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Self-similar fragmentations derived from the stabletree II : splitting at nodesGrégory MiermontDMA, É
ole Normale Supérieure,and LPMA, Université Paris VI.45, rue d'Ulm,75230 Paris Cedex 05RésuméWe study a natural fragmentation pro
ess of the so-
alled stable tree introdu
edby Duquesne and Le Gall, whi
h 
onsists in removing the nodes of the tree a

ordingto a 
ertain pro
edure that makes the fragmentation self-similar with positive index.Expli
it formulas for the semigroup are given, and we provide asymptoti
 results.We also give an alternative 
onstru
tion of this fragmentation, using paths of Lévypro
esses, hen
e e
hoing the two alternative 
onstru
tions of the standard additive
oales
ent by fragmenting the Brownian 
ontinuum random tree or using Brownianpaths, respe
tively due to Aldous-Pitman and Bertoin.Key Words. Self-similar fragmentation, stable tree, stable pro
esses.A.M.S. Classi�
ation. 60J25, 60G52.
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1 INTRODUCTION 21 Introdu
tionThe goal of this paper is to investigate a Markovian fragmentation of the so-
alledstable tree. It is a model of 
ontinuum random tree (CRT) depending on a parameter
α ∈ (1, 2] that has been introdu
ed re
ently by Duquesne and Le Gall [16℄, and whi
hbasi
ally 
orresponds to a possible s
aling limit as n → ∞ of a size n Galton-Watsontree with given progeny distribution. The stable tree is denoted by T . It is a randommetri
 spa
e with distan
e d, whose elements v are 
alled verti
es. One of these verti
esis distinguished and 
alled the root. This spa
e is a tree in that for v, w ∈ T , there is aunique non-self-
rossing path [[v, w]] from v to w in T , whose length equals d(v, w). Forevery v ∈ T , 
all height of v in T and denote by ht(v) the distan
e of v to the root. Theleaves L(T ) of T are those verti
es that do not belong to the interior of any path leadingfrom one vertex to another, and the skeleton of the tree is the set T \ L(T ) of non-leafverti
es. The bran
hpoints are the verti
es b so that there exist v 6= b, w 6= b su
h that
[[root, v]] ∩ [[root, w]] = [[root, b]]. With ea
h realization of T is asso
iated the uniformprobability measure µ, 
alled the mass measure, that is supported by L(T ). Details aregiven in Se
tion 3.When α = 2, the stable tree is, up to a s
ale fa
tor, the Brownian CRT of Aldous [2℄.It has been shown by Aldous and Pitman [3℄ that a 
ertain devi
e for logging this treegives rise to a fragmentation pro
ess whi
h is the time-reversed pro
ess of the so-
alledstandard additive 
oales
ent. The idea is as follows. The Brownian CRT T is des
ribedby a σ-�nite length measure ℓ 
arried by the skeleton (non-leaf verti
es), and a (uniform)probability measure µ on its leaves, 
alled the mass measure. For t ≥ 0, 
onsider a Poissonrandom measure on T with intensity tℓ, in a 
onsistent way as t varies. When the markedverti
es of the tree are removed, the tree is de
omposed into a random forest, whoseranked µ-masses form an element FAP(t) of the spa
e

S :=

{
s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,

∞∑

i=1

si ≤ 1

}
.It is a
tually 
he
ked that the sum of 
omponents of FAP(t) is 1 a.s. Then Bertoin [9℄noti
ed (it was impli
it in [3℄) that the pro
ess (FAP(t), t ≥ 0) is an S-valued self-similarfragmentation with index 1/2, in the following sense.De�nition 1 An S-valued self-similar fragmentation with index β ∈ R is an S-valuedMarkov pro
ess starting a.s. from (1, 0, . . .), whi
h is 
ontinuous in probability and satis�esthe following fragmentation property :Given F (t) = s = (s1, s2, . . .), the law of F (t+t′) is that of the de
reasing rear-rangement of the sequen
es siF

(i)(sβ
i t′), i ≥ 1, where the F (i)'s are independent
opies of F .Su
h fragmentations have been introdu
ed and extensively studied by Bertoin in [8, 9℄.By [5℄, the laws of the self-similar fragmentations are 
hara
terized by a 3-tuple (β, c, ν),where β is the self-similarity index, c ≥ 0 is an erosion 
oe�
ient and, more importantly,

ν is a σ-�nite dislo
ation measure on S that integrates the map s 7→ 1− s1. This measure
ν des
ribes the �jumps� of the fragmentation pro
ess, i.e. the way sudden dislo
ationso

ur. Roughly speaking, xβν(ds) is the instantaneous rate at whi
h an obje
t with size x



1 INTRODUCTION 3fragments to form obje
ts with sizes xs (see also Lemma 10 below). In [9℄, Bertoin showedthat the erosion of FAP is 0, and that the dislo
ation measure νAP is 
hara
terized by thetwo formulas
νAP(s1 ∈ dx) =

dx√
2πx3(1− x)3

, x ∈ [1/2, 1),and νAP{s : s1 + s2 < 1} = 0 (su
h fragmentations are 
alled binary).The main motivation of the present paper is to seek for a possible generalization of thefragmentation FAP, when the Brownian CRT is repla
ed by the general α ∈ (1, 2)-stabletree. The game is made interesting in that there are important stru
tural di�eren
es be-tween the Brownian tree and the other stable trees, whi
h imply that the Aldous-Pitmanfragmentation devi
e explained above (homogeneous fragmentation on the skeleton) givesrise to a binary fragmentation pro
ess whi
h is not self-similar. It seems that the fragmen-tations hen
e obtained are related to the ones studied in [20℄ in relation with the additive
oales
ent, but this will be studied elsewhere. The defe
t in the self-similarity property
omes from the fa
t that, 
ontrary to the Brownian tree whi
h is binary (its bran
hpointshave degree 3), the bran
hpoints of the stable tree are hubs with in�nite degree and withdi�erent �magnitudes�. These are not a�e
ted by the Aldous-Pitman fragmentation devi
e,whi
h a.s. never 
uts at bran
hpoints. Therefore, as time passes, this devi
e 
reates smalltrees with unusually �large� hubs, whi
h 
annot be res
aled 
opies of the initial stabletree. Rather, to obtain self-similarity, it is needed to dire
tly remove the hubs themselveswith a 
ertain strategy.Call H(T ) the set of bran
hpoints of T , whi
h will also be referred to as the set ofhubs of T when dealing with the stable (α ∈ (1, 2)) tree. To evaluate the magnitude of
b ∈ H(T ), 
onsider the fringe subtree Tb rooted at b, i.e. the subset {v ∈ T : b ∈ [[root, v]]}.Then one 
an de�ne the lo
al time, or width of the hub b as the limit

L(b) = lim
ε↓0

1

ε
µ{v ∈ Tb : d(v, b) < ε} (1)whi
h exists a.s. and is positive : see Proposition 2 below.Now given a realization of T and for every b ∈ H(T ), take a standard exponentialrandom variable eb, so that the variables eb are independent as b varies (noti
e that

H(T ) is 
ountable). For all t ≥ 0 de�ne an equivalen
e relation ∼t on T by saying that
v ∼t w if and only if the path [[v, w]] does not 
ontain any hub b for whi
h eb < tL(b).Alternatively, following more 
losely the spirit of Aldous-Pitman's fragmentation, we 
analso say that we 
onsider Poisson point pro
ess (b(t), t ≥ 0) on the set of hubs withintensity dt ⊗

∑
b∈H(T ) L(b)δb(dv), and for ea
h t we let v ∼t w if and only if no atom ofthe Poisson pro
ess that has appeared before time t belongs to the path [[v, w]]. We let

T t
1 , T t

2 , . . . be the distin
t equivalen
e 
lasses for ∼t, ranked a

ording to the de
reasingorder of their µ-masses (provided these are well-de�ned quantities). It is easy to see thatthese sets are trees (in the same sense as T ), and that the families (T t
i , i ≥ 1) are nestedas t varies, that is, for every t′ > t and i ≥ 1, there exists j ≥ 1 su
h that T t′

i ⊂ T
t

j .If we let F+(t) = (µ(T t
1 ), µ(T t

2 ), . . .), F+ is thus a fragmentation pro
ess in the sensethat F+(t′) is obtained by splitting at random the elements of F+(t). We mention thatthe fragmentation F+ is also 
onsidered and studied in the work in preparation [1℄, withindependent methods.



1 INTRODUCTION 4We now state our main result, postponing de�nitions and properties of stable subor-dinators to the next se
tion. Let
Dα =

α(α− 1)Γ
(
1− 1

α

)

Γ(2− α)
=

α2Γ
(
2− 1

α

)

Γ(2− α)
.Theorem 1 The pro
ess F+ is a self-similar fragmentation with index 1/α ∈ (1/2, 1)and erosion 
oe�
ient c = 0. Its dislo
ation measure να is 
hara
terized by

να(G) = DαE
[
T1G(T−1

1 ∆T[0,1])
]for any positive measurable fun
tion G, where (Tx, 0 ≤ x ≤ 1) is a stable subordinatorwith index 1/α, 
hara
terized by the Lapla
e transform

E[exp(−λT1)] = exp(−λ1/α) λ ≥ 0,and ∆T[0,1] is the sequen
e of the jumps of T , ranked by de
reasing order of magnitude.In a 
ompanion paper [21℄, we studied a self-similar fragmentation pro
ess (F−(t), t ≥
0) whi
h 
onsisted in the de
reasing sequen
es of the µ-masses of the 
onne
ted 
ompo-nents of the set {v ∈ T : ht(v) > t} at time t, i.e. the forest obtained by putting asidethe verti
es of the stable tree height less than t. This fragmentation was studied in theBrownian 
ase by Bertoin [9℄, although this work does not mention trees and only usesthe en
oding height pro
ess, whi
h is well-known to be twi
e the standard Brownian ex-
ursion, and it was showed that it was self-similar with 
hara
teristi
s (−1/2, 0, νAP) (in[9℄ the dislo
ation measure is found to be 2νAP, but it is done with a di�erent normal-ization, using the standard ex
ursion instead of twi
e this ex
ursion). In [21℄, we showedthat F− has 
hara
teristi
s (1/α− 1, 0, να), with να as in Theorem 1. Bertoin's observa-tion that the two devi
es des
ribed above for fragmenting the Brownian CRT are �dual�(same dislo
ation measure but indi
es with di�erent signs) is therefore quite surprisinglygeneralized in the larger 
ontext of stable trees. Heuristi
ally, this is made possible by anex
hangeability property of the root of the stable tree with other verti
es (with respe
t tothe measure µ), whi
h indeed suggests that when removing a hub or removing the verti
esbelow a given hub, the subsequent forests will have the same law up to res
aling.Let us now present a se
ond motivation for studying the fragmentation F+. As therest of the paper will show, our proofs involve a lot the theory of Lévy pro
esses, and
ompared with the study of F−, whi
h made a 
onsequent pla
e to 
ombinatori
 treestru
tures, the study of F+ will be mainly �analyti
�. The fa
t that Lévy pro
esses maybe involved in fragmentation pro
esses is not new. A

ording to [7℄ and [20℄, adding a driftto a 
ertain 
lass of Lévy pro
esses allows to 
onstru
t interesting fragmentations relatedto the entran
e boundary of the sto
hasti
 additive 
oales
ent. Here, rather than addinga drift, whi
h by analogy between [4℄ and [7℄ amounts to 
ut the skeleton of a 
ontinuumrandom tree with a homogeneous Poisson pro
ess, we will perform a �removing the jumps�operation analog to our inhomogeneous 
utting on the hubs of the tree.Pre
isely, let (Xs, s ≥ 0) be the 
anoni
al pro
ess in the Skorokhod spa
e D([0,∞), R)and let P be the law of the stable Lévy pro
ess with index α ∈ (1, 2), upward jumps only,
hara
terized by the Lapla
e exponent

E[exp(−λX1)] = exp(λα).



