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Résumé

We study a natural fragmentation process of the so-called stable tree introduced
by Duquesne and Le Gall, which consists in removing the nodes of the tree according
to a certain procedure that makes the fragmentation self-similar with positive index.
Explicit formulas for the semigroup are given, and we provide asymptotic results.
We also give an alternative construction of this fragmentation, using paths of Lévy
processes, hence echoing the two alternative constructions of the standard additive
coalescent by fragmenting the Brownian continuum random tree or using Brownian
paths, respectively due to Aldous-Pitman and Bertoin.
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1 Introduction

The goal of this paper is to investigate a Markovian fragmentation of the so-called
stable tree. Tt is a model of continuum random tree (CRT) depending on a parameter
a € (1,2] that has been introduced recently by Duquesne and Le Gall [I6], and which
basically corresponds to a possible scaling limit as n — oo of a size n Galton-Watson
tree with given progeny distribution. The stable tree is denoted by 7. It is a random
metric space with distance d, whose elements v are called wvertices. One of these vertices
is distinguished and called the root. This space is a tree in that for v,w € 7, there is a
unique non-self-crossing path [[v, w]] from v to w in 7, whose length equals d(v,w). For
every v € T, call height of v in 7 and denote by ht(v) the distance of v to the root. The
leaves L(T) of T are those vertices that do not belong to the interior of any path leading
from one vertex to another, and the skeleton of the tree is the set 7 \ £(7) of non-leaf
vertices. The branchpoints are the vertices b so that there exist v # b,w # b such that
[[root, v]] N [[root, w]] = [[root, b]]. With each realization of 7 is associated the uniform
probability measure p, called the mass measure, that is supported by £(7). Details are
given in Section Bl

When « = 2, the stable tree is, up to a scale factor, the Brownian CRT of Aldous [2].
It has been shown by Aldous and Pitman [3] that a certain device for logging this tree
gives rise to a fragmentation process which is the time-reversed process of the so-called
standard additive coalescent. The idea is as follows. The Brownian CRT 7 is described
by a o-finite length measure ¢ carried by the skeleton (non-leaf vertices), and a (uniform)
probability measure p on its leaves, called the mass measure. For ¢ > 0, consider a Poisson
random measure on 7 with intensity ¢/, in a consistent way as ¢ varies. When the marked
vertices of the tree are removed, the tree is decomposed into a random forest, whose
ranked p-masses form an element Fap(t) of the space

S = {S:(Sl,SQ,...):812522...ZO,Z$Z‘§1}.
i=1

It is actually checked that the sum of components of Fyp(t) is 1 a.s. Then Bertoin [
noticed (it was implicit in [3]) that the process (Fap(t),t > 0) is an S-valued self-similar
fragmentation with index 1/2, in the following sense.

Definition 1 An S-valued self-similar fragmentation with index € R is an S-valued
Markov process starting a.s. from (1,0, ...), which is continuous in probability and satisfies
the following fragmentation property :

Given F'(t) = s = (s1, Sa, . ..), the law of F(t+1') is that of the decreasing rear-
rangement of the sequences siF(i)(sft’),i > 1, where the % ’s are independent
copies of F'.

Such fragmentations have been introduced and extensively studied by Bertoin in [8] @].
By [B], the laws of the self-similar fragmentations are characterized by a 3-tuple (53, ¢, v),
where (3 is the self-similarity index, ¢ > 0 is an erosion coefficient and, more importantly,
v is a o-finite dislocation measure on S that integrates the map s — 1 — s;. This measure
v describes the “jumps” of the fragmentation process, i.e. the way sudden dislocations
occur. Roughly speaking, 2°v(ds) is the instantaneous rate at which an object with size z
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fragments to form objects with sizes xs (see also Lemma [ below). In [9], Bertoin showed
that the erosion of Fyp is 0, and that the dislocation measure vap is characterized by the
two formulas

dx
vap(s € dz) = ST gt x €[1/2,1),

and vap{s: s; + sy < 1} = 0 (such fragmentations are called binary).

The main motivation of the present paper is to seek for a possible generalization of the
fragmentation Fp, when the Brownian CRT is replaced by the general o € (1,2)-stable
tree. The game is made interesting in that there are important structural differences be-
tween the Brownian tree and the other stable trees, which imply that the Aldous-Pitman
fragmentation device explained above (homogeneous fragmentation on the skeleton) gives
rise to a binary fragmentation process which is not self-similar. It seems that the fragmen-
tations hence obtained are related to the ones studied in [20] in relation with the additive
coalescent, but this will be studied elsewhere. The defect in the self-similarity property
comes from the fact that, contrary to the Brownian tree which is binary (its branchpoints
have degree 3), the branchpoints of the stable tree are hubs with infinite degree and with
different “magnitudes”. These are not affected by the Aldous-Pitman fragmentation device,
which a.s. never cuts at branchpoints. Therefore, as time passes, this device creates small
trees with unusually “large” hubs, which cannot be rescaled copies of the initial stable
tree. Rather, to obtain self-similarity, it is needed to directly remove the hubs themselves
with a certain strategy.

Call H(7) the set of branchpoints of 7, which will also be referred to as the set of
hubs of 7 when dealing with the stable (« € (1,2)) tree. To evaluate the magnitude of
b € H(T), consider the fringe subtree T, rooted at b, i.e. the subset {v € 7 : b € [[root, v]|}.
Then one can define the local time, or width of the hub b as the limit

L(b) = laifgl é,u{v €Ty :d(v,b) <e} (1)

which exists a.s. and is positive : see Proposition ] below.

Now given a realization of 7 and for every b € H(7), take a standard exponential
random variable e,, so that the variables e, are independent as b varies (notice that
H(T) is countable). For all ¢ > 0 define an equivalence relation ~; on 7 by saying that
v ~; w if and only if the path [[v,w]] does not contain any hub b for which e, < tL(b).
Alternatively, following more closely the spirit of Aldous-Pitman’s fragmentation, we can
also say that we consider Poisson point process (b(t),t > 0) on the set of hubs with
intensity dt @ >,y L(b)ds(dv), and for each ¢ we let v ~; w if and only if no atom of
the Poisson process that has appeared before time ¢ belongs to the path [[v, w]]. We let
7!, T, ... be the distinct equivalence classes for ~;, ranked according to the decreasing
order of their y-masses (provided these are well-defined quantities). It is easy to see that
these sets are trees (in the same sense as 7'), and that the families (Z;',i > 1) are nested
as t varies, that is, for every ¢ > t and ¢ > 1, there exists j > 1 such that ’]?/ C ’]}t.
If we let F*(t) = (u(77), w(7F),...), F* is thus a fragmentation process in the sense
that F*(¢') is obtained by splitting at random the elements of F'*(¢). We mention that
the fragmentation F' is also considered and studied in the work in preparation [I], with
independent methods.
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We now state our main result, postponing definitions and properties of stable subor-
dinators to the next section. Let

ala—1I (1-1) _a’l (2-1)

Do=—"0=a =~ Te-a

Theorem 1 The process FT is a self-similar fragmentation with index 1/a € (1/2,1)
and erosion coefficient ¢ = 0. Its dislocation measure v, 1s characterized by

Va(G) = Do E [T\G(TT ATy )]

for any positive measurable function G, where (T,,,0 < x < 1) is a stable subordinator
with index 1/c, characterized by the Laplace transform

Elexp(—AT1)] = exp(—=AY9) A >0,
and AT ) is the sequence of the jumps of T', ranked by decreasing order of magnitude.

In a companion paper [2I], we studied a self-similar fragmentation process (F'~(t),t >
0) which consisted in the decreasing sequences of the p-masses of the connected compo-
nents of the set {v € 7 : ht(v) > t} at time ¢, i.e. the forest obtained by putting aside
the vertices of the stable tree height less than ¢. This fragmentation was studied in the
Brownian case by Bertoin |9, although this work does not mention trees and only uses
the encoding height process, which is well-known to be twice the standard Brownian ex-
cursion, and it was showed that it was self-similar with characteristics (—1/2,0,v5p) (in
[9] the dislocation measure is found to be 2vap, but it is done with a different normal-
ization, using the standard excursion instead of twice this excursion). In [2T], we showed
that F'~ has characteristics (1/a — 1,0, v,), with v, as in Theorem [l Bertoin’s observa-
tion that the two devices described above for fragmenting the Brownian CRT are “dual”
(same dislocation measure but indices with different signs) is therefore quite surprisingly
generalized in the larger context of stable trees. Heuristically, this is made possible by an
exchangeability property of the root of the stable tree with other vertices (with respect to
the measure 1), which indeed suggests that when removing a hub or removing the vertices
below a given hub, the subsequent forests will have the same law up to rescaling.

Let us now present a second motivation for studying the fragmentation F'*. As the
rest of the paper will show, our proofs involve a lot the theory of Lévy processes, and
compared with the study of F~, which made a consequent place to combinatoric tree
structures, the study of F* will be mainly “analytic”. The fact that Lévy processes may
be involved in fragmentation processes is not new. According to [f] and [20], adding a drift
to a certain class of Lévy processes allows to construct interesting fragmentations related
to the entrance boundary of the stochastic additive coalescent. Here, rather than adding
a drift, which by analogy between [d] and [7] amounts to cut the skeleton of a continuum
random tree with a homogeneous Poisson process, we will perform a “removing the jumps”
operation analog to our inhomogeneous cutting on the hubs of the tree.

Precisely, let (X5, s > 0) be the canonical process in the Skorokhod space D([0, c0), R)
and let P be the law of the stable Lévy process with index a € (1,2), upward jumps only,
characterized by the Laplace exponent

Elexp(—AX1)] = exp(\Y).
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As we will recall from the work of Chaumont [T2] in the following section, we may define
the law N of the excursion with unit duration of this process above its infimum process.
Under this law, X, = 0 for s > 1, so we let AX[y;; be the sequence of the jumps
AX; = Xy — X, for s € (0,1], ranked in decreasing order of magnitude. Consider the
following marking process on the jumps : conditionally on X, let (es,s : AX; > 0) be a
family of independent random variables with standard exponential distribution, indexed
by the countable set of jump-times of X. For every ¢ > 0 let

70 =) AXulg,caxy-

0<u<s

That is, each jump with magnitude A is marked with probability 1 — exp(—tA) indepen-
dently of the other jumps and consistently as ¢ varies, and Z® is the process that sums
the marked jumps. We will see that Z® is finite a.s., so we may define X® = X — Z(®
under N_ Let
X0 = inf X® | 0<s<1,
0<u<s

and let F%(t) be the sequence of lengths of the constancy intervals of the process xX®
ranked in decreasing order.

