE=Y(t,8) = (S — 1){aanu?r;{<|r - g}(t) for () el x[0,1],  (4.21)

ext

which does not make sense in the entire lagey; . Since u?nff does not identically vanish in
any neighborhood oD, we have to use the cut-off — (Z), cf. Definition 3.5, to define

1 LE=1 i an unambiguous way:

Uext = Uext

ugt =0 (2) UL 9) = 0(2) (S~ Dty -9} ). @422)

Then, as a continuation of Lemma 4.4, we state

1

Lemma 4.5 The remainder®! in (4.18)can be splitin

POl = g bR Z RED l[logz—:ﬁ)‘ + Z eyl log ]
AeS(K—1) ve(N-1)

+ 702 4 o(emMETLNY) - (4.23)

where thevi’”[log e] solve problenm(P.) with data satisfying conditiongt.2)-(4.4) and the resid-
ual term 2?2 is solution of:

aArgfnt =0 in Qinta
Argzgxt = ¢(%) R; Uelx{{ ' in ng‘m
Tg:iznt - Tg:e2xt =0 on F,
a@nrgfnt — 8n7“g:§xt = —ead ullnf( ! onl,
Tgﬁxt =0 on FZx‘m

where Rg pertains to the expansion @k in curvilinear coordinates around’, see(2.2).

Proof:  The sum of the second and the third block on the right handddi(# 23) is constructed
so as to contributen(¢) data for problemR.), therefore generating a remainder of the same
order o("). Combining formulas forr2"", «"X~1 and r2?, we find that (4.23) holds with an
additional termp,. , solution of the problem

OZApe,int = 0 in Qint,
z 1,K-1 £
Ap&eXt = - [A 7/’(2)] Uext in Qextv
Deint — Pejext = 0 on F,
aanpe,int - 8npe,ext = ( %))( - aanumt ) onT,
Dejext = 0 on ngtv

where [A,4(£)] denotes the commutator @f with the multiplication by:)(2). Making use of
the fact that the support af does not intersect the support bf- /(2) and thatu®* belongs to
the weighted spac#l™,. ,(Qin), ensuring a behavior i0(rX-1) for 9,u%* , we check:

oA ()] wese oo, = OE") and (1= $(2)(g — aduuiy )| = O(e"2).

ext
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A priori estimate (1.3) then yields thajty.||, ,. = O(e* 7).
We note that the numbeK can be slightly shifted upwards so that the €8t/’) remains

unchanged, but guaranteeing tha&t’ is a little flatter, so that our remainder can be written as
o(ek-1). [

4.3 Completec-expansions

The above construction of the first terms in the asymptotaasion of the solution:. of (P;)
can be extended to any order. Only two kinds of terms appdhisrexpansion:

e The “flat” terms »**~" which have a similar structure as the terms in the expangi@) (
of the smooth case. They are linked with each other by theutasn(2.13) and (2.15) of
the smooth case. Their exterior parts are functions of tha-sealed variablegt, e~ 1s)
whereas their interior parts are functions in the “slow’iaate x . They vanish at the corner
O like a O(rk—v).

e The profiles&* which take into account the singular behavioraf near the corner point
and involve the scaled variabte.

We recall thaty and ) are cut-off functions respectively equal toand 0 in the neighbor-
hood of the corner poinO. The sets of indicesS(K) and 4(N) are introduced in Definitions
3.1and 4.1. The notatiofiog ¢] denotes a polynomial dependence with respedbge .

Theorem 4.6 We assume regularity properti€é4.2)(4.4) on the data. LetK' > 0 be a number
such that K, K — 1,..., K — [K] do not belong to&. Let N > 0 be a number such that
N + % < K . Thenu,, solution of (P.), admits the following asymptotic expansion:

Ug,int = Z e’u i/n{{ VlOgE + X Z Z IOgE V+>\ﬁ1>\nt(x) + Te int (4 24)
ve U(N) veU(N) \eS(K—v)

ua,ext = T/J(g) Z EVU;;{( V( )[IOgE + X Z Z IOgE V+)\ﬁext(x)
)

ve U(N ve Y(N) AeS(K—v)
+ 1 (4.25)

with a remainderrY satisfying the estimates
[ g, + VeI g, = oY) (4.26)

Moreover,«”X =" and U5~ vanish asr — 0 according to

1nt ext

ULt ™ =00"™) and up ™" =0k

ext int

K- UI/K v

ext

—more preciselyy; € H*_ ., (Qn) . Finally is polynomial in the variableS .