2 SOME FACTS ABOUT LÉVY PROCESSES 5As we will re
all from the work of Chaumont [12℄ in the following se
tion, we may de�nethe law N (1) of the ex
ursion with unit duration of this pro
ess above its in�mum pro
ess.Under this law, Xs = 0 for s > 1, so we let ∆X[0,1] be the sequen
e of the jumps
∆Xs = Xs − Xs− for s ∈ (0, 1], ranked in de
reasing order of magnitude. Consider thefollowing marking pro
ess on the jumps : 
onditionally on X, let (es, s : ∆Xs > 0) be afamily of independent random variables with standard exponential distribution, indexedby the 
ountable set of jump-times of X. For every t ≥ 0 let

Z(t)
s =

∑

0≤u≤s

∆Xu1{eu<t∆Xu}.That is, ea
h jump with magnitude ∆ is marked with probability 1− exp(−t∆) indepen-dently of the other jumps and 
onsistently as t varies, and Z(t) is the pro
ess that sumsthe marked jumps. We will see that Z(t) is �nite a.s., so we may de�ne X(t) = X − Z(t)under N (1). Let
X(t)

s = inf
0≤u≤s

X(t)
u , 0 ≤ s ≤ 1,and let F ♮(t) be the sequen
e of lengths of the 
onstan
y intervals of the pro
ess X(t),ranked in de
reasing order.Theorem 2 The pro
ess (F ♮(t), t ≥ 0) has the same law as (F+(t), t ≥ 0).We organize the paper as follows. In Se
t. 2 we re
all some fa
ts about Lévy pro
esses,ex
ursions, and 
onditioned subordinators that will be 
ru
ial for our study. In Se
t. 3we give the rigorous des
ription of Duquesne and Le Gall's Lévy trees, and rephrase thede�nition of F+ given above in terms of a partition of the unit interval asso
iated to a
ertain marked ex
ursion of a stable Lévy pro
ess. Se
tions 4 and 5 are then respe
tivelydedi
ated to the study of F+ and F ♮. Asymptoti
 results are �nally given 
on
erning thebehavior at small and large times of F+ in Se
t. 6.2 Some fa
ts about Lévy pro
esses2.1 Stable pro
esses, inverse subordinatorsLet (Xs, s ≥ 0) be the 
anoni
al pro
ess in the Skorokhod spa
e D([0,∞), R) of 
àdlàgpaths on [0,∞). We �x α ∈ (1, 2). Let P be the law on D([0,∞), R) that makes X thespe
trally positive stable pro
ess with index α, that is, X has independent and stationaryin
rements under P , it has only positive jumps, and its marginal law at some (and thenall) s > 0 has Lapla
e transform given by the Lévy-Khint
hine formula :

E[e−λXs ] = exp(sλα) = exp

(
s

∫ ∞

0

Cαdx

x1+α
(e−λx − 1 + λx)

)
, λ ≥ 0, (2)where Cα = α(α − 1)/Γ(2 − α). A fundamental property of X under P is the s
alingproperty (

1

λ1/α
Xλs, s ≥ 0

)
d
= (Xs, s ≥ 0) for all λ > 0.



2 SOME FACTS ABOUT LÉVY PROCESSES 6We let (ps(x), s > 0, x ∈ R) be the density with respe
t to Lebesgue measure of the law
P (Xs ∈ dx), whi
h is known to exist and to be jointly 
ontinuous in s and x.Denote by X the in�mum pro
ess of X de�ned by

Xs = inf
0≤u≤s

Xu , s ≥ 0.Let T be the right-
ontinuous inverse of the in
reasing pro
ess −X de�ned by
Tx = inf{s ≥ 0 : Xs < −x}.Then it is known that under P , T is a stable subordinator with index 1/α, that is, anin
reasing Lévy pro
ess with Lapla
e exponent

E[e−λTx ] = exp(−xλ1/α) = exp

(
−x

∫ ∞

0

cαdy

y1+1/α
(1− e−λy)

) for λ, x ≥ 0,where cα = (αΓ(1− 1/α))−1. We denote by (qx(s), x, s > 0) the family of densities withrespe
t to Lebesgue measure of the law P (Tx ∈ ds), by [6, Corollary VII.1.3℄ they aregiven by
qx(s) =

x

s
ps(−x). (3)We also introdu
e the notations P s for the law of of the pro
esses X under P , killed attime s, and P (−x,∞) := P Tx for the law of the pro
ess killed when it �rst hits −x.Let us now dis
uss the 
onditioned forms of distributions of jumps of subordinators. Aneasy way to obtain regular versions for these 
onditional laws is developed in [23, 24℄. First,we de�ne the size-biased permutation of the sequen
e ∆T[0,x] of the ranked jumps of T inthe interval [0, x] as follows. Write ∆T[0,x] = (∆1(x), ∆2(x), . . .) with ∆1(x) ≥ ∆2(x) ≥ . . .,and re
all that Tx =

∑
i ∆i(x). We de�ne, following [23, 24℄, the size-biased orderedsequen
e ∆∗

k(x), k ≥ 1 as follows. Let 1∗ be a r.v. su
h that
P (1∗ = i|∆T[0,x]) =

∆i(x)

Txfor all i ≥ 1, and set ∆∗
1(x) = ∆1∗(x). Re
ursively, let k∗ be su
h that

P (k∗ = i|∆T[0,x], (j
∗, 1 ≤ j ≤ k − 1)) =

∆i(x)

Tx −∆∗
1(x)− . . .−∆∗

k−1(x)for i ≥ 1 distin
t of the j∗, 1 ≤ j ≤ k − 1, and �nally set ∆∗
k(x) = ∆k∗(x). ThenLemma 1 (i) For k ≥ 1,

P
(
∆∗

k(x) ∈ dy
∣∣Tx, (∆

∗
j(x), 1 ≤ j ≤ k − 1)

)
=

cαxqx(s− y)

sy1/αqx(s)
dywhere s = Tx −∆∗

1(x)− . . .−∆∗
k−1(x).(ii) Consequently, given Tx = t, ∆∗

1(x) = y, the sequen
e (∆∗
2(x), ∆∗

3(x), . . .) has thesame law as (∆∗
1(x), ∆∗

2(x) . . .) given Tx = t − y. Conversely, if we are given a randomvariable Y with same law as ∆∗
1(x) given Tx = t and, given Y = y, a sequen
e (Y1, Y2, . . .)with same law as (∆∗

1(x), ∆∗
2(x)) given Tx = t − y, then (Y, Y1, Y2, . . .) has same law as

(∆∗
1(x), ∆∗

2(x), . . .) given Tx = t.This gives a regular 
onditional version for (∆∗
i (x), i ≥ 1) given Tx, and thus indu
esa 
onditional version for ∆T[0,x] given Tx by ranking.



2 SOME FACTS ABOUT LÉVY PROCESSES 72.2 Marked pro
essesWe are now going to enlarge the original probability spa
e to mark the jumps of thestable pro
ess. We let MX be the law of a sequen
e e = (es, s : ∆Xs > 0) of independentstandard exponential random variables, indexed by the (
ountable) set of times wherethe 
anoni
al pro
ess X jumps1. We let P(dX, de) = P (dX)⊗MX(de). This probabilityallows to mark the jumps of X, pre
isely we say that a jump o

urring at time s is markedat level t ≥ 0 if es < t∆Xs. Write
Z(t)

s =
∑

0≤u≤s

∆Xu1{eu<t∆Xu)}for the 
umulative pro
ess of marked jumps at level t. We also let X(t) = X − Z(t). Weknow that the pro
ess (∆Xs, s ≥ 0) of the jumps of X is under P a Poisson point pro
esswith intensity Cαx−1−αdx on (0,∞), it is then standard that the pro
ess (∆Z
(t)
s , s ≥ 0) isa Poisson point pro
ess with intensity Cαx−α−1(1− e−tx)dx, meaning that under P, Z(t)is a subordinator with no drift and Lévy measure Cαx−α−1(1−e−tx)dx, more pre
isely itsLapla
e transforms are given by

E[e−λZ
(t)
s ] = exp

(
−s

∫ ∞

0

Cα(1− e−tx)
1− e−λx

xα+1
dx

)
= exp(−s(λ + t)α + sλα + stα).We denote by (ρ

(t)
s (x), s, x ≥ 0) the densities of the laws P (Z

(t)
s ∈ dx). It 
an be 
he
ked by[25, Proposition 28.3℄ from the expression of the Lévy measure of Z(t) that these densitiesexist and are jointly 
ontinuous. Likewise, the pro
ess X(t) is under P a Lévy pro
ess withLévy measure Cαe−txx−α−1dx, and the Lapla
e transform of X

(t)
s is given by

E[e−λX
(t)
s ] = exp

(
sλαtα−1 + s

∫ ∞

0

Cαe−tx dx

xα+1
(e−λx − 1 + λx)

)
= exp(s(λ + t)α − stα),whi
h is obtained by dividing the Lapla
e exponent of Xs by that of Z

(t)
s .We now state an absolute 
ontinuity result that is analogous to Cameron-Martin'sformula for Brownian motion with drift.Proposition 1 For every t, s ≥ 0, we have the following absolute 
ontinuity relation :for every positive measurable fun
tional F ,

E[F (X(t)
u , 0 ≤ u ≤ s)] = E[exp(−stα − tXs)F (Xu, 0 ≤ u ≤ s)].Proof. By the expression for the Lapla
e exponent of X(t), we get

E[e−λX
(t)
s ] = e−stαE[e−(λ+t)Xs ],hen
e giving P(X

(t)
s ∈ dx) = e−stα−txP (Xs ∈ dx). The result easily follows by the Markovproperty. �1One way to atta
h su
h variables in a measurable way to the ω-dependent set of times {s : ∆Xs > 0}is to 
onsider a doubly-indexed family (ei,j , i, j ≥ 1) of iid standard exponential variables independent of

X , and to atta
h ei,j to the time of o

urren
e of the i-th largest jump of X in the interval [j − 1, j).