Theorem 2 The process (F*(t),t > 0) has the same law as (F*(t),t > 0).

We organize the paper as follows. In Sect. Pl we recall some facts about Lévy processes,
excursions, and conditioned subordinators that will be crucial for our study. In Sect.
we give the rigorous description of Duquesne and Le Gall’s Lévy trees, and rephrase the
definition of F'* given above in terms of a partition of the unit interval associated to a
certain marked excursion of a stable Lévy process. Sections @l and Bl are then respectively
dedicated to the study of F™ and F?. Asymptotic results are finally given concerning the
behavior at small and large times of F'* in Sect.

2 Some facts about Lévy processes

2.1 Stable processes, inverse subordinators

Let (X, s > 0) be the canonical process in the Skorokhod space ID([0, 00), R) of cadlag
paths on [0,00). We fix o € (1,2). Let P be the law on ([0, 00),R) that makes X the
spectrally positive stable process with index «, that is, X has independent and stationary
increments under P, it has only positive jumps, and its marginal law at some (and then
all) s > 0 has Laplace transform given by the Lévy-Khintchine formula :

< c.d
Ele™%:] = exp(s\?) = exp (8/ %@M — 1+ )\37)) , A=0, (2)
0

where C,, = a(a — 1)/T'(2 — «). A fundamental property of X under P is the scaling
property

1
(WXA& s 2 0) < (X5, >0) forall A>0.
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We let (ps(x),s > 0,2 € R) be the density with respect to Lebesgue measure of the law
P(X, € dx), which is known to exist and to be jointly continuous in s and z.
Denote by X the infimum process of X defined by

X, = inf X,, s>0.

¥ 0<u<s
Let T be the right-continuous inverse of the increasing process —X defined by
T, =inf{s >0: X, < —z}.

Then it is known that under P, T is a stable subordinator with index 1/a, that is, an
increasing Lévy process with Laplace exponent

[ee) ad
Ele =] = exp(—xAY?) = exp <—:c/ CHl?/J (1-— e’\y)) for A\ x>0,
o Yy e
where ¢, = (aI'(1 — 1/a))~*. We denote by (g,.(s),z,s > 0) the family of densities with
respect to Lebesgue measure of the law P(T, € ds), by [6 Corollary VII.1.3| they are
given by

0:(s) = “p(~a). (3)

We also introduce the notations P? for the law of of the processes X under P, killed at
time s, and P(-%) := PT for the law of the process killed when it first hits —z.

Let us now discuss the conditioned forms of distributions of jumps of subordinators. An
easy way to obtain regular versions for these conditional laws is developed in |23] 24]. First,
we define the size-biased permutation of the sequence ATjg, of the ranked jumps of 7" in
the interval [0, z] as follows. Write ATy, = (A1(2), Ag(x), . ..) with Ay(z) > Ag(x) > ..,
and recall that 7, = > . A;(xz). We define, following [23, 24|, the size-biased ordered
sequence Ay (z),k > 1 as follows. Let 1* be a r.v. such that

P(l* = Z‘Aﬂ&ﬂ) = CZE:B )
for all ¢ > 1, and set Aj(z) = Aj«(z). Recursively, let k* be such that
. ‘ ‘ Aq(z)
Pk =1|ATq, (751 <j<k—-1)) = " "
W= 8 e 1 =7 = k=) = NG — AL @

for i > 1 distinct of the j*, 1 < j < k — 1, and finally set Aj(x) = Ag+(x). Then
Lemma 1 (i) For k > 1,

Caqy(s —
P (Ap(x) € dy | Ty, (Af(2),1 < j<k—1)) = #x(s?)dy
where s =T, — Af(x) — ... — Af_(2).

(ii) Consequently, given T, = t,Aj(x) =y, the sequence (A5(x), Ai(z),...) has the
same law as (Aj(x),Ay(z)...) given T, =t —y. Conversely, if we are given a random
variable Y with same law as Aj(x) given T, =t and, given Y =1y, a sequence (Y1,Ys,...)
with same law as (A} (x), As(x)) given T, = t — y, then (Y,Y1,Ya,...) has same law as
(A3 (z), A(x),...) given T, =t.

This gives a regular conditional version for (Af(x),7 > 1) given T}, and thus induces
a conditional version for ATj,, given T} by ranking.
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2.2 Marked processes

We are now going to enlarge the original probability space to mark the jumps of the
stable process. We let Mx be the law of a sequence e = (eg, s : AX; > 0) of independent
standard exponential random variables, indexed by the (countable) set of times where
the canonical process X jumps'. We let P(dX,de) = P(dX) ® Mx(de). This probability
allows to mark the jumps of X, precisely we say that a jump occurring at time s is marked
at level t > 0 if e, < tAX,. Write

A Z AXy e, <tax,)}

0<u<s

for the cumulative process of marked jumps at level . We also let X = X — Z(®) We
know that the process (AXg, s > 0) of the jumps of X is under P a Poisson point process
with intensity C,2~'=*dx on (0, 00), it is then standard that the process (AZs(t), s> 0) is
a Poisson point process with intensity C,, 2= (1 — ¢~**)dz, meaning that under P, Z®
is a subordinator with no drift and Lévy measure C,z=* "1 (1 — e~ **)dx, more precisely its
Laplace transforms are given by

1— 67)\1

E[e_)‘ZS(t)] = exp (—S/ Co(l - e_m)de) = exp(—s(A +1)" 4 sA” + st%).
0

We denote by (p{” (2), s,z > 0) the densities of the laws P(Z{" € dz). It can be checked by
[25, Proposition 28.3] from the expression of the Lévy measure of Z() that these densities
exist and are jointly continuous. Likewise, the process X® is under P a Lévy process with
Lévy measure Che @2~ 1dz, and the Laplace transform of X s given by

. dx

anrl

Ele "] = exp (s)\ozto‘l +s / Coe™ (e =1+ M)) = exp(s(A +¢) —st?),
0

which is obtained by dividing the Laplace exponent of X, by that of z0.
We now state an absolute continuity result that is analogous to Cameron-Martin’s
formula for Brownian motion with drift.

Proposition 1 For every t,s > 0, we have the following absolute continuity relation :
for every positive measurable functional F,

E[F(XY,0<u < s)] = Elexp(—st* — tX,)F(X,,0 <u < s)].

Proof. By the expression for the Laplace exponent of X, we get

E[e_)‘Xs(t)] _ e—staE[e—(A-i-t)Xs]’

hence giving P(X{" € dz) = e=**"~* P(X, € dx). The result easily follows by the Markov
property. [

'One way to attach such variables in a measurable way to the w-dependent set of times {s : AX, > 0}
is to consider a doubly-indexed family (e; ;,4,j > 1) of iid standard exponential variables independent of
X, and to attach e; ; to the time of occurrence of the i-th largest jump of X in the interval [j — 1, j).
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Remark. Such an identity is a special case of the so called density transformations for
Lévy processes, see e.g. [25, Theorem 33.2].

As a first consequence, it immediately follows that X® also has jointly continuous
densities under P, which are given by

(t)
p () = PE S ot tapp (o)
x

We let X® be the infimum process of X® and T® the right-inverse process of —X ),
defined as we did above define X and 7.

It is easily obtained that for every ¢ > 0, the process (X, Z")) is again a Lévy process
under the law P. We will also denote by P*, P(-%>) the laws derived from P* and P(~*:)
by marking the jumps with My ; Z® and X® are then defined as before.

2.3 Bridges, excursions

For » € R and s > 0 we will denote by Fj_, the law of the stable bridge from 0
to r with length s, so the family (P, r € R) forms a regular conditional version for
P*(-| Xy = r). By [I1, a regular version (which is the one we will always consider) is
obtained as the unique law on the Skorokhod space D([0, s|, R) that satisfies the following

absolute continuity relation : for every a € (0, s) and any continuous functional F,

a _')(Qfa
RLJF@%OSUSS—GDZE-ﬂX@OSuss—wgﬁ;TT_l' (4)
ps(r
We let P§_,, be the marked analog of F; . on an enriched probability space. Notice that

Proposition [ immediately implies that the bridge laws for the process X® under P are
the same as those of X. Stable bridges from 0 to 0 satisfy the following scaling property :
under P, the process (v/X,,,0 < s < 1) has law P .

Lemma 2 The following formula holds for any positive measurable f, g, H :

1
liyao

H(X) > AX,.f(s)g9(AX.)

0<s<1

! * (japl(__x) 1
= [ass) [ SR m L1 (X6 (),
where X @ (s, x) is the process X to which has been added a jump at time s with magnitude
x. Otherwise said, a stable bridge from 0 to 0 together with a jump (s, AX) picked ac-
cording to the o-finite measure m(ds,dr) =3 \x oo AXudw,ax,)(ds,dz) is obtained by
taking a stable bridge from 0 to —x and adding a jump with magnitude x at time s, where
s is uniform in (0,1) and z is independent with o-finite “law” C,pi(—x)p1(0) " 'z~*dz.

Proof. By the Lévy-Itd decomposition of Lévy processes, one can write, under P, that
X, is the compensated sum

e—0
0<u<s

Xs = lim ( Z AXUIL{AXu>5} — (Oé — 1)1001510{8) 7 s> 07
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where (AX,,u > 0) is a Poisson point process with intensity C,z~®"'dz, and where the
convergence is almost sure. By the Palm formula for Poisson processes, we obtain that for
positive measurable f, g, h, H :

E' X) Y AXf(s)g(AX,)
0<s<1
1 00 C
— /dsf(s)/ dxx—gg(x)El[h(:p + X)H(X @ (s,2))].
0 0
The result is then obtained by disintegrating with respect to the law of Xj. U

We now state a useful decomposntlon of the stable bridge from 0 to 0. Recall that
(pf9 )( ),x > 0) is the density of Z" under P and that X" + Z{” = X, which is a sum
of two independent variables. From this we conclude that (p;(0)~ 1pglt)( )pgt) (x),z > 0) is

a probability density on R, .

Lemma 3 Take a random variable Z with law P(Z € dz) = pg)( )pg (2)p (0) dz.
Conditionally on Z = z, take X' with law PL_, and Z with law PY(Z® € .|z = 2),

0——z

independently. That is, Z is the bridge of Z") with length 1 from 0 to z. Then X’+Z has
law P}_,.