Proof: We continue the procedure initiated in Lemmas 4.4 and 44, i) we expandﬂg’2
in (4.23) asr®! before, but leave the other terms unexpanded, and so on. UEhessive terms
along this “main branch” are given recursively for=1,..., N + 1 by:

e v . isthe solution of problemKy) with f;,; = 0 and the Dirichlet data

n—1,K—n+1

n 0,K
int +h"u

h" = gng + hlu ‘F +. Uint |F’

compare with (2.13),
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o u, issplitin
n,K—n n,K—n
uﬁlt Uy +x Z T (9 with Us e cH 1—K+n(Qint)7
AeS(K— n)
defining the “flat” partu:" "
o u2F7" is defined as
nK no_ nKn nK-n _ _n 1. n—1,K—n+1 n, 0,K
Uy V(L) Ug where Uy, "=a"g+bu, + ..o+ b
compare with (2.15),
e The remainder-"*! is solution of:
Oon+1 .
OZA’rs,int =0 in Qin‘m
Oon+1 n—1 1rrn,K— n nyrl,K—1 e
Ar&ext - _w( c ) (Re Uext +R Uext ) in Qext7
0O,n+1 Oon+1
T&,int — Teext =0 onl’,
0,n+1 O,n+1 n,K—n
On e,int 8TLT€ ext = —<"ad, n Uit onT,
O,n+1 5
Ts,ext =0 on Fext?

compare with the remainder of the smooth case (2.10).

With these constructions, we obtain expansions00f the following form:

Ue :uO’K—l—z—:ul’K_l—l— +EnunK noy Y Z Z f—i—)\ Z logz—:]ﬁ)‘( )
=0 AeS(K-Y)

F3 T g 4 s o) (a2
(=0 ve U (N—L)

We have to estimate the “last” remainder with the help of tipeiari estimate (1.3). Like for the
smooth case, if we want to have a remaindewi@” ), we have first to estimate the remainder
rON+2 at the rank N + 2. Since K is larger thanN + 2, the trace ofd,ul, """ on T

int

belongs toL.?(I") . Therefore we can prove like in the smooth case that
[N+ g < C N2,

Each v in (4.27) can be expanded in a similar way, thus generatihgrébranches” suc-

cessively. Each of these branches starts with a commorrfattg’, v > 0. This shows that

this recursive procedure terminates after a finite numbstegs. We gather everything and con-

clude similarly to the smooth case by subsumming into thé femaainderr? all the terms of the
asymptotics with powerg > N of ¢. [

Using the profiles?5*:(%) introduced in Definition 3.28 we may consider more generta da
than (4.2)-(4.4) where the condition of support ffy; is simply removed:
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Corollary 4.7 We still assume properti€d.2) and (4.4) with, instead of(4.3)
supp(fext) NV =0 and supp(g) NV =0, 4.3)

i.e. no condition on the support gf,;. Let K > 0 be a non-integer number such that, K —
1,...,K — [K] do not belong to&. Let N > 0 be a number such thal' + 3 < K. Then
ue , Solution of (P.), has an expansion similar {@.24)with extra terms due to the Taylor part of
degree[K] — 2 of fi, . The interior expansion writes

Ueine = Y 'ubnt Ufloge] + x(x) Y. Y cKlloge] e R (2)

ve X(N) IJET( ) AeS(K—v)

0” fin z ,
Z Z 5{[&2 mmig )(E) +Tév7int' (424)

k=2 |B|=k—2
The new index set (V) is defined ast N [0, N] where
T=UU{Z+¢q gq€N, g>1}.

The exterior partu,, has a structure as if#.25), with new terms corresponding to those present
in (4.24"). The remainder-Y satisfies the estimatés.26)

Proof:  We first split fint into a Taylor part atD and a remainder, flat at the ordgt] — 2

B fin , oo
S oS E LN ey (09, with 1) € T2 (),
k=2 |8|=k—2

Note that the remainder satisfies the assumption on thehaid side in Theorem 3.3.
Let us denotemaﬁfmt(O) by ds for short. Then we define. and w. by

[K]

ve = ue — x(x) Z Z ds ek k()

k=2 |B|=k—2

and, in a similar way to (4.9)