2 SOME FACTS ABOUT LÉVY PROCESSES 8Remark. Su
h an identity is a spe
ial 
ase of the so 
alled density transformations forLévy pro
esses, see e.g. [25, Theorem 33.2℄.As a �rst 
onsequen
e, it immediately follows that X(t) also has jointly 
ontinuousdensities under P, whi
h are given by
p(t)

s (x) =
P(X

(t)
s ∈ dx)

dx
= exp(−stα − tx)ps(x).We let X(t) be the in�mum pro
ess of X(t) and T (t) the right-inverse pro
ess of −X (t),de�ned as we did above de�ne X and T .It is easily obtained that for every t ≥ 0, the pro
ess (X, Z(t)) is again a Lévy pro
essunder the law P. We will also denote by P

s, P(−x,∞) the laws derived from P s and P (−x,∞)by marking the jumps with MX ; Z(t) and X(t) are then de�ned as before.2.3 Bridges, ex
ursionsFor r ∈ R and s > 0 we will denote by P s
0→r the law of the stable bridge from 0to r with length s, so the family (P s

0→r, r ∈ R) forms a regular 
onditional version for
P s(·|Xs = r). By [17℄, a regular version (whi
h is the one we will always 
onsider) isobtained as the unique law on the Skorokhod spa
e D([0, s], R) that satis�es the followingabsolute 
ontinuity relation : for every a ∈ (0, s) and any 
ontinuous fun
tional F ,

P s
0→r(F (Xu, 0 ≤ u ≤ s− a)) = E

[
F (Xu, 0 ≤ u ≤ s− a)

pa(r −Xs−a)

ps(r)

]
. (4)We let P

s
0→r be the marked analog of P s

0→r on an enri
hed probability spa
e. Noti
e thatProposition 1 immediately implies that the bridge laws for the pro
ess X(t) under P arethe same as those of X. Stable bridges from 0 to 0 satisfy the following s
aling property :under P v
0→0, the pro
ess (v−1/αXvs, 0 ≤ s ≤ 1) has law P 1

0→0.Lemma 2 The following formula holds for any positive measurable f, g, H :
E1

0→0

[
H(X)

∑

0≤s≤1

∆Xsf(s)g(∆Xs)

]

=

∫ 1

0

ds f(s)

∫ ∞

0

dx
Cαp1(−x)

xαp1(0)
g(x)E1

0→−x[H(X ⊕ (s, x))],where X⊕(s, x) is the pro
ess X to whi
h has been added a jump at time s with magnitude
x. Otherwise said, a stable bridge from 0 to 0 together with a jump (s, ∆Xs) pi
ked a
-
ording to the σ-�nite measure m(ds, dx) =

∑
u:∆Xu>0 ∆Xuδ(u,∆Xu)(ds, dx) is obtained bytaking a stable bridge from 0 to −x and adding a jump with magnitude x at time s, where

s is uniform in (0, 1) and x is independent with σ-�nite �law� Cαp1(−x)p1(0)−1x−αdx.Proof. By the Lévy-It� de
omposition of Lévy pro
esses, one 
an write, under P , that
Xs is the 
ompensated sum

Xs = lim
ε→0

(
∑

0≤u≤s

∆Xu1{∆Xu>ε} − (α− 1)−1Cαε1−αs

)
, s ≥ 0,



2 SOME FACTS ABOUT LÉVY PROCESSES 9where (∆Xu, u ≥ 0) is a Poisson point pro
ess with intensity Cαx−α−1dx, and where the
onvergen
e is almost sure. By the Palm formula for Poisson pro
esses, we obtain that forpositive measurable f, g, h, H :
E1

[
h(X1)H(X)

∑

0≤s≤1

∆Xsf(s)g(∆Xs)

]

=

∫ 1

0

ds f(s)

∫ ∞

0

dx
Cα

xα
g(x)E1[h(x + X1)H(X ⊕ (s, x))].The result is then obtained by disintegrating with respe
t to the law of X1. �We now state a useful de
omposition of the stable bridge from 0 to 0. Re
all that

(ρ
(t)
s (x), x ≥ 0) is the density of Z

(t)
s under P and that X

(t)
1 + Z

(t)
1 = X1, whi
h is a sumof two independent variables. From this we 
on
lude that (p1(0)−1p

(t)
1 (x)ρ

(t)
1 (x), x ≥ 0) isa probability density on R+.Lemma 3 Take a random variable Z with law P (Z ∈ dz) = p

(t)
1 (−z)ρ

(t)
1 (z)p1(0)−1dz.Conditionally on Z = z, take X ′ with law P 1

0→−z and Z with law P
1(Z(t) ∈ ·|Z

(t)
1 = z),independently. That is, Z is the bridge of Z(t) with length 1 from 0 to z. Then X ′ +Z haslaw P 1

0→0.Remark. The de�nition for the bridges of Z(t) under P
1 has not been given before. One
an either follow an analogous de�nition as (4), or use Lemma 1 about 
onditioned jumpsof subordinators. We explain this for bridges of T , the 
onstru
tion for bridges of Z(t)being similar. Take (∆i, i ≥ 1) a sequen
e whose law is that of the jumps ∆T[0,1] of Tunder P before time 1, ranked in de
reasing order, and 
onditioned by T1 = z, in thesense of Lemma 1. Take also a sequen
e (Ui, i ≥ 1) of independent uniformly distributedrandom variables on [0, 1], independent of ∆T[0,1]. Then one 
he
ks from the Lévy-It�de
omposition for Lévy pro
esses that the law Qz of the pro
ess T br

s =
∑

∆i1{s≥Ui}, with
0 ≤ s ≤ 1, de�nes as z varies a regular version of the 
onditional law P 1(T ∈ ·|T1 = z).Proof. Re
all that under P

1, X 
an be written as X(t) + Z(t) with X(t) and Z(t) inde-pendent. Consequently, for f and G positive 
ontinuous, we have
E1[f(X1)G(X)] = E

1[f(X
(t)
1 + Z

(t)
1 )G(X(t) + Z(t))]so

∫

R

dx p1(x)f(x)E1
0→x[G(X)] =

∫

R

dx p1(x)

∫ ∞

0

dz
p

(t)
1 (x− z)ρ

(t)
1 (z)

p1(x)
f(z)

×E
1[G(X(t) + Z(t))|X

(t)
1 = x− z, Z

(t)
1 = z].Thus, for (Lebesgue) almost every x, the bridge with law P 1

0→x is obtained by taking abridge of X(t) (or X by previous remarks) from 0 to −Zx and an independent bridgeof Z(t) from 0 to Zx, where Zx is a r.v. with law dz p1(x)−1p
(t)
1 (x − z)ρ

(t)
1 (z) on R+. Weextend this result to every x ∈ R by an easily 
he
ked 
ontinuity result for the laws ofbridges whi
h stems from (4) and the 
ontinuity of the densities. Taking x = 0 gives theresult. �



3 THE STABLE TREE 10We now turn our attention to ex
ursions. The fa
t that X has no negative jumpsimplies that −X is a lo
al time at 0 for the re�e
ted pro
ess X − X. Let N be the It�ex
ursion measure of X−X away from 0, so that the path of X−X is obtained by 
on
ate-nation of the atoms of a Poisson measure with intensity N(dX)⊗dt on D†([0,∞), R)×R+,where D†([0,∞), R) denotes the Skorokhod spa
e of paths that are killed at some time ζ .Under N , almost every path X starts at 0, is positive on an interval (0, ζ) and dies at the�rst time ζ(X) ∈ (0,∞) it hits 0 again. We let N be the enri
hed law with marked jumps.It follows from ex
ursion theory that the Lévy pro
ess (X, Z(t)) under P is obtained bytaking a Poisson point measure∑i∈I δXi,ei,si indexed by a 
ountable set I, with intensity
N(dX, de) ⊗ ds, writing Z(t),i for the 
umulative pro
ess of marked jumps for X i andletting

Xs = −si + X i


s−

∑

j:sj<si

ζj(X
j)


and

Z(t)
s =

∑

j:sj<si

Z
(t),j

ζj(Xj) + Z(t),i



s−
∑

j:sj<si

ζj(X
j)



 ,whenever ∑j:sj<si ζj(X
j) ≤ s ≤

∑
j:sj≤si ζj(X

j).If X is stopped at some time s, for any u ∈ [0, s] we de�ne the rotated pro
ess
VuX(r) = (Xr+u −Xu)1{0≤u<s−u} + (X(r − s + u) + Xs −Xu)1{s−u≤r≤s}.Let ms = −Xs and suppose that this minimum is attained only on
e on [0, s]. We de�nethe Vervaat transform of X as V X = VT (ms−)X, the rotation of X at the time where itattains its in�mum. Provided that X0 = 0 and Xs = Xs− = 0 (say that X is a bridge),

V X is then an ex
ursion-like fun
tion, starting and ending at 0, and staying positive inthe meanwhile.We will denote by N (v) the law of V X under P v
0→0, and N

(v) the 
orresponding�marked� version. Call it the law of the ex
ursion of X with duration v. The �Vervaattheorem� in [12℄ shows that N (v) is indeed a regular 
onditional version for the �law�
N(·|ζ = v) : for any positive measurable fun
tional F and fun
tion f ,

N(F (Xs, 0 ≤ s ≤ ζ)f(ζ)) =

∫

R+

f(ζ)N(ζ ∈ dv)N (v)(F (Xs, 0 ≤ s ≤ v)).As for bridges, we also have the s
aling property at the level of 
onditioned ex
ursions :under N (v), (v−1/αXvs, 0 ≤ s ≤ 1
) has law N (1). Noti
e also (either by Vervaat's theoremor dire
tly, using Proposition 1) that the ex
ursions of X(t) under P, 
onditioned to havea �xed duration v are the same as that of X under N (v).3 The stable tree3.1 Height Pro
ess, width pro
essWe now introdu
e the rigorous de�nition and useful properties of the stable tree. Thisse
tion is mainly inspired by [16, 14℄. With the notations of se
tion 2, and for t ≥ 0, let
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R(t) be the time-reversed pro
ess of X at time t :

R(t)
s = Xt −X(t−s)− 0 ≤ s ≤ t.It is standard that this pro
ess has the same law as X killed at time t under P . Let R