Remark. The definition for the bridges of Z® under P* has not been given before. One
can either follow an analogous definition as (#), or use Lemma [l about conditioned jumps
of subordinators. We explain this for bridges of T, the construction for bridges of Z®
being similar. Take (A;,i > 1) a sequence whose law is that of the jumps ATy of T
under P before time 1, ranked in decreasing order, and conditioned by 7} = z, in the
sense of Lemma [ll Take also a sequence (U;,7 > 1) of independent uniformly distributed
random variables on [0, 1], independent of AT, ;. Then one checks from the Lévy-Ito
decomposition for Lévy processes that the law Q. of the process TP = S~ A, Lis>v,), with
0 < s <1, defines as z varies a regular version of the conditional law PY(T € |T} = z).
Proof. Recall that under P!, X can be written as X® + Z® with X® and Z® inde-
pendent. Consequently, for f and G positive continuous, we have

E'f(X1)G(X)] = E'f(X{” + Z{)G(XO + Z20)]

SO

oo (®) (t)
[aen@iwejox) = [ [Tl 20 g

pi()

xENG(XY 4+ 20 xW = 4 — 2, 20 = 2],
Thus, for (Lebesgue) almost every x, the bridge with law P is obtained by taking a
bridge of X® (or X by previous remarks) from 0 to —Z, and an independent bridge
of Z® from 0 to Z,, where Z, is a r.v. with law dzpl(x)_lpgt)(:c - z)pgt)(z) on R,. We
extend this result to every x € R by an easily checked continuity result for the laws of
bridges which stems from () and the continuity of the densities. Taking x = 0 gives the
result. O
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We now turn our attention to excursions. The fact that X has no negative jumps
implies that —X is a local time at O for the reflected process X — X. Let N be the Ito
excursion measure of X —X away from 0, so that the path of X — X is obtained by concate-
nation of the atoms of a Poisson measure with intensity N(dX)®d¢ on DT([0, 00), R) xR,
where DT([0, 00), R) denotes the Skorokhod space of paths that are killed at some time (.
Under N, almost every path X starts at 0, is positive on an interval (0, () and dies at the
first time ((X) € (0, 00) it hits 0 again. We let N be the enriched law with marked jumps.
It follows from excursion theory that the Lévy process (X, Z®)) under P is obtained by
taking a Poisson point measure ) ., dxi ¢i i indexed by a countable set I, with intensity
N(dX,de) ® ds, writing Z®7 for the cumulative process of marked jumps for X and
letting

Xo=—s'+X"[s— ) ((X)
jisi<st

and

ZZ“ + 20 s = > G|,

jisi<st jisi<st

whenever Zj:sj<si <J<X]> <s< Zj:sjgsi CJ(X])
If X is stopped at some time s, for any u € [0, s] we define the rotated process

VUX(T) = (er-+u — Xu>1{0§u<s—u} + (X(T’ — S+ U) + Xs — Xu)ﬂ{s—uﬁrﬁs}-

Let ms = — X, and suppose that this minimum is attained only once on [0, s]. We define
the Vervaat transforrn of X as VX = Vp(,, X, the rotation of X at the time where it
attains its infimum. Provided that X, = 0 and X; = X, = 0 (say that X is a bridge),
V X is then an excursion-like function, starting and ending at 0, and staying positive in
the meanwhile.

We will denote by N® the law of VX under P? ,, and N® the corresponding
“marked” version. Call it the law of the excursion of X with duration v. The “Vervaat
theorem” in [IZ] shows that N is indeed a regular conditional version for the “law”
N(:|¢ =) : for any positive measurable functional F' and function f,

N(F(X5,0<s < Q) f(Q) = g FION(¢ € do)NW(F(X,,0 < s < w)).

As for bridges, we also have the scaling property at the level of conditioned excursions :
under N, (v’l/aXvs, 0<s< 1) has law N Notice also (either by Vervaat’s theorem
or directly, using Proposition [l) that the excursions of X® under P, conditioned to have
a fixed duration v are the same as that of X under N,

3 The stable tree

3.1 Height Process, width process

We now introduce the rigorous definition and useful properties of the stable tree. This
section is mainly inspired by [16, T4]. With the notations of section B, and for ¢ > 0, let
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R® be the time-reversed process of X at time ¢ :

Rgt) = Xt — X(t,s), 0 S S S t.

It is standard that this process has the same law as X killed at time ¢ under P. Let E(t)
be its supremum process, and L) be the local time process at level 0 of the reflected

process RY — RO, We let H, = th). The normalization for L(®) is chosen so that

t
H, = lim ]l{ﬁit) — R < ¢e}ds,

el0 € 0
in probability for every ¢. It is proved in [T6] that H admits a continuous modification,
which is the one we are going to work with from now on. It has to be noticed that H,
is not a Markov process, except in the case where X is Brownian motion. As a matter
of fact, it can be noticed that H admits infinitely many local minima attaining the same
value as soon as X has jumps. To see this, consider a jump time t of X, and let t1,ty > ¢
so that inf;<,<;, X\, = Xy, and X;- < X, < Xy, ¢ € {1,2}. Then it is easy to see that
H, = H;, = Hy, and that one may in fact find an infinite number of distinct ¢,’s satisfying
the properties of t1,t5. On the other hand, it is not difficult to see that H; is a local

minimum of H, see Proposition B below.

It is shown in [I6] that the definition of H still makes sense under the o-finite measure
N rather than the probability law P. The process H is then defined only on [0, (], and
we call it the excursion of the height process. Using the scaling property, one can then
define the height process under the laws N, Call it the law of the excursion of the height
process with duration v.

The key tool for defining the local time of hubs is the local time process of the height
process. We will denote by (L%, t,s > 0). It can be obtained a.s. for every fixed s, ¢ by

t : 1 °
L= llf(l) c /s Lier, <ireydu. (5)
That is, LY, is the density of the occupation measure of H at level ¢ and time s. For ¢t = 0,
one gets (L%, s > 0) = (X,,s > 0), which is a reminiscent of the fact that the excursions
of the height process are in one-to-one correspondence with excursions of X with the same
lengths.

It is again possible to define the local time process under the excursion measures N
and N™. Duquesne and Le Gall [I6] have shown that under P, the process (L%, ,t > 0)
has the law of the continuous-stable branching process starting at = > 0, with stable («)
branching mechanism. One can get interpretations for the process (Lé,t > 0) under the
measure N or of (L},t > 0) under N in terms of conditioned continuous-state branching
processes, see [Z]].

3.2 The tree structure

Let us motivate the term of “height process” for H by embedding a tree inside H,
following [T9, 2]. Consider the height process H under the law N, We can define a pseudo
metric D on [0, 1] by letting D(s, s') = Hy+ Hy —2inf,c[s o) H, (With the convention that
[s,8] = [¢,s] if & < s). Let s = if and only if D(s,s’) =0.
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Definition 2 The stable tree (7,d) is the quotient of the pseudo-metric space ([0, 1], D)
by =. Theroot of T is the equivalence class of 0. The mass measure p is the Borel measure
induced on T by Lebesgue’s measure on [0, 1] (so its support is T ).

In the sequel, we will often identify 7 with [0, 1], even if the correspondence is not one-to-
one. Some comments on this definition. First, the way the tree is embedded in the function
H can seem quite intricate. It is not difficult, however, to see what its “marginals” look

like. For any finite set of vertices sq, Ss,..., s, € [0, 1], one recovers the structure of the
subtree spanned by the root and sy, s9, ..., sk, according to the following simple rules :
— The height of s is ht(s) = H,.
— The common ancestor of sq,...,s, 18 b = b(sy,...,s,) € [minj<;<x S, maxy<;<g S

such that H, = inf{H, : s € [minj<;<j $;, maxj<;<x S| }.

Notice that all such b are equivalent with respect to =. The fact that (7, d) is indeed a
tree (a complete metric space such that the only simple path leading from a vertex to
another is the geodesic) is intuitive and proven in [T5]. It follows from the construction of
“marginals” of 7 in [I6]| that given p, p-a.e. vertex is a leaf of 7.

We now relate properties on the stable tree to path properties of the underlying Lévy
process we started with to construct the height process. We understand here that X and
H are defined under N, Recall that 7, stands for the fringe subtree rooted at b.

Proposition 2 (i) Each hub b € H(T) is encoded by exactly one time 7(b) € [0, 1] such
that L(b) = AX.4) >0, and L(b) is given by (@) a.s.

(ii) If o(b) = inf{s > 7(b) : X = X;@)-}, then T, = [7(D),0()]/ =.

(iii) More precisely, let T,', T;2, . .. be the connected components of T, \ {b}, arranged in
decreasing order of mass. Let ([1;(b), 04(b)],i > 1) be the constancy intervals of the infimum
process of (Xs — Xrp), 7(b) < s < 0(b)), and ranked in decreasing order of length. Then

T = (r(0), 0,(0))] =

Proof. (i) Working first under P, fix £ > 0 and let 7, = inf{s > 0 : AX, > ¢}. Then 7 is a
stopping time for the natural filtration associated to X, as well as o, = inf{s > 7, : X, =
X;, }. By the Markov property, the process X, o, = (X745 — X-,,0 < 5 < 0y — 1) s
independent of (X4, —X,,, s > 0), which has the same law as X, and of (X;,0 < s < 7)
conditionally on its final jump AX,,. Now if we remove this jump, that is, if we let
()?8, 0 < s <7) be the modification of (X, 0 < s < 7) that is left-continuous at 7, then
X has the law of a stable Lévy process killed at some independent exponential time, and
conditioned to have jumps with magnitude less than ¢. Also, conditionally on AX,, = z,
X[, has the law P22 of the stable process killed when it first hits —z. Hence, by
the additivity of the local time and the definition of H, one has that for every s € [y, o],
Hy = H,, + ﬁs,m where H is an independent copy of H, killed when its local time at 0
attains z. Consequently, one has Hy > H,, for every s € |1y, 04] and H,, = H,,, moreover,
one has that for every € > 0,

inf Hy,v inf H,<H,, (6)

(1¢—€)V0<s<7y op<s<oy+e

as a consequence of the following fact. By the left-continuity of X at 7, for any € > 0
we may find s € [r, — €, 7] such that inf,c[s ) X, = X,. This implies H, = H,, — R

Ty—S?