(K]
x) Z Z ds ek [Qﬂ’“(ﬁ) - Qﬂk7k’(5)] (%)
k=2 |B|=k—2

Using (3.45), we find that the function. solves the following problem of type>), similar to
(4.10):

OZAU&int = _aAwa int frem in Qinta
Ava,ext = _Aw&ext + f&ext in szm
Vejint — Vgext = 0 on F7 (428)

aanva,int - 8n'Ue,ext g onl,

Veext = 0 onI®

ext*

The right hand side of (4.28) is the sum of data satisfying)(#.4) and of data similar to those
investigated in Lemma 4.2: We find fakw, j,; and Aw, ¢« expansions like in (4.14), involving
the set of indiceE*(N) := T(N) \ {0} instead oftl*(N). [
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Remark 4.8 (i) If fiy, vanishes up to the ordeéi’| —2 in O, i.e. if
0’ fin(0) =0, VB, |B] < [K] -2
then expansion (4.24) is still valid.

(i) We may cut off the “slow” terms.”’~ " in (4.24) or (4.24) byy(2). Sinceu” " is “flat”

int int
like %~ , we only produce a new contribution of orde(s”) to the remainder which, thus, still
satisfies the estimates (4.26).

(iii) The terms2u*+~4(8) composing the asymptotics at infinity of the profig™(%) are mainly
polynomial functions. They are all polynomial i,k — 1,...,0 are not in&. Thus the2u® ()
take possible Taylor expansion of the solution into account o
4.4 Alternative ¢-expansions

In this section we answer the two questions:

e Is it possible to havdl = N in expansions (4.24) or (4.24°) ?

e |s it possible to construct an asymptotic expansion indépetly of a threshold fixed in
advance?

To answer (positively) to both questions, we start from aspans (4.24) or (4.24°), we split up
some of the terms?* and redistribute their pieces to the terms in slow variablé®e base our
analysis upon the following definition and result:

Definition 4.9 Let A € &, X\ > 0. Relying on(3.14), we define or the profile)* as
Vine = Ry - G and Y =R - Y RN (429)
0<L<A 0<L<A
We are going to prove
Proposition 4.10 Let A € &, X > 0. The profile)* satisfies the estimates as— 0

o(1) if AN

4.30
O(|loge|) if A € N. (4.30)

@D, g, + VEIX@ DB g, = {

int

We prove this proposition as a particular case of the morermgéistatement, which will also
yield (1.6) as another particular case:

Lemma4.1lllet A e S, A > 0. For 0 <v < )\, we set

P =rr—y Y /M (4.31)

0<l<A—v

There holds the energy estimate
Ix@ DM ()], g, + VEIIX@ DM (D), o, = O(e " |loge|*D), (4.32)

where[A —v], = A —vif A\—veNand[\-v], =0 if not.
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Proof:  Thanks to (3.19) there holds for alt > 0

v A\, AV
=y Y Ay

peQM(P), u<v

where the remaindey?lg”) is a o(R~F) and satisfies also the estimates (3.30), whence

@ V& 0, + VEIX@ D ), g, = O).

Let us chooseP < Z and P < [A] +1 — A. Thus Q*(P) C [0, ], cf. Definition 3.14. The
degree of @™ as a polynomial inlog R is < A — ;. We check that fop > 0:

Ix(@) e (2) R ()], o, + VE[x(@) DE)RME)|, o, = O™ [loge|*H]).

Then estimate (4.32) is a consequence of the last threeitegial [

int

The proof of Proposition 4.10 is obtained by takimg_ 0 in Lemma 4.11 (note that the
absence of the cut-off functiori(£) in the definition of2);,, does not modify the estimates).
The proof of (1.6) is obtained witly = .

int

Theorem 4.12 Theorem 4.6 holds witlll = N, i.e. we assume regularity propertié$.2)-(4.4)
on the data and choose a numbat > 0 such thatN, N —1,..., N — [N] do not belong toS .
Thenu,, solution of (P.), admits the asymptotic expansi@h24)with K = N with the estimate
(4.26)on the remainder.