(t)be its supremum pro
ess, and L̂(t) be the lo
al time pro
ess at level 0 of the re�e
tedpro
ess R
(t)
− R(t). We let Ht = L̂

(t)
t . The normalization for L̂(t) is 
hosen so that

Ht = lim
ε↓0

1

ε

∫ t

0

1{R(t)

s − R(t)
s ≤ ε}ds,in probability for every t. It is proved in [16℄ that H admits a 
ontinuous modi�
ation,whi
h is the one we are going to work with from now on. It has to be noti
ed that Htis not a Markov pro
ess, ex
ept in the 
ase where X is Brownian motion. As a matterof fa
t, it 
an be noti
ed that H admits in�nitely many lo
al minima attaining the samevalue as soon as X has jumps. To see this, 
onsider a jump time t of X, and let t1, t2 > tso that inft≤u≤ti Xu = Xti and Xt− < Xti < Xt, i ∈ {1, 2}. Then it is easy to see that

Ht = Ht1 = Ht2 and that one may in fa
t �nd an in�nite number of distin
t ti's satisfyingthe properties of t1, t2. On the other hand, it is not di�
ult to see that Ht is a lo
alminimum of H , see Proposition 2 below.It is shown in [16℄ that the de�nition of H still makes sense under the σ-�nite measure
N rather than the probability law P . The pro
ess H is then de�ned only on [0, ζ ], andwe 
all it the ex
ursion of the height pro
ess. Using the s
aling property, one 
an thende�ne the height pro
ess under the laws N (v). Call it the law of the ex
ursion of the heightpro
ess with duration v.The key tool for de�ning the lo
al time of hubs is the lo
al time pro
ess of the heightpro
ess. We will denote by (Lt

s, t, s ≥ 0). It 
an be obtained a.s. for every �xed s, t by
Lt

s = lim
ε→0

1

ε

∫ s

0

1{t<Hu≤t+ε}du. (5)That is, Lt
s is the density of the o

upation measure of H at level t and time s. For t = 0,one gets (L0

s, s ≥ 0) = (Xs, s ≥ 0), whi
h is a reminis
ent of the fa
t that the ex
ursionsof the height pro
ess are in one-to-one 
orresponden
e with ex
ursions of X with the samelengths.It is again possible to de�ne the lo
al time pro
ess under the ex
ursion measures Nand N (v). Duquesne and Le Gall [16℄ have shown that under P , the pro
ess (Lt
Tx

, t ≥ 0)has the law of the 
ontinuous-stable bran
hing pro
ess starting at x > 0, with stable (α)bran
hing me
hanism. One 
an get interpretations for the pro
ess (Lt
ζ , t ≥ 0) under themeasure N or of (Lt

v, t ≥ 0) under N (v) in terms of 
onditioned 
ontinuous-state bran
hingpro
esses, see [21℄.3.2 The tree stru
tureLet us motivate the term of �height pro
ess� for H by embedding a tree inside H ,following [19, 2℄. Consider the height pro
ess H under the law N (1). We 
an de�ne a pseudometri
 D on [0, 1] by letting D(s, s′) = Hs +Hs′−2 infu∈[s,s′] Hu (with the 
onvention that
[s, s′] = [s′, s] if s′ < s). Let s ≡ s′ if and only if D(s, s′) = 0.



3 THE STABLE TREE 12De�nition 2 The stable tree (T , d) is the quotient of the pseudo-metri
 spa
e ([0, 1], D)by ≡. The root of T is the equivalen
e 
lass of 0. The mass measure µ is the Borel measureindu
ed on T by Lebesgue's measure on [0, 1] (so its support is T ).In the sequel, we will often identify T with [0, 1], even if the 
orresponden
e is not one-to-one. Some 
omments on this de�nition. First, the way the tree is embedded in the fun
tion
H 
an seem quite intri
ate. It is not di�
ult, however, to see what its �marginals� looklike. For any �nite set of verti
es s1, s2, . . . , sk ∈ [0, 1], one re
overs the stru
ture of thesubtree spanned by the root and s1, s2, . . . , sk, a

ording to the following simple rules :� The height of s is ht(s) = Hs.� The 
ommon an
estor of s1, . . . , sk is b = b(s1, . . . , sk) ∈ [min1≤i≤k si, max1≤i≤k si]su
h that Hb = inf{Hs : s ∈ [min1≤i≤k si, max1≤i≤k si]}.Noti
e that all su
h b are equivalent with respe
t to ≡. The fa
t that (T , d) is indeed atree (a 
omplete metri
 spa
e su
h that the only simple path leading from a vertex toanother is the geodesi
) is intuitive and proven in [15℄. It follows from the 
onstru
tion of�marginals� of T in [16℄ that given µ, µ-a.e. vertex is a leaf of T .We now relate properties on the stable tree to path properties of the underlying Lévypro
ess we started with to 
onstru
t the height pro
ess. We understand here that X and
H are de�ned under N (1). Re
all that Tb stands for the fringe subtree rooted at b.Proposition 2 (i) Ea
h hub b ∈ H(T ) is en
oded by exa
tly one time τ(b) ∈ [0, 1] su
hthat L(b) = ∆Xτ(b) > 0, and L(b) is given by (1) a.s.(ii) If σ(b) = inf{s ≥ τ(b) : Xs = Xτ(b)−}, then Tb = [τ(b), σ(b)]/ ≡.(iii) More pre
isely, let T 1

b , T 2
b , . . . be the 
onne
ted 
omponents of Tb \{b}, arranged inde
reasing order of mass. Let ([τi(b), σi(b)], i ≥ 1) be the 
onstan
y intervals of the in�mumpro
ess of (Xs −Xτ(b), τ(b) ≤ s ≤ σ(b)), and ranked in de
reasing order of length. Then

T i
b = (τi(b), σi(b))/ ≡.Proof. (i) Working �rst under P , �x ℓ > 0 and let τℓ = inf{s ≥ 0 : ∆Xs > ℓ}. Then τℓ is astopping time for the natural �ltration asso
iated to X, as well as σℓ = inf{s > τℓ : Xs =

Xτℓ−
}. By the Markov property, the pro
ess X[τℓ,σℓ] = (Xτℓ+s − Xτℓ

, 0 ≤ s ≤ σℓ − τℓ) isindependent of (Xs+σℓ
−Xσℓ

, s ≥ 0), whi
h has the same law as X, and of (Xs, 0 ≤ s ≤ τℓ)
onditionally on its �nal jump ∆Xτℓ
. Now if we remove this jump, that is, if we let

(X̃s, 0 ≤ s ≤ τℓ) be the modi�
ation of (Xs, 0 ≤ s ≤ τℓ) that is left-
ontinuous at τℓ, then
X̃ has the law of a stable Lévy pro
ess killed at some independent exponential time, and
onditioned to have jumps with magnitude less than ℓ. Also, 
onditionally on ∆Xτℓ

= x,
X[τℓ,σℓ] has the law P (−x,∞) of the stable pro
ess killed when it �rst hits −x. Hen
e, bythe additivity of the lo
al time and the de�nition of H , one has that for every s ∈ [τℓ, σℓ],
Hs = Hτℓ

+ H̃s−τℓ
, where H̃ is an independent 
opy of H , killed when its lo
al time at 0attains x. Consequently, one has Hs ≥ Hτℓ

for every s ∈ [τℓ, σℓ] and Hσℓ
= Hτℓ

, moreover,one has that for every ε > 0,
inf

(τℓ−ε)∨0≤s≤τℓ

Hs ∨ inf
σℓ≤s≤σℓ+ε

Hs < Hτℓ
, (6)as a 
onsequen
e of the following fa
t. By the left-
ontinuity of X at τℓ, for any ε > 0we may �nd s ∈ [τℓ − ε, τℓ] su
h that infu∈[s,τℓ] Xu = Xs. This implies Hs = Hτℓ

− L̂
(τℓ)
τℓ−s,and this last term is a.s. stri
tly less than Hτℓ

be
ause 0 is is a.s. not a holding point
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(τℓ)
s , 0 ≤ s ≤ τℓ). This last fa
t is obtained by a time-reversal argument, using thefa
t that the points of in
rease of the lo
al time L̂(t) 
orrespond to that of the supremumpro
ess of R(t). Moreover, the fa
t that X has only positive jumps under P implies thatfor some suitable ε′ > 0, one 
an �nd some s′ ∈ [σℓ, σℓ + ε′] and some s′′ ∈ [τℓ − ε, τℓ]su
h that Hu ≥ Hs′ = Hs′′ for every u ∈ [s′, s′′], and su
h that again infu∈[s′′,τℓ] Xu = Xs′′.Thus the 
laimed inequality. In terms of the stru
ture of the stable tree, (6) implies thata bran
hpoint b of the tree is present at height Hτℓ

, whi
h is en
oded by all the s ∈ [τℓ, σℓ]su
h that Hs = Hτℓ
, i.e. su
h that Xs = infu∈[τℓ,s] Xu (there is always an in�nite numberof them). By de�nition, the mass measure of the verti
es in Tb at distan
e less than εof b is exa
tly the Lebesgue measure of {s ∈ [τℓ, σℓ] : H̃s−τℓ

< ε}. Thus by (5) we 
an
on
lude that L(b) de�ned at (1) exists and equals L̃0
σℓ−τℓ

= x where L̃ is the lo
al timeasso
iated to H̃. The same argument allows to handle the se
ond, third, ... jumps thatare > ℓ. Letting ℓ ↓ 0 implies that to any jump of X with magnitude x 
orresponds a hubof the stable tree with lo
al time x. By ex
ursion theory and s
aling, the same propertyholds under N and N (1).Conversely, suppose that b is a bran
hpoint in the stable tree. This means that thereexist times s1 < s2 < s3 su
h that Hs1 = Hs2 = Hs3 and Hs ≥ Hs1 for every s ∈ [s1, s3].Let
τ(b) = inf{s ≤ s2 : Hs = Hs2 and Hu ≥ Hs2∀u ∈ [s, s2]}and
σ(b) = sup{s ≥ s2 : Hs = Hs2 and Hu ≥ Hs2∀u ∈ [s2, s]}(whi
h are not stopping times). If ∆Xτ(b) > 0, we are in the pre
eding 
ase. Suppose that