and this last term is a.s. strictly less than H;, because 0 is is a.s. not a holding point
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for (Eff‘), 0 < s < 77). This last fact is obtained by a time-reversal argument, using the
fact that the points of increase of the local time Lo correspond to that of the supremum
process of R®. Moreover, the fact that X has only positive jumps under P implies that
for some suitable ¢/ > 0, one can find some s" € [0y, 00 + €] and some s" € [1 — &, 7]
such that H, > Hy = Hg for every u € [, s”], and such that again inf,cj ) X\, = X
Thus the claimed inequality. In terms of the structure of the stable tree, (@) implies that
a branchpoint b of the tree is present at height H,,, which is encoded by all the s € |7, 0/
such that H, = H,,, i.e. such that X, = inf,¢|;, g X, (there is always an infinite number
of them). By definition, the mass measure of the vertices in 7, at distance less than e

of b is exactly the Lebesgue measure of {s € [, 04| : Hs_;, < €}. Thus by () we can

conclude that L(b) defined at ([l exists and equals Eg{_w = x where L is the local time
associated to H. The same argument allows to handle the second, third, ... jumps that
are > (. Letting ¢ | 0 implies that to any jump of X with magnitude x corresponds a hub
of the stable tree with local time z. By excursion theory and scaling, the same property
holds under N and N,

Conversely, suppose that b is a branchpoint in the stable tree. This means that there
exist times s; < s < s3 such that Hy, = H,, = H,, and H; > Hy, for every s € [sq, s3].
Let

7(b) = inf{s < sy : Hy = H,, and H, > H,,Vu € [s, s5]}

and
o(b) =sup{s > sy : H, = Hy, and H, > H,,Vu € [sy, s]}

(which are not stopping times). If AX, ) > 0, we are in the preceding case. Suppose that
AX. ) = 0, then by the same arguments as above, X, > X ¢ for s € [7(b),0(b)], else
we could find some s' € [7(b), 0(b)] such that Hy < H ). Also, the points s € [7(b), o(b)]
such that H, = H. must then satisfy X, = X ) (else there would be a strict increase
of the local time of the reversed process). This implies that X, is a local infimum of
X, attained at s. By standard considerations, such local infima cannot be attained more
than three times on the interval [7(b), o ()], a.s. But if it was attained exactly three times,
then the branchpoint would have degree 3, which is impossible according to the analysis
of F~ in |21, which implies that all hubs of the stable tree have infinite degree.
Assertion (ii) follows easily from this, and (iii) comes from the fact that the points
u € [7(b),o(b)] with H, = H,() are exactly those points where inf,c[-4)4 X, = X, and
the definition of the mass measure on 7. O

3.3 A second way to define F'*

We will now give some elementary properties of '™ and rephrase its definition directly
from the excursion of the underlying stable excursion X rather than the tree itself. First
recall that given 7, we defined F* through a marking procedure on H(7) by taking a
Poisson process (b(t),¢ > 0) with intensity d ® 3,y L(b)ds(dv), and by saying that
b is marked at level ¢ if b € {b(s),0 < s < t}. By proposition Bl F'* can thus be defined
under the marked law N, To describe this construction a bit more, we begin with the
following
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Lemma 4 Let s € [0,1], and write v(s) for the vertex of T encoded by s. Then almost-

surely,
Z L(b) < 0.
beH(T)N[[root,v(s)]]

In particular, almost surely, for every hub b € H(7T) and t > 0, there is at most a finite
number of hubs marked at level t on the path [[root, b]].

Proof. Let s be the leftmost time in [0, 1] that encodes v. It follows from Proposition
(ii) (and the fact that a.s. under P, every excursion of R®) below R ends by a jump)

that the hubs b in the path [[root, v]] are all encoded by the times s’ < s such that R
jumps at time s— s’. This jump corresponds to a jump of the reversed process R®), whose
magnitude ARE‘?S, > AFS_)S, equals L(b) by Proposition B (i). Therefore, we have to show
that the sum of these jumps is finite a.s. By excursion theory and time-reversal, it suffices
to show that under P, letting X be the supremum process of X,

Z AXy < o0, s > 0. (7)

OSS/SSZAYS/>O

Now by excursions and Poisson processes theories (see e.g. Formula (10) in the proof of
[16, Lemma 1.1.2]), after appropriate time-change by the inverse local time at 0 of the
process X — X, the jumps AX, that achieve new suprema form a Poisson point process
with intensity x x C,ox~'"%dx. Since this measure integrates x on a neighborhood of 0,
the sum in (@) is a.s. finite.

The statement on hubs follows since for any hub b encoded by a jump-time 7(b), there
is a rational number " € [7(b), o(b)] which encodes some vertex v in the fringe subtree
rooted at b. Therefore, almost-surely, for every b € H(7), the sum of widths of the hubs
on the path [[@,0]] is finite. It is then easy to check that if (zq,xs,...) is a sequence with
finite sum and if the -th term is marked with probability 1 — e~ %, then a.s. only a finite
number of terms are marked. Therefore, a.s. for every b € H(7), there is only a finite
number of marked hubs on the path [[&, b]]. O

By definition, two vertices v,w € 7 satisfy v ~; w if and only if {b(s) : 0 < s <
t} N [[v,w]] = 0. Let Hy = {b(s) : 0 < s < t}. For b € Hy, let T,', T,', ... be the connected
components of 7, \ {b} ranked in decreasing order of total mass. We know that these trees
are encoded by intervals of the form (7;(b), 0;(b)) whose union is [7(b), o(b)] \ {u : u = b}.
Define

C(t’ b, 'l) = 7;72 \ U Ty,

b eHNT,

so C(t,b,1) is the connected component of the i-th largest subtree growing from b obtained
when the hubs marked at level ¢ are deleted. Plainly, C'(t,b,1) is an equivalence class for
~, for every b € H; and i > 1. By (iii) in Proposition Bl with obvious notations,

C(t,b,0) = (n(0), 00D\ |J [F(0). o).

4 E’Z;bﬂ?‘lt

We also let C(t,0) be the set of vertices whose path to the root does not cross any
marked hub at level ¢, which is equivalent to [0, 1]\ [Uyes, [T(b), o(b)]. Then C(t,0) is also
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an equivalence class for ~;. Intuitively, the classes C(t,0) and C(t,b,) for b a hub are the
equivalence classes for ~; that have a positive weight. We will see later that the rest is a
set of leaves of mass zero.

Let us now translate the relation ~; in terms of the stable excursion X under N,
Let s, 8" € [0, 1] encode respectively the vertices v # w € 7. Again by Proposition B (ii),
the branchpoint b(v,w) of v and w is encoded by the largest u such that the processes

(R(s 0<r<wu)and (Rg D0 < r < u) coincide. Let u(s, s’) be the jump-time of X

s—u+r —u+r
that encodes this branchpoint. Then v ~; w if and only if the (left-continuous) processes

(Ri Su(v,w) < r < s)and (R(;)_T,u(v,w) < r < ¢) never jump at times when marked
jumps at level ¢ for X occur.

In particular, we may rewrite the equivalence classes C(¢,b,7) and C(t,0) as follows.
Let zt > 2L > ... > 0 be the marked jumps of X at level # under N, ranked in decreasing
order, and let 71, 73, . . . the corresponding jump times (i.e. such that AZS? = z!). For every
7, let '

of =inf{s>71l: X, = Xpo =Xt — 2}
be the first return time to level X :_ after time 7. Define the intervals I! = [7}, 0], so
I!/ = is the fringe subtree of the marked hub that has width zf. Notice that the I'’s
are by no means disjoint, since these fringe subtrees contain other marked hubs, that
might even have greater width. For each i, the jump with magnitude z! gives rise to a
family of excursions of X above its minimum. Precisely, let (X}, X/,,...) the sequence
of excursions above its infimum of the process

Xf(s):XTHS—XTZ; 0<s<ol—7/i>1

where the (X};,j > 1) are arranged by decreasing order of duration. Let also I; =

1,57
7,07 ;] be the interval in which X} ; appears in X, so that U] It = If. Consider the set
ki GIY

By Lemma M, there exists some set of indices A" such that I}, C If; and so that the I},’s
are maximal with this property (else we could find an infinite number of marked hubs on
a path from the root to one of the hubs encoded by the left-end of some I} C I} ;). The
Lebesgue measure of Cf ; is thus equal to

|Cf,j| - U;j - Tit,j - Z(UZ — T3,

where the sum is over the k’s such that I} C If and the I!’s are maximal with this
property. Writing Cf = [0,1] \ U=, If, we finally get (identifying Borel subsets of [0, 1]
with Borel subsets of 7T) :

Lemma 5 The sets C} and C!

i Jori,j = 1, are a relabeling of the sets C(t,0) and
C(t,b,1).

Notice also that another consequence of Lemma H is that F'" is continuous in proba-
bility at time 0. Indeed, as ¢ | 0, the component C(¢, () of the fragmented tree containing
the root increases to C'(0+, ). Suppose u(C(0+,0)) < 1 with positive probability. Given
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T take Ly, Lo, ... independent with law p. By the law of large numbers, with positive
probability a positive proportion of the L;’s are separated from the root at time 0+4. How-
ever, as a consequence of Lemma M, a.s. for every n > 1 and t small enough, there is no
marked hub on the paths [[root, L;]], 1 <i < n, hence a contradiction.

4 Study of F'"

The goal of this section is to study the fragmentation F'* through the representation
given in the last section. The first step is to study the behavior of the excursion on the
equivalence classes C;j and Cf defined previously.

4.1 Self-similarity

This section is devoted to the proof that F'* is a self-similar fragmentation with index
1/« and no erosion.

Let us first introduce some notation. Let (f(z),0 < z < () € D'([0, 00), R) be a cadlag
function with lifetime ¢ € [0, 00). By convention we let f(x) = f(() for x > (. We define
the unplugging operation UNPLUG as follows. Let ([a,, b,],n > 1) be a sequence of disjoint
closed intervals with non-empty interior, such that 0 < a, < b, < ( for every n. Define
the increasing continuous function

afl(s):s—Z(s/\bn—an)*, s >0,

n>1

where a* = aV0 and where the sum converges uniformly on [0, {]. We say that the intervals
[an, by are separated if z71(a,) < x7Y(a,,) for every n # m such that a, < a,,. This is
equivalent to the fact that for every n # m with a,, < a,,, the set [a,, an] \ U,[a:, b;] has
positive Lebesgue measure, and it implies that the constancy intervals of 7! are exactly
[an, by],m > 1. If ([an, by],n > 1) is separated, define x as the right-continuous inverse of
7!, then foux is cadlag (notice that (fox)(s—) = f(x(s—)—) for s € [0,271(¢)]), call it
UNPLUG( f, [an, by],n > 1). The action of UNPLUG is thus to remove the bits of the path of f
that are included in [a,, b,]. Last, if we are given intervals [a,, b,] that are not overlapping
(i.e. such that a, < a, < b, < b,, does not happen for n # m, though we might have
[an, bp] C [am, b)), but such that there is a separated subsequence ([ag(n), b)), 7 > 1)
of maximal intervals that covers |, [an, b,], we similarly define the unplugging operation
by simply ignoring the non-maximal intervals.