Proof: We start from (4.24) fora > N + % . We want to get rid of the profileg* appearing
in (4.24)-(4.25) forA > N — v. Thus, for eachv € Y(N) and X € (K —v) \ 6(N —v) we
split 8" into two blocks according to

AgA A A A A— E
X(‘T) v ﬁmt(m) = X( ) v @mt % + X Z EV+ ‘Rmt 5)’
0<l< A

in Qi and accordingly in€2,, , and redistribute them into the remainder and the slow terms
respectively:

1. Since by definitionv + A > N, Proposition 4.10 yields thate**9*(%) contributes to
the remainder.

2. Thanks to their quasi-homogeneous structure®hé—¢ can be converted into slow variable
functions. We can write:

AA—L ANA—L; :
x(z)e" AR (%) = Z eV TAA  og e 5727 (1) in Qi
q>0 finite
AA—L _ AN—C; .
X@) (2R = x(@)p(2) D P logle st (¢, 2) i Qe
¢>0 finite

We gather the above terms according to the value ef v+¢ and we add them ta*' %'
in order to obtainu”"-V~*". Note that thes»*~*:¢ are homogeneous of degrée- ¢, and
since A > N — v, they are of ordep(rV="") asr — 0.
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This ends the proof. [

The same splitting of the profile8* , now appliedor all values of \, allows to prove the final
theorem:

Theorem 4.13 Let us assume the same hypotheses as in Theorem 4.12. Wadaxpdnsion

ua,int = Z 5 umt IOgE + X Z Z IOgE V+)\@1nt( ) + Te int (433)

ve M(N) veU(N) NeS(N—v)
Ue oxt = Z e"Ul(t, £) [loge] + x(z Z Z {lloge] e MY Aa(2)
ve U(N) veU(N) NeS(N—v)

+ Tévext (434)

with a remainderr satisfying estimaté4.26)and with functions (independent &f) u? [log €]
in H'(Qiy). Moreover, for anyk < z uffnt is given by the formulas of the smooth case, cf.
Proposition 2.3.

We only have to check that the terms in expansions (4.33)484) do not depend oV .
This can be proved by using energy estimates as follows. Wethat the energy estimates
(4.30) can be completed by estimates from below, so that we foa a suitable integey :

Je,d >0, Vee (0,9, ¢< Hx(:r)@ (%) HlQ < d|logel?.
Likewise, and in an obvious way, as soomgs [log <] is not identically zero, there holds
JgeN, 3e,d >0, Vee (0,6, ¢< ||t [log s]”l 0., < d[logel.

From this we can see that the terms in the expansion (4.33)adreodified if N is increased:
When going fromN to N + 1, we only add terms

> lubyfloge] + x(x) ) > cKlloge] e V(%)

ve UN+D\U(N ) ve U(N+1) AeS(N+1-v)\S(N—v)

the energy of which is of orden (") . Consequently they do not affect the terms in the expansion
atorderN .

Remark 4.14 (i) Introducing in a similar way as (4.29) the laye3$(® for k > 2 and |§| =
k—2:

k-3
AT 7 S g 37 et
=0

we can easily prove the analogues of Theorems 4.12 and 4th8 situation wheryi,; is C> up
to the boundary of;,; .

(i) A variant of the interior expansion (4.33) is possible. Weymmaultiply the slow termsu” ()
by the cut-off¢(Z) but, as opposed to the case of flat terms, see Remari}.8uch an op-
eration is not transparent: We have to modify the definitibthe corner layers)* and 3%(%)
accordingly through the multiplication of the ternﬁ\A ¢ and gpt-F—40) by the samecut-off

int

¥, just like in the layer part. u]
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4.5 Neumann boundary conditions

The above techniques directly apply to the Neumann casetilNeese the splitting of the interior
terms into regular and singular parts and the correspomtinfijes 8* are constructed in Theorem
3.25. For integer\, they may contain a term itog R in their asymptotics at infinity.

Note that in this case the corner layeds' keep this logarithmic term, see (4.29). Thus they
are no more decreasing & — oo, but we still have the energy estimate (4.30) above.

5 Concluding remarks

The type of results we have obtained and the techniques we teed evoke the well-known
concept ofmatched asymptotic expansiaere inner and outer expansions are constructed, see
[15]. However, our analysis differs since our differentlesacoexist in a transition region, as
opposed to the inner and outer expansions which contairaghié and slow scales separately.

Most of the difficulty of the above analysis is due to the slagties, mainly those of the limit
problem, thes* . The profiles&* which we have constructed perform the transition between th
s* and the behavior near the corner of the solution of the apiwdllem with ¢ -layer. Note that
the singularities of the transmission problem are diffefesm the s* : They are asymptotically
contained in the profiles* .