∆Xτ(b) = 0, then by the same arguments as above, Xs ≥ Xτ(b) for s ∈ [τ(b), σ(b)], elsewe 
ould �nd some s′ ∈ [τ(b), σ(b)] su
h that Hs′ < Hτ(b). Also, the points s ∈ [τ(b), σ(b)]su
h that Hs = Hτ(b) must then satisfy Xs = Xτ(b) (else there would be a stri
t in
reaseof the lo
al time of the reversed pro
ess). This implies that Xτ(b) is a lo
al in�mum of
X, attained at s. By standard 
onsiderations, su
h lo
al in�ma 
annot be attained morethan three times on the interval [τ(b), σ(b)], a.s. But if it was attained exa
tly three times,then the bran
hpoint would have degree 3, whi
h is impossible a

ording to the analysisof F− in [21℄, whi
h implies that all hubs of the stable tree have in�nite degree.Assertion (ii) follows easily from this, and (iii) 
omes from the fa
t that the points
u ∈ [τ(b), σ(b)] with Hu = Hτ(b) are exa
tly those points where infr∈[τ(b),u] Xr = Xu, andthe de�nition of the mass measure on T . �3.3 A se
ond way to de�ne F+We will now give some elementary properties of F+ and rephrase its de�nition dire
tlyfrom the ex
ursion of the underlying stable ex
ursion X rather than the tree itself. Firstre
all that given T , we de�ned F+ through a marking pro
edure on H(T ) by taking aPoisson pro
ess (b(t), t ≥ 0) with intensity dt ⊗

∑
b∈H(T ) L(b)δb(dv), and by saying that

b is marked at level t if b ∈ {b(s), 0 ≤ s ≤ t}. By proposition 2, F+ 
an thus be de�nedunder the marked law N
(1). To des
ribe this 
onstru
tion a bit more, we begin with thefollowing



3 THE STABLE TREE 14Lemma 4 Let s ∈ [0, 1], and write v(s) for the vertex of T en
oded by s. Then almost-surely, ∑

b∈H(T )∩[[root,v(s)]]

L(b) <∞.In parti
ular, almost surely, for every hub b ∈ H(T ) and t ≥ 0, there is at most a �nitenumber of hubs marked at level t on the path [[root, b]].Proof. Let s be the leftmost time in [0, 1] that en
odes v. It follows from Proposition 2(ii) (and the fa
t that a.s. under P , every ex
ursion of R(s) below R
(s) ends by a jump)that the hubs b in the path [[root, v]] are all en
oded by the times s′ < s su
h that R

(s)jumps at time s−s′. This jump 
orresponds to a jump of the reversed pro
ess R(s), whosemagnitude ∆R
(s)
s−s′ ≥ ∆R

(s)

s−s′ equals L(b) by Proposition 2 (i). Therefore, we have to showthat the sum of these jumps is �nite a.s. By ex
ursion theory and time-reversal, it su�
esto show that under P , letting X be the supremum pro
ess of X,
∑

0≤s′≤s:∆Xs′>0

∆Xs′ <∞ , s ≥ 0. (7)Now by ex
ursions and Poisson pro
esses theories (see e.g. Formula (10) in the proof of[16, Lemma 1.1.2℄), after appropriate time-
hange by the inverse lo
al time at 0 of thepro
ess X −X, the jumps ∆Xs′ that a
hieve new suprema form a Poisson point pro
esswith intensity x × Cαx−1−αdx. Sin
e this measure integrates x on a neighborhood of 0,the sum in (7) is a.s. �nite.The statement on hubs follows sin
e for any hub b en
oded by a jump-time τ(b), thereis a rational number r′ ∈ [τ(b), σ(b)] whi
h en
odes some vertex v in the fringe subtreerooted at b. Therefore, almost-surely, for every b ∈ H(T ), the sum of widths of the hubson the path [[∅, b]] is �nite. It is then easy to 
he
k that if (x1, x2, . . .) is a sequen
e with�nite sum and if the i-th term is marked with probability 1− e−txi , then a.s. only a �nitenumber of terms are marked. Therefore, a.s. for every b ∈ H(T ), there is only a �nitenumber of marked hubs on the path [[∅, b]]. �By de�nition, two verti
es v, w ∈ T satisfy v ∼t w if and only if {b(s) : 0 ≤ s ≤
t} ∩ [[v, w]] = ∅. Let Ht = {b(s) : 0 ≤ s ≤ t}. For b ∈ Ht, let T 1

b , T 1
b , . . . be the 
onne
ted
omponents of Tb \{b} ranked in de
reasing order of total mass. We know that these treesare en
oded by intervals of the form (τi(b), σi(b)) whose union is [τ(b), σ(b)] \ {u : u ≡ b}.De�ne

C(t, b, i) = T i
b \

⋃

b′∈Ht∩T i
b

Tb′ ,so C(t, b, i) is the 
onne
ted 
omponent of the i-th largest subtree growing from b obtainedwhen the hubs marked at level t are deleted. Plainly, C(t, b, i) is an equivalen
e 
lass for
∼t for every b ∈ Ht and i ≥ 1. By (iii) in Proposition 2, with obvious notations,

C(t, b, i) ≡ (τi(b), σi(b)) \
⋃

b′∈T b
i ∩Ht

[τ(b′), σ(b′)].We also let C(t, ∅) be the set of verti
es whose path to the root does not 
ross anymarked hub at level t, whi
h is equivalent to [0, 1] \
⋃

b∈Ht
[τ(b), σ(b)]. Then C(t, ∅) is also
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e 
lass for ∼t. Intuitively, the 
lasses C(t, ∅) and C(t, b, i) for b a hub are theequivalen
e 
lasses for ∼t that have a positive weight. We will see later that the rest is aset of leaves of mass zero.Let us now translate the relation ∼t in terms of the stable ex
ursion X under N
(1).Let s, s′ ∈ [0, 1] en
ode respe
tively the verti
es v 6= w ∈ T . Again by Proposition 2 (ii),the bran
hpoint b(v, w) of v and w is en
oded by the largest u su
h that the pro
esses

(R
(s)

s−u+r, 0 ≤ r ≤ u) and (R
(s′)

s′−u+r, 0 ≤ r ≤ u) 
oin
ide. Let u(s, s′) be the jump-time of Xthat en
odes this bran
hpoint. Then v ∼t w if and only if the (left-
ontinuous) pro
esses
(R

(s)

s−r, u(v, w) ≤ r ≤ s) and (R
(s)

s′−r, u(v, w) ≤ r ≤ s′) never jump at times when markedjumps at level t for X o

ur.In parti
ular, we may rewrite the equivalen
e 
lasses C(t, b, i) and C(t, ∅) as follows.Let zt
1 ≥ zt

2 ≥ . . . ≥ 0 be the marked jumps of X at level t under N
(1), ranked in de
reasingorder, and let τ t

1, τ
t
2, . . . the 
orresponding jump times (i.e. su
h that ∆Z

(t)

τ t
i

= zt
i). For every

i, let
σt

i = inf{s > τ t
i : Xs = Xτ t

i −
= Xτ t

i
− zt

i}be the �rst return time to level Xτ t
i −

after time τ t
i . De�ne the intervals I t

i = [τ t
i , σ

t
i ], so

I t
i/ ≡ is the fringe subtree of the marked hub that has width zt

i . Noti
e that the I t
i 'sare by no means disjoint, sin
e these fringe subtrees 
ontain other marked hubs, thatmight even have greater width. For ea
h i, the jump with magnitude zt

i gives rise to afamily of ex
ursions of X above its minimum. Pre
isely, let (X t
i,1, X

t
i,2, . . .) the sequen
eof ex
ursions above its in�mum of the pro
ess

X t
i (s) = Xτ t

i +s −Xτ t
i

0 ≤ s ≤ σt
i − τ t

i , i ≥ 1where the (X t
i,j, j ≥ 1) are arranged by de
reasing order of duration. Let also I t

i,j =

[τ t
i,j, σ

t
i,j ] be the interval in whi
h X t

i,j appears in X, so that ⋃j I t
i,j = I t

i . Consider the set
Ct

i,j = I t
i,j \

⋃

k:It
k(It

i

I t
k.By Lemma 4, there exists some set of indi
es k′ su
h that I t

k′ ( I t
i,j and so that the I t

k′'sare maximal with this property (else we 
ould �nd an in�nite number of marked hubs ona path from the root to one of the hubs en
oded by the left-end of some I t
k ( I t

i,j). TheLebesgue measure of Ct
i,j is thus equal to

|Ct
i,j| = σt

i,j − τ t
i,j −

∑
(σt

k − τ t
k),where the sum is over the k's su
h that I t

k ( I t
i and the I t

k's are maximal with thisproperty. Writing Ct
0 = [0, 1] \

⋃∞
i=1 I t

i , we �nally get (identifying Borel subsets of [0, 1]with Borel subsets of T ) :Lemma 5 The sets Ct
0 and Ct

i,j, for i, j ≥ 1, are a relabeling of the sets C(t, ∅) and
C(t, b, i).Noti
e also that another 
onsequen
e of Lemma 4 is that F+ is 
ontinuous in proba-bility at time 0. Indeed, as t ↓ 0, the 
omponent C(t, ∅) of the fragmented tree 
ontainingthe root in
reases to C(0+, ∅). Suppose µ(C(0+, ∅)) < 1 with positive probability. Given



4 STUDY OF F+ 16
T take L1, L2, . . . independent with law µ. By the law of large numbers, with positiveprobability a positive proportion of the Li's are separated from the root at time 0+. How-ever, as a 
onsequen
e of Lemma 4, a.s. for every n ≥ 1 and t small enough, there is nomarked hub on the paths [[root, Li]], 1 ≤ i ≤ n, hen
e a 
ontradi
tion.4 Study of F+The goal of this se
tion is to study the fragmentation F+ through the representationgiven in the last se
tion. The �rst step is to study the behavior of the ex
ursion on theequivalen
e 
lasses Ct

i,j and Ct
0 de�ned previously.4.1 Self-similarityThis se
tion is devoted to the proof that F+ is a self-similar fragmentation with index

1/α and no erosion.Let us �rst introdu
e some notation. Let (f(x), 0 ≤ x ≤ ζ) ∈ D†([0,∞), R) be a 
àdlàgfun
tion with lifetime ζ ∈ [0,∞). By 
onvention we let f(x) = f(ζ) for x > ζ . We de�nethe unplugging operation UNPLUG as follows. Let ([an, bn], n ≥ 1) be a sequen
e of disjoint
losed intervals with non-empty interior, su
h that 0 < an < bn < ζ for every n. De�nethe in
reasing 
ontinuous fun
tion
x−1(s) = s−

∑

n≥1

(s ∧ bn − an)+ , s ≥ 0,where a+ = a∨0 and where the sum 
onverges uniformly on [0, ζ ]. We say that the intervals
[an, bn] are separated if x−1(an) < x−1(am) for every n 6= m su
h that an < am. This isequivalent to the fa
t that for every n 6= m with an < am, the set [an, am] \

⋃
i[ai, bi] haspositive Lebesgue measure, and it implies that the 
onstan
y intervals of x−1 are exa
tly