Lemma 6 Let ([a,,b,],n > 1) be a sequence of separated intervals, and let 7w be a partition
of N with blocks my,7s,.... Then, as N — oo, UNPLUG(f, [an,b,] : n € m U ... Umy)
converges to UNPLUG( f, [ay, by],n > 1) in the Skorokhod topology.

Proof. Define
Ty (s) =5 — Z (s Ab, —a,)", s> 0.

nemU..Urn

The separation of intervals ensures that every jump of x corresponds to a jump of x for
some large N, and it is not hard to see that this implies zx (23! (2(s))) = x(s) for all s.
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Since f o x is cadlag with duration ¢’ = ¢ — > (b, — a,), for every N we may find a
sequence of times 0 = 59 < 51 < 8 < ... < Spn) = ¢’ such that the oscillation

w(fou[sus) = s |fou(s)— fou(s)| — 0,
8,8 €[84,8i+1) N—o0

this uniformly in 1 < i < k(N). Let also s¥ = x'(2(s;)) be the corresponding times for
f oxyn. We build a time change Ay (a strictly increasing continuous function) by setting
Anv(si) = sV for 1 < i < k(N), and interpolating linearly between these times. Easily
[An(51) = sil <22amu umy (On —an) — 0, and it follows that Ay converges pointwise and
uniformly to the identity function of [0, (’]. On the other hand, fox(s;) = foxyoAn(s;),
so for s € (s, 8i41),

|[foxnoAn(s) = fox(s)] Sw(fow,[sisi1)) +|foxnoAn(s) — foxznoAn(si)|

To bound the second term, notice that zn((s, si\,)) C z((s;, Si41)) UUngmu...umy [@ns bal.
Therefore

|fO.I‘NO)\N<8)—fO.§CNO)\N(SZ’>| S (,LJ(fO.ZL’, [8i,8i+1))

+ sup  (f(an) — flan—) +w(f, [an, bal))-

n¢mU.. .Uty

We can conclude that f o xy o Ay converges uniformly to f o x since the oscillation
w(f,[an, by]) converges to 0 uniformly inn ¢ m U...Uny as N — oo, as does the jump
flan) — f(an—). O

Under the law P(~*°) under which X is killed when it first attains —z, for every ¢t > 0
we let 28 > 20 > ... > 0 be the marked jumps of X at level ¢, ranked in decreasing order
of magnitude, and 77 be the time of occurrence of the jump with magnitude 2}, while o is
the first time after 7/ when X hits level X;«_ (notice that 7/, 0} are not stopping times).
Similarly as before, we let I} = [}, ol].

1771

Lemma 7 For every z,t > 0, the process UNPLUG(X, (If : i > 1)) has same law as X®
under P, killed when it first hits —z.

Part of this lemma is that it makes sense to apply the unplugging operation with the
intervals I, that is, that these intervals admit a separated covering maximal sub-family.
Proof. The fact that the intervals I! admit a covering maximal sub-family is obtained
by re-using the proof of Lemma [l and the argument given just after the definition of C;j
in the preceding section. Next, write X = X® + Z®, For a > 0, let 7/'* be the time of
the first jump of Z® that is > a, and let o7 = inf{u > 7" : X, = X ra_}. Recursively,

let 7/ = inf{u > 7/ : AZP > a} and oty = inf{u > 7% X, = XTf;al,}. Let
78 = Y s AZqSt)IL{AZ(t)<a}. The 7,"’s are stopping times for the filtration generated

by (X®, Z®) as well as the o;'*’s. By a repeated use of the Markov property at these
times we get
UNPLUG(X; (I' : 2! > a)) £ X 4 Z(o)

where this last process is killed at the time T4 when it first hits —z. In particular,

T, — Y (07" — 77%) has the same law as T which converges in law to 7" as a |
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0 because Z*® Converges to 0 uniformly on compact sets, and X enters (—oo, —z)

immediately after T by the Markov property and the fact that 0 is a regular point
for Lévy processes with infinite total variation. Therefore, writing |I}| for the Lebesgue
measure of If, T, — >, |I| (where the sum is over the I! that are maximal) has same

law as Tz(t), and in particular it is nonzero a.s. Now to check that the intervals I} are
separated (we are only interested by those which are maximal), consider two left-ends of
such intervals such as 7% < T;’“ (where a is small enough). The regularity of 0 for the
Lévy process X implies that infse[of,aﬁf,a] X, < Xo_f,a, so by the same arguments as above

and the Markov property at af’a, there exists a (random) &% ; > 0 such that given &7,
t,a t,a t
Ty — 0 — Z |[k|]1{1;i maximaly
It C[at 1@ ’Tt “

i

(

is stochastically larger than T . This ensures the a.s. separation of the I}’s, so the a.s.

convergence of UNPLUG(X, (I} 3 z > a)) to UNPLUG(X, (I},i > 1)) as a | 0 comes from
Lemma [l Identifying the limltmg law follows from the above discussion. D

Now let as before Xt( ) = Xrips — X for 0 < s < of — 7/ and i > 0, where by
convention 7¢ = 0, and o} = T}. We write —7! + I} = [} — 7}, 01 — 7!]. The next lemma
does most of the job to extract the different tree components of the logged stable tree at
time t.

Lemma 8 (i) Under the law P> asa | 0, the processes UNPLUG( X!, (=i +1} k : I} C
It and 2L > a)),i > 1 converge in DT([0,00),R) to the processes Y;! = UNPLUG(X], (—7! +
IL kI CIh)),i > 1.

(ii) The process Y has the same law as zt + X under P, killed when it first hits 0,
and these processes are independent conditionally on (zf,i > 1).

(iii) The sum of the durations of Yi',i > 0 equals T} a.s.

Proof. (i) Fix a > 0, we modify slightly the notations of the preceding proof by letting
Tf’a < ... < Tk(a be the times when Z® accornphshes a jumps that is > a, and letting

R mf{u > 7% X, = X ta_}. Let also 70" = 0,00 = Ty. Write I}* = [77%, 00,
and let X;(s) = X ra, — X o for 0 < s < 07" — 7% By the Markov property at
times 7%, 07", we obtain that for every i, X/** is independent of UNPLUG(X, I;*) given

the jump AX ... By a repeated use of the Markov property, we obtain the independence
of the processes UNPLUG(X,“, (—7! + I} : I})* € I')) given (AX ta,1 < i < k(a)),

=

and moreover, the law of X* given AX tao is that of X under P, killed when it first
hits —AX +a. Letting @ | 0 and applying Lemma [ finally gives the convergence to the

processes Y;', as well as the conditional independence and the distribution of the processes,
giving also (ii).

(iii) Let us introduce some extra notation. Say that the marked jump with magnitude
z; is of the j-th kind if and only if the future infimum process (inf,< <t Xy, 0 < 5 < 7/)
accomplishes exactly j jumps at times that correspond to marked jumps of X. Write |If]|
for the duration of X! and let A; be the set of indices ¢ such that 7} is a jump time of the
j-th kind. By a variation of Lemma Ml already used above, every marked jump is of the
j-th kind for some j a.s. By Lemma [ the duration of Y is 71 — >, , |1{], similarly, one
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has that if i € A;, the duration of Y equals |I7| =37 c 4. [[g[1(zcrry- Therefore, proving
1

probability as j — oo. But the sum of the marked jumps is finite a.s., since conditionally

on a marked jump z!, the duration of the corresponding X! has same law as T.:, and since

we have independence as i varies. Hence this sum is (conditionally on (2}, > 1)) equal in

law to Iy, 2 under P, and it converges to 0. O

that the sum of duratlons of V' equals T; amounts to showing that ZieA]_ [If| — 0 in

Lemma 9 The process (Ft(t),t > 0) is a Markovian self-similar fragmentation with
index 1/cv. Its erosion coefficient is 0

Proof. For every v > 0, define the processes X! under N*) as in the preceding section,
replacing the duration 1 by v. By virtue of Lemma [ and by excursion theory, we obtain
that for almost every v > 0, and for all ¢ in a dense countable subset of R, under N, the
processes UNPLUG(X/, (—7f + If. : I} C I! and z} > a)) converge as a | 0 to processes Y
that are independent conditionally on the z}’s and on their durations, and whose durations
sum to v (by convention we let X} = X). By scaling, this statement remains valid for
v = 1. We then extend it to all £ > 0 by a continuity argument. The case ¢ = 0 is obvious,
so take tg > 0 and ¢t T tg in the dense subset of R,. Almost surely, ¢, is not a time at
which a new hub is marked, so X;° = X! for t close enough of ty, and by Lemma B and
the fact that {If,i > 0} C {I/°,i > 0} for t < t,,

Y"® = UNPLUG(X], (—7/ + [, : I’ C I*)) = 1t1T1tnUNPLUG(Xt (=t + I} I, C 1)),
0

Now recall the notation Xj, I}, = [7/;,0;,] from Sect. B3 and for j > 1 write Y},
UNPLUG(XY ;, (—7/; + I - I} © Iﬁ ) for the excursions of Y} above its infimum, ranked in
the order corresponding to X; ;. Then by the same arguments as in the proof of Lemma
[0, the joint law of the durations of Y, Y;;i > 1,7 > 1 equals the law of (|Cj|,|Cf ], 7 >
1,7 > 1) with notations above. Hence, by Lemma [ and the fact that excursions of X®
with prescribed duration are stable excursions, it holds that conditionally on F*(¢) =
(1,9, .. .), the excursions Yt are independent stable excursions with respective durations
L1,T9y .. ..

Now let ~, 57 he the equivalence relation defined for the excursion Yt] in a similar way

as ~ for the normahzed excursion of X. Write also jy(u) = u—7/;,—> . [CIt ot <u |I%] for

u € [0,1], whenever u € Cf ;. Then it is clear that if 2,y € Cf],
and only if j;(z) ~4; "7 4,(y). By the scaling property, a stable excursion * with duration x
where every jump Wlth magnitude ¢ is marked with probability 1 — exp(—t'¢) is obtained
by taking a normalized excursion (¢!,0 < s < 1), marking every jump with magnitude
¢ independently with probability 1 — exp(—t'z'/®¢), and then letting % = xl/o‘e;/x for
0 < s < x; the marked jumps of €” occurring at the times sz whenever s is a marked
jump time for e!. This means that given F'*(¢) = (xy,...), the process (F(t+'),¢ > 0)
has the same law as ((z,F " (21/"t), 2o FH2(2/*),.. )}t > 0) where the F*+'s are
independent copies of F'*. This entails both the Markov property and the self-similar
property, the self-similarity index being 1/a. Moreover, Lemma[ (iii) shows that the sum
of durations of Y}/ is 1 a.s. under N, so Y7, F;*(t) = 1 a.s. and the erosion coefficient
must be 0 according to [9].