An essential feature of these asymptotics is the possibi@ramications between the terms
in slow variablesu”(z) and those in rapid variableg*(£), 20%(%), 9*(Z), or 3*(%). A
priori the ¥ and the profiles do not exist in the same world but they arestbto “live” together
thanks to cut-off functions)(Z) for the v and x(z) for the profiles. This kind of product form
combining rapid and slow variables is an Ansatz of constagrtin homogenization, see [24] for
instance. Note that such a product Ansatz is not used in Pll&Htere many singular perturbations
of a domain (without layer) are investigated. This has todbated with the fact that the presence
of ¢(%) inside ;¢ is optional in our situation.

Nevertheless, in our opinion, the product form Ansatz isermswerful, allowing to take into
account more general situations where the interior dorfiaip also depends oa: The results of
this paper can be extended to cases whigp presents self-similar structures at scalesuch as
curved corners with curvature radius @(¢) . This can be combined with the presence of a layer
presenting self-similar structures at scaletoo. This is the subject of a forthcoming work.

The Helmholtz equation could be treated in a similar waywgionew difficulties appear, due
to the importance of the zero-th order part of the operats,fer instance [16] where the special
Helmholtz features are described in a problem involvingim structure.

6 Appendix: Elliptic regularity near the boundary

The aim of the appendix is to prove the elliptic regularitguk stated in Theorem 2.8. By a

classical argument of local mappings, it is sufficient togider the case of a straight boundary.
For any positive real number, we define the layered rectangt™* = (—a, a) x (—a, 1+¢),

composed ofR?, = (—a,a) x (—a,1) and Ry = (—a,a) x (1,1 +¢). We denote byy* its

interior boundary(—a, a) x {1}, by % its exterior boundary(—a,a) x {1 + ¢}, and by~
the setoR>*\12, (see Figure 5). ClearlyR"¢ ¢ R*¢ if b < a. Let B be the bilinear form
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1 + 81 .
RG’E \f)/gxt

ext .

Figure 5: The rectangl&® = .

associated to probleni{) on R%*:

B(u,v) =« Vu-Vovdr + Vu-Voude.
RE Rive

int int

We shall use different variational spaces for Dirichleteemail b.c. and Neumann external b.c.,
namely we define

Vo = H} (R*9) for Dirichlet external b.c.
Vo ={veH (R*); v=00n,4} for Neumann external b.c.
From the Lax-Milgram lemma, we immediately obtain

Proposition 6.1 If the linear form F' belongs to the dual spacg/ of V,, then the variational
problem
Vv eV,, B(u,v)=(F,v)

admits a unique solutiom. € V,, . Moreover, there exists a constat, independent of and
such that
lully, < CllF

v (6.1)

We emphasize on the fact that we make no use of the Dirichlediton on ~¢,, to prove the
coercivity of the form B; the condition onvf) is enough to get a Poincaré inequality (which
consequently also applies for Neumann external b.c.).

Finally we define the linear forn#;, by

RE

int

Vo eV, (Fu,p)=—« Ay o da — / Ayt o da + / (OpUint — Optiext)p do.
Rt ye

We easily check the following lemma:

Lemma 6.2 If u € V, (together withd,,uexy = 0 on <, in the case of Neumann external b.c.)

satisfies the assumptions
Aty € L2(RE,),  Auexy € LAH(RES)  and  adnuing — Opttext € L2(vY), (6.2)

int ext

then F, € V/ and there exists a constadt independent of and v such that

1]

a

vy =€ [HA“intHO,RgHt + HAuextHO,jo + {| @ iy — 8nuextH07ya} : (6.3)
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We are now able to prove the first step of Theorem 2.8:

Proposition 6.3 Let « belong to the spacé’/, and satisfy(6.2). For any b < a, there exists a
constantC' independent ot and u such that

<o~

([ vt HuHO,R‘M‘] : (6.4)

Hl,’Rb’s
Proof:  Let ¢ be such thab < ¢ < a. We introduce a smooth cut-off functiog, defined by
x(z) = x1(z1)x2(x2), with

xi(r1) = 1if [z1| < b and xi(x1) = 0if [21] > ¢,

. . (6.5)
X2(x2) =1if 2o > —b and xa(z2) =0if 29 < —c.

In particular, x = 1 on R>¢ and x = 0 on R%*\R*.