[an, bn], n ≥ 1. If ([an, bn], n ≥ 1) is separated, de�ne x as the right-
ontinuous inverse of
x−1, then f ◦ x is 
àdlàg (noti
e that (f ◦ x)(s−) = f(x(s−)−) for s ∈ [0, x−1(ζ)]), 
all it
UNPLUG(f, [an, bn], n ≥ 1). The a
tion of UNPLUG is thus to remove the bits of the path of fthat are in
luded in [an, bn]. Last, if we are given intervals [an, bn] that are not overlapping(i.e. su
h that an < am < bn < bm does not happen for n 6= m, though we might have
[an, bn] ⊂ [am, bm]), but su
h that there is a separated subsequen
e ([aφ(n), bφ(n)], n ≥ 1)of maximal intervals that 
overs ⋃n[an, bn], we similarly de�ne the unplugging operationby simply ignoring the non-maximal intervals.Lemma 6 Let ([an, bn], n ≥ 1) be a sequen
e of separated intervals, and let π be a partitionof N with blo
ks π1, π2, . . .. Then, as N → ∞, UNPLUG(f, [an, bn] : n ∈ π1 ∪ . . . ∪ πN)
onverges to UNPLUG(f, [an, bn], n ≥ 1) in the Skorokhod topology.Proof. De�ne

x−1
N (s) = s−

∑

n∈π1∪...∪πN

(s ∧ bn − an)+ , s ≥ 0.The separation of intervals ensures that every jump of x 
orresponds to a jump of xN forsome large N , and it is not hard to see that this implies xN(x−1
N (x(s))) = x(s) for all s.
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e f ◦ x is 
àdlàg with duration ζ ′ = ζ −
∑

n(bn − an), for every N we may �nd asequen
e of times 0 = s0 < s1 < s2 < . . . < sk(N) = ζ ′ su
h that the os
illation
ω(f ◦ x, [si, si+1)) = sup

s,s′∈[si,si+1)

|f ◦ x(s)− f ◦ x(s′)| →
N→∞

0,this uniformly in 1 ≤ i < k(N). Let also sN
i = x−1

N (x(si)) be the 
orresponding times for
f ◦ xN . We build a time 
hange λN (a stri
tly in
reasing 
ontinuous fun
tion) by setting
λN(si) = sN

i for 1 ≤ i ≤ k(N), and interpolating linearly between these times. Easily
|λN(si)− si| ≤

∑
n/∈π1∪...∪πN

(bn− an)→ 0, and it follows that λN 
onverges pointwise anduniformly to the identity fun
tion of [0, ζ ′]. On the other hand, f ◦x(si) = f ◦xN ◦λN(si),so for s ∈ (si, si+1),
|f ◦ xN ◦ λN (s)− f ◦ x(s)| ≤ ω(f ◦ x, [si, si+1)) + |f ◦ xN ◦ λN (s)− f ◦ xN ◦ λN(si)|.To bound the se
ond term, noti
e that xN ((sN

i , sN
i+1)) ⊂ x((si, si+1))∪

⋃
n/∈π1∪...∪πN

[an, bn].Therefore
|f ◦ xN ◦ λN(s)− f ◦ xN ◦ λN(si)| ≤ ω(f ◦ x, [si, si+1))

+ sup
n/∈π1∪...∪πN

(f(an)− f(an−) + ω(f, [an, bn])).We 
an 
on
lude that f ◦ xN ◦ λN 
onverges uniformly to f ◦ x sin
e the os
illation
ω(f, [an, bn]) 
onverges to 0 uniformly in n /∈ π1 ∪ . . . ∪ πN as N →∞, as does the jump
f(an)− f(an−). �Under the law P

(−z,∞) under whi
h X is killed when it �rst attains −z, for every t > 0we let zt
1 ≥ zt

2 ≥ . . . ≥ 0 be the marked jumps of X at level t, ranked in de
reasing orderof magnitude, and τ t
i be the time of o

urren
e of the jump with magnitude zt

i , while σt
i isthe �rst time after τ t

i when X hits level Xτ t
i −

(noti
e that τ t
i , σ

t
i are not stopping times).Similarly as before, we let I t

i = [τ t
i , σ

t
i ].Lemma 7 For every z, t ≥ 0, the pro
ess UNPLUG(X, (I t

i : i ≥ 1)) has same law as X(t)under P, killed when it �rst hits −z.Part of this lemma is that it makes sense to apply the unplugging operation with theintervals I t
i , that is, that these intervals admit a separated 
overing maximal sub-family.Proof. The fa
t that the intervals I t

i admit a 
overing maximal sub-family is obtainedby re-using the proof of Lemma 4 and the argument given just after the de�nition of Ct
i,jin the pre
eding se
tion. Next, write X = X(t) + Z(t). For a > 0, let τ t,a

1 be the time ofthe �rst jump of Z(t) that is > a, and let σt,a
1 = inf{u ≥ τ t,a

1 : Xu = Xτ t,a
1 −}. Re
ursively,let τ t,a

i+1 = inf{u ≥ τ t,a
i : ∆Z

(t)
u > a} and σt,a

i+1 = inf{u ≥ τ t,a
i+1 : Xu = Xτ t,a

i+1−
}. Let

Z
(t,a)
s =

∑
u≤s ∆Z

(t)
u 1

{∆Z
(t)
u ≤a}

. The τ t,a
i 's are stopping times for the �ltration generatedby (X(t), Z(t)), as well as the σt,a

i 's. By a repeated use of the Markov property at thesetimes we get
UNPLUG(X; (I t

i : zt
i > a))

d
= X(t) + Z(t,a),where this last pro
ess is killed at the time T

(t,a)
z when it �rst hits −z. In parti
ular,

Tz −
∑

i(σ
t,a
i − τ t,a

i ) has the same law as T
(t,a)
z , whi
h 
onverges in law to T

(t)
z as a ↓
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0 be
ause Z(t,a) 
onverges to 0 uniformly on 
ompa
t sets, and X(t) enters (−∞,−z)immediately after T

(t)
z by the Markov property and the fa
t that 0 is a regular pointfor Lévy pro
esses with in�nite total variation. Therefore, writing |I t

i | for the Lebesguemeasure of I t
i , Tz −

∑′
k |I

t
k| (where the sum is over the I t

k that are maximal) has samelaw as T
(t)
z , and in parti
ular it is nonzero a.s. Now to 
he
k that the intervals I t

i areseparated (we are only interested by those whi
h are maximal), 
onsider two left-ends ofsu
h intervals su
h as τ t,a
i < τ t,a

j (where a is small enough). The regularity of 0 for theLévy pro
ess X implies that infs∈[σt,a
i ,τ t,a

i ] Xs < Xσt,a
i
, so by the same arguments as aboveand the Markov property at σt,a

i , there exists a (random) εa
i,j > 0 su
h that given εa

i,j,
τ t,a
j − σt,a

i −
∑

It
k⊂[σt,a

i ,τ t,a
j ]

|I t
k|1{It

k maximal}is sto
hasti
ally larger than T
(t)
εa
i,j
. This ensures the a.s. separation of the I t

k's, so the a.s.
onvergen
e of UNPLUG(X, (I t
i : zt

i > a)) to UNPLUG(X, (I t
i , i ≥ 1)) as a ↓ 0 
omes fromLemma 6. Identifying the limiting law follows from the above dis
ussion. �Now let as before X t

i (s) = Xτ t
i +s − Xτ t

i
for 0 ≤ s ≤ σt

i − τ t
i and i ≥ 0, where by
onvention τ t

0 = 0, and σt
0 = T1. We write −τ t

i + I t
k = [τ t

k − τ t
i , σ

t
k − τ t

i ]. The next lemmadoes most of the job to extra
t the di�erent tree 
omponents of the logged stable tree attime t.Lemma 8 (i) Under the law P
(−1,∞), as a ↓ 0, the pro
esses UNPLUG(X t

i , (−τ t
i +I t

k, k : I t
k (

I t
i and zt

k > a)), i ≥ 1 
onverge in D†([0,∞), R) to the pro
esses Y t
i = UNPLUG(X t

i , (−τ t
i +

I t
k, k : I t

k ( I t
i )), i ≥ 1.(ii) The pro
ess Y t

i has the same law as zt
i + X(t) under P, killed when it �rst hits 0,and these pro
esses are independent 
onditionally on (zt

i , i ≥ 1).(iii) The sum of the durations of Y t
i , i ≥ 0 equals T1 a.s.Proof. (i) Fix a > 0, we modify slightly the notations of the pre
eding proof by letting

τ t,a
1 < . . . < τ t,a

k(a) be the times when Z(t) a

omplishes a jumps that is > a, and letting
σt,a

i = inf{u ≥ τ t,a
i : Xu = Xτ t,a

i −}. Let also τ t,a
0 = 0, σt,a

0 = T1. Write I t,a
i = [τ t,a

i , σt,a
i ],and let X t,a

i (s) = Xτ t,a
i +s − Xτ t,a

i
for 0 ≤ s ≤ σt,a

i − τ t,a
i . By the Markov property attimes τ t,a

i , σt,a
i , we obtain that for every i, X t,a

i is independent of UNPLUG(X, I t,a
i ) giventhe jump ∆Xτ t,a

i
. By a repeated use of the Markov property, we obtain the independen
eof the pro
esses UNPLUG(X t,a

i , (−τ t
i + I t,a

k : I t,a
k ( I t,a

i )) given (∆Xτ t,a
i

, 1 ≤ i ≤ k(a)),and moreover, the law of X t,a
i given ∆Xτ t,a

i
is that of X under P , killed when it �rsthits −∆Xτ t,a

i
. Letting a ↓ 0 and applying Lemma 7 �nally gives the 
onvergen
e to thepro
esses Y t

i , as well as the 
onditional independen
e and the distribution of the pro
esses,giving also (ii).(iii) Let us introdu
e some extra notation. Say that the marked jump with magnitude
zt

i is of the j-th kind if and only if the future in�mum pro
ess (infs≤u≤τ t
i
Xu, 0 ≤ s ≤ τ t

i )a

omplishes exa
tly j jumps at times that 
orrespond to marked jumps of X. Write |I t
i |for the duration of X t

i and let Aj be the set of indi
es i su
h that τ t
i is a jump time of the

j-th kind. By a variation of Lemma 4 already used above, every marked jump is of the
j-th kind for some j a.s. By Lemma 7 the duration of Y t