To conclude, we notice that the previous result of continuity in probability of F'* at
time 0 extends to any time ¢t > 0 by the self-similar fragmentation property. O

one has also x ~opyp y if
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4.2 Splitting rates and dislocation measure

To complete the study of the characteristics of F'™, we must identify the dislocation
measure. This is done by computing the splitting rate of the stable tree, that is, the rate
at which the tree with mass 1 instantaneously splits into a sequence of subtrees with given
masses $; > So,... with ) .s; = 1, by analogy with the splitting rate of the Brownian
CRT in [3].

We will need the following lemma from [22|, which is similar to Lévy’s method to
compute the jump measure of a Lévy process.

Lemma 10 Let (F(t),t > 0) be a self-similar fragmentation with index 5 > 0 and erosion
coefficient ¢ = 0. Then for every function G that is continuous and null on a neighborhood
of (1,0,...) in S,

t'E[G(F(t))] 0 v(G).

Recall that our marking process on the hubs of the tree amounts to taking a Poisson
process with intensity m(dv) = Y, L(b)dy(dv) on 7, where the sum is over hubs b € 7. For
veT,let Ty(v), To(v),. .. be the tree components of the forest obtained when removing
v, arranged by decreasing order of masses, and let

r(ds) = NO (m{v € T : (u(Ti(v)), p(B(v)),...) € ds})

be the rate at which a m-picked vertex splits 7 into trees with masses in a volume element
ds (recall that the stable tree is defined under the normalized excursion law N). Tt is
quite intuitive that the splitting rate equals the dislocation measure of F'*, and Theorem
[ reduces to the two following lemmas :

Lemma 11 The splitting rate r(ds) equals the dislocation measure vy of FT.

Proof. For t > 0 we let 7 () be the forest obtained by our logging procedure of the stable
tree at time ¢. Let n > 2, and consider n leaves Li,..., L, € 7 that are independent
and distributed according to the mass measure yu, conditionally on p (we are implicitly
working on an enlarged probability space). Write IL,,(¢) for the partition of [n] = {1,...,n}
obtained by letting 7 and j be in the same block of IL,(¢) if and only if L, and L; belong
to the same tree component of 7 (t). For K > 2 let A%.(t) be the event that at time ¢,
the leaves Ly, ..., L, are all contained in tree components of 7 (¢) with masses > 1/K.
Write P’ for the set of partitions = of [n] = {1,...,n} with at least two non void blocks
Ay, ..., A (for some arbitrary ordering convention). Given F*(t) = s = (s1, s2,...), the
probability that I1,(¢) equals some partition 7 € P and that A% (¢) happens is

Gic(s) = NO(IL(6) = 7, AR ()| FF (1) = s) = > [] 7™

i1y, j=1

the sum being over pairwise distinct i;'s such that s;, > 1/K. This last function is
continuous and null on a neighborhood of (1,0, ...), so Lemma [[0 (which we may use by
Lemma [) gives

lim ¢ "NO(IL, (¢) = 7, A% (1)) = /5 ve(ds) Y JIsi" (8)

t10
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We claim that knowing this quantity for every n,w, K characterizes v,. One can obtain
this by first letting K — oo by monotone convergence, and then using an argument based
on exchangeable partitions as in [I8, p. 378] (a Stone-Weierstrass argument can also work).
On the other hand, for any b in the set H(7) of branchpoints of 7, let 7° be the
partition of [n] obtained by letting ¢ and j be in the same block if and only if b is not on
the path from L; to L;. Let also 77,(b) be the tree component of the forest obtained by
removing b from 7 that contains L;. For K € (2,00] and w € P;, let W, (7) be the set of
branchpoints b € 7 such that 7% = 7 and such that (77, (b)) > 1/K for 1 < i < n, and let
U = U7r€'P;§ W% (7). Recall that we may construct the fragmentation F'* by cutting the
stable tree at the points of a Poisson point process (b(s), s > 0) with intensity ds®@m(db).
Now for II,,(¢) = 7 to happen, it is plainly necessary that at least one b(s) falls in W” for
some s € [0, ], if in addition A% (¢) happens then no b(s),0 < s < ¢ must fall in ¥7 \ U7,
Therefore,
NO(IL, (1) = 7, A% (1)) = NV (31s € [0, 1] : b(s) € W™

[oop)

and b(s) € Wi (), Ak () + R(t),

(9)
where the residual R(¢) is bounded by the probability that b(s) falls in W7, for at least two
s € [0,t]. Hence R(t) = o(t) by standard properties of Poisson processes provided we can
show that N(W[m(¥" )] < oo. This could be shown using the forthcoming lemma, but we
may also just notice that if NV [m (U7 )] was infinite, then there would be arbitrarily many
b(s),0 < s <t falling in W2 \ W% for some appropriately large K, and the probability
in (@) would be 0, which is impossible from the beginning of this proof and since F*
is a self-similar fragmentation with nonzero dislocation measure (because it has erosion
coefficient 0 and it is not constant). On the other hand, conditionally on the event on
the right-hand side of (@), the b(s),0 < s < t that do not fall in ¥ (call them ¥'(s))
form an independent Poisson point process with intensity m(- N H(7) \ Y2 ). Therefore,
the size of the tree component of the forest obtained when removing the points ¥'(s),0 <
s < t that contains L; converges a.s. to 1 as ¢t | 0 (so it also contains the other L;’s
for small ¢ a.s.), as it is stochastically bigger than the component of 7 (¢) containing
Ly, and since F*(t) — (1,0,...) in probability as ¢ | 0. It follows that one can remove
A% (t) from the right-hand side of ({), and basic properties of Poisson measures finally
give t'NU(IL, (1) = 7, A%(t)) — ND[m(V%(7))] = NV [m (Y% (7))]. This last quantity
is finally equal to [ r(ds) ZZK% Hle sZéAj since L; belongs to B C 7 with probability
p(B) that is equal to the Lebesgue measure of the subset of [0, 1] encoding B. Identifying
with (B) gives the claim. O

Lemma 12 One has r(ds) = v,(ds) with the notations of Theorem [

Proof. We must see what is the effect of splitting 7" at a hub b picked according to m(dv).
By definition, m picks a hub proportionally to its local time, and by Proposition Bl hubs
are in one-to-one correspondence with jumps of the stable excursion with duration 1. More
precisely, if b is the hub that has been picked and with the notations 7(b), o(b) above, the
masses of the tree components obtained when removing b are equal to the lengths of the
constancy intervals of the infimum process of (X )15 — X-),0 < s < o(b) — 7(b)), and
the extra term 1—(o(b) —7(b)). By Vervaat’s theorem, we may suppose that the excursion
is the Vervaat transform of a stable bridge and that the marked jump in the excursion
corresponds to a jump (s, AX;) of the bridge picked according to the o-finite measure
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Y uiax,s0 AXudw,ax,)(ds,dr). By Lemma[l this marked jump equals (s, z) according to
a certain o-finite “law”, while given (s, AX;) = (s, ), the bridge X has the same law as
X & (s,x), under the law P} .
Therefore, we have have obtained a representation of the excursion together with a
marked jump as a bridge X with law P}, where z is independent with some o-finite
“law”, to which has been added the marked jump of size x at an independent uniform
time s, and which has finally undergone the Vervaat transformation. Using the invariance
of bridge laws under independent cyclic shifts, it is now easy to see that the lengths of
the constancy intervals of (X @4)+s — Xr3),0 < s < 0(b) — 7(b)) defined above have the
same law as the intervals of constancy of the infimum process of (Xy s — X,,0 < s <T,)
under Py ., (with x as above), while the remaining term 1 — (o(b) — 7(b)) has (jointly)
law 1 —T,.

It is now easy that conditionally on x, T, = t these constancy intervals have the same
law as ATy, given T, = t under P (one actually checks that (X,,0 < u < T;) is the
first-passage bridge with law Potl_x defined before Lemma [[Q below). The law of 1 — T,
given x is simply obtained by using the definition of bridges and the Markov property :
for a < 1 and positive measurable f,

E(%H—x[f(l - Tx)]l{Tz<a}] = El[f(l — TJC)ﬂ{Tz<a}p1(—x)_1p1_a(_l» _ Xa)]

= /Oa ds qx(s)f(l — S)pl(—l‘)_l /dypa—s(y)pl—a(_y)

— ds qx(s)f(1 = s)p1—s(0)pa (=) ",

In the last integral, change variables 1 — s — s, use p;(—x) = x7'¢,(1), check by scaling
that p,(0) = s~ %/*p;(0), and conclude by identifying with Lemma [ that 1 — T, under
Py ., has same law as a size-biased pick from ATjy 4 given T, = 1 under P (notice that
in particular we must have p,(0) = ¢,). By Lemma [l (ii), it follows that given the local
time x of the marked hub b, the law of the sizes of the stable tree split at this hub is the
same as that of ATy, given T, = 1 under P.

Putting pieces together and recalling the distribution of the marked jump x from

Lemma 2l we obtain the formula

o >~ Cozpl(_x) o
r(ds) = /0 dz 21 (0) P(ATy 4 € ds|T, = 1).

By using the scaling property for T and its density (¢.(1) = x7%¢q(x~%)), formula (B]) and
a change of variables, we obtain

r(ds) = / dme(TflATﬂm eds|Ty =a79)
0

Cal’2a+1

= alcalCa/ duwqi(u)P(Ty ATy ) € ds|Ty = u),
0

which gives the desired formula, after checking that a~'c;'C, = D,. O



5 STUDY OF F* 23

5 Study of F*

Recall the construction of F* (under the measure NW) from Sect. [l As noticed above,
this fragmentation process somehow generalizes the one considered in |7, 20| (we could
actually build it in an analogous way for a large class of Lévy processes with no negative
jumps, though the resulting fragmentations would not be self-similar due to the absence
of scaling). Notice that none of the fragmentation processes of [20] are self-similar, but for
the Brownian case. The reason for this was a lack of a Girsanov-type theorem saying that
a Lévy process plus drift has a law that is absolutely continuous with the initial process,
but for the Brownian case. Here, this is fixed by Proposition [, but where the operation
is removing jumps rather than adding a drift.