The truncated functioncu belongs toV,, and satisfies for any € V,,, B(xu,v) = (Fyu,v).
Thanks to Proposition 6.1, we get

Ixtlly gae < CllFxully, (6.6)

We still need to estimaté £ ,,|

v - We write

Vo e Vo, (Fyu, ) = (Fu, X¢) —/R al(Ax)ue +2Vx - Vuy] d,

with & the function taking the valuer in R, and1 in R . Thanks to an integration by parts
using the tensorial structure gf, we can estimate the second term and finally obtain

(P <C (|7

vt HUHO,RM} HS"HLRM' (6.7)
Sincey = 1 on R»¢, we obtain the result from (6.6) and (6.7). -

Using Nirenberg translations, we prove the following résdlelliptic regularity at any order:

Proposition 6.4 Let d be a positive real number. Let belong to the spacé’; (together with
Onliexs = 0 0N 72, in the case of Neumann external b.c.) satisfying the fotigvaonditions for
meN,

Auint € Hm_l(Ridnt), AUyt € Hm_l(Rd’a), and a0,uint — OpUext € Hm_%(yd).

ext

), Uexy to HPH(RES), and there exists a constant

ext

For any ¢ < d, u, belongs toH™ (RS,
C independent of and u such that

il *+ sl < C [l g, + 18t s
(6.8)

T B 7 [ |
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Proof: We proceed by induction over. > 1 and make use of the horizontal difference operator
D;, defined for any reah # 0 by

[p(z1 + h, 22) — (21, 22)] .

SIS

Dpp(x1,22) =

Let 0 € R be suchthat < ¢ < d.

e Form = 1, we use a similar cut-off function as in the previous prodfied by x(xz) =
X1(z1)x2(x2) with

xi(z1) =1if [z1| <c¢ and xi(z1) =0if |zq| > <52,
Xo(w2) = 1if 2 > —c and ya(w2) = 0if 29 < —<47,

and we apply Proposition 6.3 with = ¢ anda = o to u, = x1Dnr(x1u), for |h| < hg
sufficiently small

Huhul,Rcys <C [HFuthg + HuhHQRtr,s] . (6.9)

To estimateF;,, , we use the decomposition

<Fuh>90> = <FDh(X1u)>X190> _/

[AXth(XIU)SO +2Vx1 - VD (x1u)p| dz
R?ﬂtURgxi

= + 7

o,

with & the function taking the valuer in R, and 1 in R .
the proof of Theorem 6.3. A discrete integration by partédge

We use the same technique as in

2= aawDodae) + 290 Doy(Vi )] d,
o UROE

int ext

which then gives|[2]| < C || e Similarly for the first part, we get

#ll1 e

[1]= / A(x1u)D_p(x1 ) de — / X1(@0nting — Optext)D_p(x190) do.
o RIS o

int ext

Since x1 (ad,uin; —Op ey ) Vanishes at the extremities of , we can use the dualitif;, —H ™ "/*
on ~? to obtain
[L<c “AUHO Re URZE T || On it — O “extH } HS"HLRM'
Together,F,,, can be estimated in the dual ®F; :
HF .S C[HAUHO RE URTSE + Ha8 Uing — 871“6““%,70 + HU’HlRUE] (6.10)

Sincex: = 1 on R%* and||up | 5,.. < C/||ul| ... for h small enough, equations (6.9) and (6.10)
lead to

HDhuHLRc»E < C[HAUHO,Ri"mURZj + [|adnuin — anuextH%,yc + H“HN@E}
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Passing to the limit, — 0, we obtain the same estimate for the second order derigati¥e and
0102u. For d3u, we obtain the estimate by writing3u = Au — 9. Then, we get

ol e, + Wl < € {11800l g ez + lantion = Bntesely o+ [, o |

ext int ext

Using the estimate (6.4) fdr = ¢ and a = 7, we conclude

ext int ext

i o, + e o < €[ 8l s + 00t = Oty o + ]

e Suppose the estimatioH™ ! — H™*! known and apply it tou, = x1Dp,(x1u). With the
same techniques as in the cagse= 1, we can prove

et s, et s, < €1 Attne g, + [ At e

ext

00t = Ot e+ 1, + ot ]

ext

Using the induction assumption fer (with o instead ofc), we get the stated result.

H“inthH,Rgm - HuexthJrzR”’f < C{HA“inth,R;lm T HAuexth,Rg;(i

ext

+H0é8nUint - 8nuexth+%7-yd + HUHQR‘LE} '
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