0 is T1−
∑

i∈A1
|I t

i |, similarly, one



4 STUDY OF F+ 19has that if i ∈ Aj , the duration of Y t
i equals |I t

i |−
∑

k∈Aj+1
|I t

k|1{It
k⊂It

i}
. Therefore, provingthat the sum of durations of Y t

i equals T1 amounts to showing that ∑i∈Aj
|I t

i | → 0 inprobability as j →∞. But the sum of the marked jumps is �nite a.s., sin
e 
onditionallyon a marked jump zt
i , the duration of the 
orresponding X t

i has same law as Tzt
i
, and sin
ewe have independen
e as i varies. Hen
e this sum is (
onditionally on (zt

i , i ≥ 1)) equal inlaw to T∑
i∈Aj

zt
i
under P, and it 
onverges to 0. �Lemma 9 The pro
ess (F+(t), t ≥ 0) is a Markovian self-similar fragmentation withindex 1/α. Its erosion 
oe�
ient is 0Proof. For every v > 0, de�ne the pro
esses X t

i under N
(v) as in the pre
eding se
tion,repla
ing the duration 1 by v. By virtue of Lemma 8 and by ex
ursion theory, we obtainthat for almost every v > 0, and for all t in a dense 
ountable subset of R+, under N

(v), thepro
esses UNPLUG(X t
i , (−τ t

i + I t
k : I t

k ( I t
i and zt

k > a)) 
onverge as a ↓ 0 to pro
esses Y t
ithat are independent 
onditionally on the zt

i 's and on their durations, and whose durationssum to v (by 
onvention we let X t
0 = X). By s
aling, this statement remains valid for

v = 1. We then extend it to all t ≥ 0 by a 
ontinuity argument. The 
ase t = 0 is obvious,so take t0 > 0 and t ↑ t0 in the dense subset of R+. Almost surely, t0 is not a time atwhi
h a new hub is marked, so X t0
i = X t

i for t 
lose enough of t0, and by Lemma 6 andthe fa
t that {I t
i , i ≥ 0} ⊂ {I t0

i , i ≥ 0} for t ≤ t0,
Y t0

i = UNPLUG(X t
i , (−τ t

i + I t0
k : I t0

k ( I t0
i )) = lim

t↑t0
UNPLUG(X t

i , (−τ t
i + I t

k : I t
k ( I t

i )).Now re
all the notation X t
i,j, I

t
i,j = [τ t

i,j , σ
t
i,j] from Se
t. 3.3, and for j ≥ 1 write Y t

i,j =
UNPLUG(X t

i,j, (−τ t
i,j + I t

k : I t
k ( I t

i,j)) for the ex
ursions of Y t
i above its in�mum, ranked inthe order 
orresponding to Xi,j. Then by the same arguments as in the proof of Lemma7, the joint law of the durations of Y t

0 , Y t
i,j, i ≥ 1, j ≥ 1 equals the law of (|Ct

0|, |C
t
i,j|, i ≥

1, j ≥ 1) with notations above. Hen
e, by Lemma 5 and the fa
t that ex
ursions of X(t)with pres
ribed duration are stable ex
ursions, it holds that 
onditionally on F+(t) =
(x1, x2, . . .), the ex
ursions Y t

i,j are independent stable ex
ursions with respe
tive durations
x1, x2, . . ..Now let ∼t,i,j

t′ be the equivalen
e relation de�ned for the ex
ursion Y t
i,j in a similar wayas ∼t for the normalized ex
ursion of X. Write also jt(u) = u− τ t

i,j−
∑

k:It
k(It

i ,σt
k<u |I

t
k| for

u ∈ [0, 1], whenever u ∈ Ct
i,j. Then it is 
lear that if x, y ∈ Ct

i,j, one has also x ∼t+t′ y ifand only if jt(x) ∼t,i,j
t′ jt(y). By the s
aling property, a stable ex
ursion εx with duration xwhere every jump with magnitude ℓ is marked with probability 1− exp(−t′ℓ) is obtainedby taking a normalized ex
ursion (ε1

s, 0 ≤ s ≤ 1), marking every jump with magnitude
ℓ independently with probability 1 − exp(−t′x1/αℓ), and then letting εx

s = x1/αε1
s/x for

0 ≤ s ≤ x ; the marked jumps of εx o

urring at the times sx whenever s is a markedjump time for ε1. This means that given F+(t) = (x1, . . .), the pro
ess (F+(t + t′), t′ ≥ 0)has the same law as ((x1F
+,1(x

1/α
1 t′), x2F

+,2(x
1/α
2 t′), . . .)↓, t′ ≥ 0) where the F+,i's areindependent 
opies of F+. This entails both the Markov property and the self-similarproperty, the self-similarity index being 1/α. Moreover, Lemma 8 (iii) shows that the sumof durations of Y t

i,j is 1 a.s. under N
(1), so ∑i F

+
i (t) = 1 a.s. and the erosion 
oe�
ientmust be 0 a

ording to [9℄.To 
on
lude, we noti
e that the previous result of 
ontinuity in probability of F+ attime 0 extends to any time t ≥ 0 by the self-similar fragmentation property. �



4 STUDY OF F+ 204.2 Splitting rates and dislo
ation measureTo 
omplete the study of the 
hara
teristi
s of F+, we must identify the dislo
ationmeasure. This is done by 
omputing the splitting rate of the stable tree, that is, the rateat whi
h the tree with mass 1 instantaneously splits into a sequen
e of subtrees with givenmasses s1 ≥ s2, . . . with ∑i si = 1, by analogy with the splitting rate of the BrownianCRT in [3℄.We will need the following lemma from [22℄, whi
h is similar to Lévy's method to
ompute the jump measure of a Lévy pro
ess.Lemma 10 Let (F (t), t ≥ 0) be a self-similar fragmentation with index β ≥ 0 and erosion
oe�
ient c = 0. Then for every fun
tion G that is 
ontinuous and null on a neighborhoodof (1, 0, . . .) in S,
t−1E[G(F (t))]→

t↓0
ν(G).Re
all that our marking pro
ess on the hubs of the tree amounts to taking a Poissonpro
ess with intensity m(dv) =

∑
b L(b)δb(dv) on T , where the sum is over hubs b ∈ T . For

v ∈ T , let T1(v), T2(v), . . . be the tree 
omponents of the forest obtained when removing
v, arranged by de
reasing order of masses, and let

r(ds) = N (1) (m{v ∈ T : (µ(T1(v)), µ(T2(v)), . . .) ∈ ds})be the rate at whi
h a m-pi
ked vertex splits T into trees with masses in a volume element
ds (re
all that the stable tree is de�ned under the normalized ex
ursion law N (1)). It isquite intuitive that the splitting rate equals the dislo
ation measure of F+, and Theorem1 redu
es to the two following lemmas :Lemma 11 The splitting rate r(ds) equals the dislo
ation measure ν+ of F+.Proof. For t ≥ 0 we let T (t) be the forest obtained by our logging pro
edure of the stabletree at time t. Let n ≥ 2, and 
onsider n leaves L1, . . . , Ln ∈ T that are independentand distributed a

ording to the mass measure µ, 
onditionally on µ (we are impli
itlyworking on an enlarged probability spa
e). Write Πn(t) for the partition of [n] = {1, . . . , n}obtained by letting i and j be in the same blo
k of Πn(t) if and only if Li and Lj belongto the same tree 
omponent of T (t). For K > 2 let Λn

K(t) be the event that at time t,the leaves L1, . . . , Ln are all 
ontained in tree 
omponents of T (t) with masses > 1/K.Write P∗
n for the set of partitions π of [n] = {1, . . . , n} with at least two non void blo
ks

A1, . . . , Ak (for some arbitrary ordering 
onvention). Given F+(t) = s = (s1, s2, . . .), theprobability that Πn(t) equals some partition π ∈ P∗
n and that Λn

K(t) happens is
GK(s) = N

(1)(Πn(t) = π, Λn
K(t)|F+(t) = s) =

∗K∑

i1,...,ik

k∏

j=1

s
#Aj

ij
,the sum being over pairwise distin
t ij 's su
h that sij > 1/K. This last fun
tion is
ontinuous and null on a neighborhood of (1, 0, . . .), so Lemma 10 (whi
h we may use byLemma 9) gives

lim
t↓0

t−1
N

(1)(Πn(t) = π, Λn
K(t)) =

∫

S

ν+(ds)

∗K∑

i1,...,ik

k∏

j=1

s
#Aj

ij
. (8)
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laim that knowing this quantity for every n, π, K 
hara
terizes ν+. One 
an obtainthis by �rst letting K →∞ by monotone 
onvergen
e, and then using an argument basedon ex
hangeable partitions as in [18, p. 378℄ (a Stone-Weierstrass argument 
an also work).On the other hand, for any b in the set H(T ) of bran
hpoints of T , let πb
n be thepartition of [n] obtained by letting i and j be in the same blo
k if and only if b is not onthe path from Li to Lj . Let also TLi

(b) be the tree 
omponent of the forest obtained byremoving b from T that 
ontains Li. For K ∈ (2,∞] and π ∈ P∗
n, let Ψn

K(π) be the set ofbran
hpoints b ∈ T su
h that πb
n = π and su
h that µ(TLi

(b)) > 1/K for 1 ≤ i ≤ n, and let
Ψn

K =
⋃

π∈P∗
n
Ψn

K(π). Re
all that we may 
onstru
t the fragmentation F+ by 
utting thestable tree at the points of a Poisson point pro
ess (b(s), s ≥ 0) with intensity ds⊗m(db).Now for Πn(t) = π to happen, it is plainly ne
essary that at least one b(s) falls in Ψn
∞ forsome s ∈ [0, t], if in addition Λn

K(t) happens then no b(s), 0 ≤ s ≤ t must fall in Ψn
∞ \Ψn

K .Therefore,
N

(1)(Πn(t) = π, Λn
K(t)) = N

(1) (∃! s ∈ [0, t] : b(s) ∈ Ψn
∞, and b(s) ∈ Ψn

K(π), Λn
K(t))+R(t),(9)where the residual R(t) is bounded by the probability that b(s) falls in Ψn

∞ for at least two
s ∈ [0, t]. Hen
e R(t) = o(t) by standard properties of Poisson pro
esses provided we 
anshow that N (1)[m(Ψn

∞)] <∞. This 
ould be shown using the forth
oming lemma, but wemay also just noti
e that if N (1)[m(Ψn
∞)] was in�nite, then there would be arbitrarily many

b(s), 0 ≤ s ≤ t falling in Ψn
∞ \ Ψn

K for some appropriately large K, and the probabilityin (9) would be 0, whi
h is impossible from the beginning of this proof and sin
e F+is a self-similar fragmentation with nonzero dislo
ation measure (be
ause it has erosion
oe�
ient 0 and it is not 
onstant). On the other hand, 
onditionally on the event onthe right-hand side of (9), the b(s), 0 ≤ s ≤ t that do not fall in Ψn
∞ (
all them b′(s))form an independent Poisson point pro
ess with intensity m(· ∩ H(T ) \ Ψn