5.1 The self-similar fragmentation property

For any ¢’ >t > 0 let y;(x,ds) be a kernel from R* to S defined as follows : ji;(z, ds)
is the law of the ranked lengths of the constancy intervals of the process X under N®).
Moreover, define F*! exactly as F!, but where X is under the law P(=1°)_In particular,
F%L(t) is not S-valued (the sum of its components is random).

Proposition 3 (i) The processes F*' and F* enjoy the fragmentation property, with frag-
mentation kernel p,(z,ds). That is, conditionally on F%'(t) = (x1,2,...) (resp. Fi(t)),
FoY(t + 1) (resp. F*(t +t')) has the same law as the decreasing rearrangement of inde-
pendent sequences s; with respective laws py (x;,ds).

(ii) The process F* is a self-similar fragmentation with index 1/c, and no erosion.

The fact that F is a fragmentation process directly comes from the fact that the
processes X)) — X = 7 _ 7() are non-increasing. We now prove the fragmentation
property. The key lies in a Skorokhod-like relation that is analogous to that in [7] and
generalized in [20].

Lemma 13 For every t,t' > 0 and s > 0, one has

X0 = inf (XU 4 (Z0H) — 7Oy,

0<u<s =~ u

The proof can be done following exactly the same lines as in [1, Lemma 2|. As a
consequence, we obtain that the sigma-field G, = o{X® (Z®) 0 < s < t)} induces a
filtration, with respect to which F%! is adapted.

The end of the proof of the fragmentation property in Proposition Blalso goes as in [{].
For any variable K that is G;-measurable, the excursions of X® above its infimum and
before time T[((t) are independent excursions conditionally on G;, respectively conditioned to

have durations fg’f)x, Eg)X, ... where the last family is the decreasing sequence of constancy
intervals of X® before time T[((t). Take K = X%), which is measurable with respect to G; by

virtue of the Skorokhod property. Then T = Ty, which gives readily that conditionally

on G,, the excursions of X® above X® are independent with durations (F*'(t),i > 0).
To conclude, it remains to notice that the lack of memory of the exponential law

implies that the jumps that are unmarked at time ¢ but that are marked at time ¢t + ¢/
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can be obtained also by marking with probability 1 — e~** any unmarked jump at time ¢
that has magnitude ¢. Thus, conditionally on F%!(¢), we obtain a sequence with the same
law as F%1(¢ + t') by taking independent sequences (s;,i > 1) with laws gy (F*'(t),ds)
and rearranging, as claimed. This remains true for F'% by excursion theory and scaling.

To show the self-similarity for F, it then suffices to check, using the scaling property
of the excursions of stable processes, that p;(z, ds) is the image of ji,,1/4(1,ds) by s +— xs.
The fact that F* has no erosion again comes from the fact that > Fi'(t) =1 as.

5.2 The semigroup

According to the preceding section, and since plainly there is no loss of mass in the
fragmentation F* (so the erosion coefficient is 0), proving Theorem P requires only to check
that the dislocation measure of F* equals that of F*. It is intuitively straightforward that
this is the case, by looking at the procedure we use for deleting jumps, and indeed we
could easily follow the same lines as above and compute a “splitting rate” for the bridge,
when the “first” marked jump is deleted. However, a nice feature of this fragmentation
is that we can compute explicitly its semigroup (hence that of F'*), as will follow. The
semigroup then gives enough information to re-obtain the dislocation measure, and this
will prove Theorem P] Recall from Sect. B that pgt) is the density of th) under P.

Proposition 4 The semigroup of F* is given by

* P =200 )
NO(Fi(t) € ds) = / 4TSS P(AT) g € asIT. = 1),
0 P1

We will need a couple of intermediate lemmas. Since Z® is non-decreasing, under the
law N the process X® starts at 0 and hits —Zy) at time 1 for the first time. Since
we are interested in the constancy intervals of X®, and thanks to Vervaat’s theorem, we
would like to relate these constancy intervals to the bridge of X. We now work under the
law of the bridge with unit duration P}_, so we may suppose that the excursion of X
with duration 1 is equal to the Vervaat transform V' X. Let m = —X, be the absolute
value of the minimum of X, and 7, = T,,_ be the (a.s. unique) time when X attains
this minimum, so VX = V2 X. Decompose X as X® + Z® where Z® is the cumulative
process of marked jumps. Then VX = V2 X® £ V270 and by independence of the
marking procedure of jumps we can consider that V2Z® is the cumulative process of
marked jumps for the excursion V.X. The problem is now to describe the law of lengths
of the constancy intervals of the process M(t)- Let m® = —th) be the absolute value

of the minimum of X® and 7 = 7

., be the (a.s. unique) time when X attains this
m®

minimum. Let also 1, = T(t()t) o be the first time when X® attains the value Z\” —m®.
my =y

The following lemma is somehow “deterministic”. For a < b, write X[, for the process
(Xars — X0, 0< s <b—a).

Lemma 14 One has 11 < 7o < 73 a.s., and the sequence of lengths of the constancy

intervals of V2XW | ranked in decreasing order, is equal to that of the process XEQ ] 10

which has been added (at the appropriate rank) the extra term 1 — 73 + 1.
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Proof. Since Z® is an increasing process, one has Xg) =X, — Zg) < X5 — 7" for
any s < 7. Hence, Xg) = KS? which implies 75 < 73. On the other hand, one has
—m® = X, — Zg) > —m — th) and thus m® — Zf) < m, implying 7y < 75.

For convenience, if (f(z),0 <z < () and (f'(z),0 <z < ') are two cadlag functions,
we let f > f’ be the concatenation of the paths of f and f’, defined by

if0<s<(

L £(s)
fmf(s)_{f’(s—CHf(C) fC<s<Ct

We let Y = X y2 = x® anq y3 = xW

[0,72]° [T2,73] [13,1]°

VeX® =Y2a Y3 Y
Observing that Y3 is non-negative, we obtain that Y2 Y3 = Y? 1 Oj9;_,,] where
)

so X = Y1 pq Y2 V3, and

0(0,q is the null process on [0,a]. Since the final value of Y; is m(®) — th , we obtain that

VXY = Y2 54 0jg 1) 5 O[g 7] B XEQW] =Y 1 0[p, 1 —ryry] B XEQ,TQ]-
It follows that the constancy intervals of V2X® are the same as those of X®, except
for the first and last constancy intervals of X® which are merged to form the constancy
interval with length 1 — 75 + 7. U
The rest of the section is devoted to the study of these constancy intervals. Recall from
Lemma Bl that under P}, the process X® has law P}, -, where Z is an independent

random variable with law P(Z € dz) = p; (O)_lpgt) (—z)pgt) (z)dz. It thus suffices to analyze
the constancy intervals of X, ., under the law Py, for fixed z > 0, where we now call
m = —X,, 7 the time when X first hits level z —m and 73 the first time when X attains
level —m.

For z > 0, let (F},_,,v > 0) be a regular version of the conditional law P"#°[.|T, =
v]. Call this the law of the first-passage bridge from 0 to —z with length v. A consequence

of the Markov property is

Lemma 15 Let a,b > 0. For (Lebesgue) almost every v > 0, under the law Po”l_( the

law of T, is given by

a+b)’

g la(8)(v —s)

qa—l—b(v)
Moreover, conditionally on T,, the paths (X, 0 < s < T,) and (Xeyr, — 0,0 < s <
Tousy — T,) are independent with respective laws Pojl"_a and POUL_—YI}'

(;]l—(a-l—b) (Ta 6 dS) —

We also state a generalization of Williams’ decomposition of the excursion of Brownian
motion at the maximum, given in Chaumont [IT]. We need to make a step out of the
world of probability and consider o-finite measures instead of probability laws. Recall that
m, = —X, is the absolute value of the minimum before time v, and with our notations
Ton,— is the first time (and a.s. last before v) when X attains this value. Write

;Xs :Xs OSSSTmU—a
&s :mv+Xs+va_ OSSSU_vaf

for the pre- and post- minimum processes of X before time v. Then by [I1],
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Lemma 16 One has the identity for o-finite measures
/ doP’(X €dw, X € du') = / dz P2 (dw) @ / duN>"(dw'),
0 0 0

where N~ is the finite measure characterized by N-*(F(X)) = N(F(X0 < s <
u),((X) > u) for every non-negative measurable F'. This in turn determines entirely
the laws P for v > 0.

Loosely speaking, if v is “random” with “law” the Lebesgue measure on (0, c0), the pre-
and post- minimum processes are independent with respective “laws” fooo dz P72 (dw)
and [ duN>"(dw). As a consequence of this identity, we have that under P for some
fixed v > 0, conditionally on m, and 7,,,_ = 7, the processes X and X are independent

with respective laws Py, (dw) and (N>*77(1))"'N>*"7(dw').

Lemma 17 Let z > 0. Under the probability Pl __, conditionally on 73 — 7, = t, the

ranked sequence of lengths of the constancy intervals of the infimum process of (Xsyr,0 <
s <13 — 1) have the same law as ATy . given T, =t under P.

Proof. We first condition by the value of (m, 73). Then by Lemma[[@ the path X has the
law i, of the first-passage bridge from 0 to —z with lifetime 73. Applying Lemma
and the Markov property we obtain that conditionally on 71 the path (X, +m—2,0 <
s < 13 —m) is a first passage bridge ending at —z at time 73 — 77. Since it depends only on
T3 — 71, we have obtained the conditional distribution given 73 — 77. Hence, the sequence
defined in the lemma’s statement has the same conditional law as the ranked lengths of
the constancy intervals of the infimum process of such a first-passage bridge, that is, it

has the same law as ATy,  given T] = 73 — 7, with 7" as in the statement. O
The last lemma gives an explicit form for the law of the remaining length 1 — 73 + 7
under Py .

Lemma 18 One has

Ca?q.(1 —9)

Pl
Sl/aqz(l) ’

0——z

(1—7'3+7'1Ed8):d8

which is the law of a size-biased pick of the sequence ATy given T, = 1 under P.

Proof. By Lemmal[[fl if s is “distributed” according to Lebesgue measure on R, , then un-
der P*, the processes X and X are independent with respective “laws” I dzPm) (dw)

and [ duN>"(dw’). Our first task is to disintegrate these laws to obtain a relation under
P} Let H and H' be two continuous bounded functionals and f be continuous with

0——z"

a compact support on (0,00). Then, letting 7% = inf{s > 0: w(s) < -},

/0 Cdsf(s)EP[H(X)H(X) | [ Xa + 2| < <]

_ = = —x,00 >u / w 1o ]1{|z—x+w/(u)\<e}
= /de/O du//P( ) (dw)N>U(dw') f (T +u)H(w)H(w)P<

Krgsut 2 < &)

= > 1 z—r4w(u)|<e _ T H
= / du /N>u(dw/)H/(w/)/ dx {lz—z4w'(u)|< }/P( 35700)(dw) f( - —|—u) (w) .
0 0 2e (25)71P(|XT5+u + Z| < 5)
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The measure (25)_11{‘Z_$+w/(u)|<5}dx converges weakly as ¢ — 0 to the Dirac mass at
z 4 w!. Recall that the family of probability measures P(~*>) is continuous as z varies.
Since f has compact support, we can restrain 77’ 4 u to stay in a compact set. Then, the
denominator in the last integral, which converges to prw,.(—2), remains bounded and
converges uniformly in x and w. Then the boundedness of H implies that the two last

integrals converge to
/ plosiooe) (g Lorer T4
pT;:Jru(—Z)
Now, the measure N~ is a finite measure, so the fact that u actually stays in a compact

set and the fact that the two last integrals above remain bounded allow to apply the
dominated convergence theorem to obtain

| assts)ps (O X)
/Oodu /N>“(dw')H'(w’) /P(—Z—w’(U)7W)(dw)H(w)f<TZ+w’(u)<W> + u)

pT;+u(—Z)

Now we disintegrate this relation by taking f(s) = (2¢) '1_c14(s), so a similar argu-
ment as above gives that the left hand side converges to Py (H(X)H'(X)) as ¢ | 0,
whereas the right hand side is

o 1 —€ € T;) W' (u +u
/du/N”(dw’)H'(w’) /P( w009 ) o) e g + 1)
0 2epre, oy T +u(—2)

The third integral may be rewritten as

P+ 01 < D iy [__H)
2e Pre w U( )

z+w

| z4w'( )+u—1|<€]7

with a slightly improper writing (the w’s should not appear in the expectation, but we keep
them to keep the distinction with the expectation with respect to w’). Similar arguments
as above imply that the limit we are looking for is

BL._(H(X)H(X)) = py(~2)"" / AU [H()g: o (1= 0) B [H@)]]

This in turn completely determines the law of the bridge by a monotone class argument.
A careful application of the above identity thus gives

By [f (1= (3=m))] = pa(~2) ™" / AU g2y (1 = W B [+ T

Applying Lemma [[3 to the rightmost expectation term, this is equal to

1 1—u o ( : 1— _
0 0 Qw’(U)-i-z(l - u)

— pl(—z)lfo du/ dsf(s)q.(1 —s)N-" [qw/(u)(s—u)]
= 207 [ s =) [V [a(s = w)]
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It remains to compute the second integral. Using scaling identities for N=" and ¢, (s) we
have

s 1
/ duN"" [qury(s —u)] = / drN=*" [qur(sr)(s(1 = 1))]
0 0
1
= 5_1/0‘/ drst/eN>sr [qs—l/awl(sr)(]_ —7)]
0

1
= Sl/a/ dTN>T [Qw’(r)<1 — T):| .
0

Finally, the integral in the right hand side does not depend on s, we call it ¢ and obtain

B 80 (=) = [ s T

So we necessarily have ¢ = ¢,, and the claim follows. 0
Proof of Propositiond. The proof is now easily obtained by combining the last lemmas.
Under P, conditionally on th) = z, the law of the lengths of constancy intervals of
V2 X® is obtained by adjoining the term 1 — (73 — 71) to a sequence which, conditionally
on 1 — (13 — 1) = t, has same law as ATj ) given T, = 1 — ¢ under P (Lemma [7). By
Lemma[[8 1 — (73 — 71) has itself the law of a size-biased pick from AT, . given T, = 1
under P, so Lemma [l shows the whole sequence has the law of ATy, ) given T, = 1. Last,

by Lemma B Zy) has density pgt)(—z)pgt)(z)pl (0)~!dz, entailing the claim. O

5.3 Proof of Theorem

To recover the dislocation measure of F¥, we use the following variation of Lemma
and [22, Corollary 1|. For details on size-biased versions of measures on S, see e.g. [I3],
which deals with probability measures, but the results we mention are easily extended to
o-finite measures.

Proposition 5 Let (F(t),t > 0) be a ranked self-similar fragmentation with character-
istics ((,0,v), B > 0. For every t, let F.(t) be a random size-biased permutation of
the sequence F(t) (defined on a possibly enlarged probability space). Let G be a contin-
uous bounded function on the set of non-negative sequences with sum < 1, depending
only on the first I terms of the sequence, with support included in a set of the form
{si€n,1—=n],1<i<I}. Then

1
;E[G(F*(t)] o v (G),

where v, s the size-biased version of v characterized by

Si, sj,
y*(G):/Sy(ds) Z G<3j17---73j1)3j11_J8' g d ,

e — S —...— 8
-71 7777 ]I ‘71 ‘71 JI

where the sum is on all possible distinct 71, ..., 77. Moreover, v can be recovered from v,.
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Proof of Theorem 2l Let G be a function of the form G(z) = fi(x1)... fi(xg) for
r = (x1,29,...) and >, x; < 1, with fi,..., f; continuous bounded functions on [0, 1]
that are null on a set of the form [0, 1]\|n, 1 —n[. Let A*Tjy.; be the sequence of the jumps
of T on the interval [0, z|, listed in size-biased order (which involves some enlargement
of the probability space). Using Lemma [0, it is easy that z — E[G(A*Tj,)|T. = 1] is
a continuously differentiable function with derivative bounded by some M > 0. Let also
FA(t) be the sequence F%(t) listed in size-biased order. Now by Proposition B

G(F5(t LT any - ~ -
N(l) {w] = gE |:6 otz pl(_Zg))pl(O) IE [G(A CZW[O,ZY)]) ‘Tzit) = 1]:| )

where T is a copy of T with law E, independent of the marked process X. Consider a
function f(¢,z) that is continuous in ¢ and x and null at (¢,0) for every ¢t > 0. Then the
compensation formula applied the subordinator Z®) between times 0 and 1 gives

1
B2 = [ [ e - ) AEl 0,20 + ) - 1. 20)

t—0

1
— Ca/ dx/sadsf(O,s) :Ca/so‘dsf((),s),
0
as soon as we may justify the convergence above. Take
f(t.2) = exp(—t* + t2)pi (—2)p1 (0) ' E[G(ATp ,)|T. = 1],

then we have to check that s—*E[|f(t, z 4+ s) — f(t, Zg(ct))H is bounded independently
on x € [0,1]. By the hypotheses on G, it is again true that z — f(¢, z) is a continuously
differentiable function with uniformly bounded derivative, when t stays in a neighborhood
of 0. Hence the expectation above is bounded by (M’s A M")s™ for some M’, M" > 0,
which allows to apply the dominated convergence theorem. By Proposition B, we obtain,
denoting by 14 the dislocation measure of F?,

—1ng(1) h , , S Si1
CNOGEO) 2, [ sG-S
JETERY) I
0 Sfapl(_s)
= Ca/ ds——————FE|G(ATy 4)|Ts = 1],
0 n (0) [ ( [0, }) ]
allowing to conclude that 1, = v with the same computations as in the proof of Lemma
¥ O

6 Asymptotics

In this section we discuss asymptotic results for F'*.

6.1 Small-time asymptotics

Proposition 6 Let Z be a non-negative stable (a—1) random variable with Laplace trans-
form Elexp(—AZ)] = exp(—aX*™1). Denote by Ay, Ny, ... the ranked jumps of (T,,0 <
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x < Z), where T is as before the stable 1/« subordinator, which is taken independent of
Z. Then
/O (B (1), B (t),...) 5 (A, A, .. ).

t—0-+

We first need the

Lemma 19 Let Zy) have the law pgt)(s)ds above, then

tl/(l—oz)Zy) i) Z,
t—0+

where Z is as above a stable variable with Laplace exponent a1

Proof. Recall that Z® is a subordinator with characteristic exponent given by
_az® * Cf(1 — e ™)dx e
E[e AZy ]:exp (—/0 it (1—6 A ))

Therefore, evaluating the Laplace exponent at the point ¢'/(=® )| changing variables and
using dominated convergence entails

Elexp(=AtY0=) Z] — exp (—/ Cady(l —e_/\y)) :
0

t—0+ Yy

Thus the convergence to some limiting Z. Using now the explicit value for C,, we see that
the Laplace exponent of Z has to be aA*" !, as claimed. 0

The proof of Proposition B follows the same lines as for Proposition 6 in [21], so we
will only sketch it. One first begins with proving that if Z is as in Lemma Bl a random
variable distributed according to the law that has density pgt)(z)pgt)(—z)dz/pl(O), then
t1/(1=) Z converges in law to Z. This is a consequence of the preceding lemma, since as

t — 0, X® converges to X, so one can write
Elg(t"/"""2)] = Elg(t"/" 2" (= 2") /p(0),

where th) is distributed as above. By Skorokhod’s representation theorem, we may sup-
pose that tl/(l_o‘)Zf) converges a.s. to its limit in law Z, So it remains to show that a.s.
pgt)(—th)) — p1(0) as t — 0 to apply dominated convergence, and this is done by recall-
ing that pgt)(z) = e ""~*p,;(2). Then one reasons by induction just as in [ZT, Proposition
6], using the explicit form of the semigroup of F'*.

6.2 Large-time asymptotics

By a direct application of Theorem 3 in [T0], one gets the large ¢ asymptotic behavior
for F*. Recall that the Gamma law with parameter a is the law with density proportional

to 2% te~® on R,. The moments of this law are given, for r > —a, by

L% e ey Dlatn)
r<a>/o ="T@
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Proposition 7 Define
pe(dy) = Z Ey(8)010 5,1 (dy),
i=1
then p; s a probability measure that converges in law as t — oo to the deterministic
Gamma law with parameter 1 —1/a.

Proof. We know by [I0, Theorem 3| that p;, converges to some probability p,, that is
characterized by its moments,

* e B alk —1)!
/0 ! pm<dy)_@’<0+>¢(é)---@(%)

for every k > 1, where @ is the Laplace exponent of a subordinator related to a tagged
fragment of the process F'*. This exponent depends only on the dislocation measure (and
not the index), so it is the same as for F__ in [2]]. By taking the explicit value of ® (Section
3.2 therein), we easily get

S ol 1+ )\ T+ Ttk
/0 y/p°°<dy>:< ré) ) r<1+—§> B r<1+—§>'

Replacing k by ak, one can recognize the moments of the Gamma law with the claimed
parameter. [
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