∞). Therefore,the size of the tree 
omponent of the forest obtained when removing the points b′(s), 0 ≤
s ≤ t that 
ontains L1 
onverges a.s. to 1 as t ↓ 0 (so it also 
ontains the other Li'sfor small t a.s.), as it is sto
hasti
ally bigger than the 
omponent of T (t) 
ontaining
L1, and sin
e F+(t) → (1, 0, . . .) in probability as t ↓ 0. It follows that one 
an remove
Λn

K(t) from the right-hand side of (9), and basi
 properties of Poisson measures �nallygive t−1
N

(1)(Πn(t) = π, Λn
K(t)) → N

(1)[m(Ψn
K(π))] = N (1)[m(Ψn

K(π))]. This last quantityis �nally equal to ∫
S

r(ds)
∑∗K

i1,...,ik

∏k
j=1 s

#Aj

ij
sin
e Li belongs to B ⊂ T with probability

µ(B) that is equal to the Lebesgue measure of the subset of [0, 1] en
oding B. Identifyingwith (8) gives the 
laim. �Lemma 12 One has r(ds) = να(ds) with the notations of Theorem 1.Proof. We must see what is the e�e
t of splitting T at a hub b pi
ked a

ording to m(dv).By de�nition, m pi
ks a hub proportionally to its lo
al time, and by Proposition 2, hubsare in one-to-one 
orresponden
e with jumps of the stable ex
ursion with duration 1. Morepre
isely, if b is the hub that has been pi
ked and with the notations τ(b), σ(b) above, themasses of the tree 
omponents obtained when removing b are equal to the lengths of the
onstan
y intervals of the in�mum pro
ess of (Xτ(b)+s −Xτ(b), 0 ≤ s ≤ σ(b) − τ(b)), andthe extra term 1−(σ(b)−τ(b)). By Vervaat's theorem, we may suppose that the ex
ursionis the Vervaat transform of a stable bridge and that the marked jump in the ex
ursion
orresponds to a jump (s, ∆Xs) of the bridge pi
ked a

ording to the σ-�nite measure
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∑

u:∆Xu>0 ∆Xuδ(u,∆Xu)(ds, dx). By Lemma 2, this marked jump equals (s, x) a

ording toa 
ertain σ-�nite �law�, while given (s, ∆Xs) = (s, x), the bridge X has the same law as
X ⊕ (s, x), under the law P 1

0→−x.Therefore, we have have obtained a representation of the ex
ursion together with amarked jump as a bridge X with law P 1
0→−x, where x is independent with some σ-�nite�law�, to whi
h has been added the marked jump of size x at an independent uniformtime s, and whi
h has �nally undergone the Vervaat transformation. Using the invarian
eof bridge laws under independent 
y
li
 shifts, it is now easy to see that the lengths ofthe 
onstan
y intervals of (Xτ(b)+s − Xτ(b), 0 ≤ s ≤ σ(b) − τ(b)) de�ned above have thesame law as the intervals of 
onstan
y of the in�mum pro
ess of (Xs′+s−Xs, 0 ≤ s′ ≤ Tx)under P 1

0→−x (with x as above), while the remaining term 1− (σ(b)− τ(b)) has (jointly)law 1− Tx.It is now easy that 
onditionally on x, Tx = t these 
onstan
y intervals have the samelaw as ∆T[0,x] given Tx = t under P (one a
tually 
he
ks that (Xu, 0 ≤ u ≤ Tx) is the�rst-passage bridge with law P t
0↓−x de�ned before Lemma 15 below). The law of 1 − Txgiven x is simply obtained by using the de�nition of bridges and the Markov property :for a < 1 and positive measurable f ,

E1
0→−x[f(1− Tx)1{Tx<a}] = E1[f(1− Tx)1{Tx<a}p1(−x)−1p1−a(−x−Xa)]

=

∫ a

0

ds qx(s)f(1− s)p1(−x)−1

∫
dy pa−s(y)p1−a(−y)

→
a→1

∫ 1

0

ds qx(s)f(1− s)p1−s(0)p1(−x)−1.In the last integral, 
hange variables 1− s→ s, use p1(−x) = x−1qx(1), 
he
k by s
alingthat ps(0) = s−1/αp1(0), and 
on
lude by identifying with Lemma 1 that 1 − Tx under
P 1

0→−x has same law as a size-biased pi
k from ∆T[0,x] given Tx = 1 under P (noti
e thatin parti
ular we must have p1(0) = cα). By Lemma 1 (ii), it follows that given the lo
altime x of the marked hub b, the law of the sizes of the stable tree split at this hub is thesame as that of ∆T[0,x] given Tx = 1 under P .Putting pie
es together and re
alling the distribution of the marked jump x fromLemma 2 we obtain the formula
r(ds) =

∫ ∞

0

dx
Cαp1(−x)

xαp1(0)
P (∆T[0,x] ∈ ds|Tx = 1).By using the s
aling property for T and its density (qx(1) = x−αq1(x

−α)), formula (3) anda 
hange of variables, we obtain
r(ds) =

∫ ∞

0

dx
Cαq1(x

−α)

cαx2α+1
P (T−1

1 ∆T[0,1] ∈ ds|T1 = x−α)

= α−1c−1
α Cα

∫ ∞

0

du u q1(u)P (T−1
1 ∆T[0,1] ∈ ds|T1 = u),whi
h gives the desired formula, after 
he
king that α−1c−1

α Cα = Dα. �
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all the 
onstru
tion of F ♮ (under the measure N
(1)) from Se
t. 1. As noti
ed above,this fragmentation pro
ess somehow generalizes the one 
onsidered in [7, 20℄ (we 
oulda
tually build it in an analogous way for a large 
lass of Lévy pro
esses with no negativejumps, though the resulting fragmentations would not be self-similar due to the absen
eof s
aling). Noti
e that none of the fragmentation pro
esses of [20℄ are self-similar, but forthe Brownian 
ase. The reason for this was a la
k of a Girsanov-type theorem saying thata Lévy pro
ess plus drift has a law that is absolutely 
ontinuous with the initial pro
ess,but for the Brownian 
ase. Here, this is �xed by Proposition 1, but where the operationis removing jumps rather than adding a drift.5.1 The self-similar fragmentation propertyFor any t′ > t ≥ 0 let µt(x, ds) be a kernel from R∗

+ to S de�ned as follows : µt(x, ds)is the law of the ranked lengths of the 
onstan
y intervals of the pro
ess X(t) under N
(x).Moreover, de�ne F ♮,1 exa
tly as F ♮, but where X is under the law P

(−1,∞). In parti
ular,
F ♮,1(t) is not S-valued (the sum of its 
omponents is random).Proposition 3 (i) The pro
esses F ♮,1 and F ♮ enjoy the fragmentation property, with frag-mentation kernel µt(x, ds). That is, 
onditionally on F ♮,1(t) = (x1, x2, . . .) (resp. F ♮(t)),
F ♮,1(t + t′) (resp. F ♮(t + t′)) has the same law as the de
reasing rearrangement of inde-pendent sequen
es si with respe
tive laws µt′(xi, ds).(ii) The pro
ess F ♮ is a self-similar fragmentation with index 1/α, and no erosion.The fa
t that F ♮ is a fragmentation pro
ess dire
tly 
omes from the fa
t that thepro
esses X(t′) −X(t) = Z(t) − Z(t′) are non-in
reasing. We now prove the fragmentationproperty. The key lies in a Skorokhod-like relation that is analogous to that in [7℄ andgeneralized in [20℄.Lemma 13 For every t, t′ ≥ 0 and s ≥ 0, one has

X(t)
s = inf

0≤u≤s
(X(t+t′)

u + (Z(t+t′)
u − Z(t)

u )).The proof 
an be done following exa
tly the same lines as in [7, Lemma 2℄. As a
onsequen
e, we obtain that the sigma-�eld Gt = σ{X(t), (Z(s), 0 ≤ s ≤ t)} indu
es a�ltration, with respe
t to whi
h F ♮,1 is adapted.The end of the proof of the fragmentation property in Proposition 3 also goes as in [7℄.For any variable K that is Gt-measurable, the ex
ursions of X(t) above its in�mum andbefore time T
(t)
K are independent ex
ursions 
onditionally on Gt, respe
tively 
onditioned tohave durations ℓ

(t)
1,X , ℓ

(t)
2,X , . . . where the last family is the de
reasing sequen
e of 
onstan
yintervals of X(t) before time T

(t)
K . Take K = X

(t)
T1
, whi
h is measurable with respe
t to Gt byvirtue of the Skorokhod property. Then T

(t)
K = T1, whi
h gives readily that 
onditionallyon Gt, the ex
ursions of X(t) above X(t) are independent with durations (F ♮,1

i (t), i ≥ 0).To 
on
lude, it remains to noti
e that the la
k of memory of the exponential lawimplies that the jumps that are unmarked at time t but that are marked at time t + t′
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an be obtained also by marking with probability 1− e−t′ℓ any unmarked jump at time tthat has magnitude ℓ. Thus, 
onditionally on F ♮,1(t), we obtain a sequen
e with the samelaw as F ♮,1(t + t′) by taking independent sequen
es (si, i ≥ 1) with laws µt′(F
♮,1
i (t), ds)and rearranging, as 
laimed. This remains true for F ♮ by ex
ursion theory and s
aling.To show the self-similarity for F ♮, it then su�
es to 
he
k, using the s
aling propertyof the ex
ursions of stable pro
esses, that µt(x, ds) is the image of µtx1/α(1, ds) by s 7→ xs.The fa
t that F ♮ has no erosion again 
omes from the fa
t that ∑i F

♮
i (t) = 1 a.s.5.2 The semigroupA

ording to the pre
eding se
tion, and sin
e plainly there is no loss of mass in thefragmentation F ♮ (so the erosion 
oe�
ient is 0), proving Theorem 2 requires only to 
he
kthat the dislo
ation measure of F ♮ equals that of F+. It is intuitively straightforward thatthis is the 
ase, by looking at the pro
edure we use for deleting jumps, and indeed we
ould easily follow the same lines as above and 
ompute a �splitting rate� for the bridge,when the ��rst� marked jump is deleted. However, a ni
e feature of this fragmentationis that we 
an 
ompute expli
itly its semigroup (hen
e that of F+), as will follow. Thesemigroup then gives enough information to re-obtain the dislo
ation measure, and thiswill prove Theorem 2. Re
all from Se
t. 2 that ρ

(t)
1 is the density of Z

(t)
1 under P.Proposition 4 The semigroup of F ♮ is given by

N
(1)(F ♮(t) ∈ ds) =

∫ ∞

0

dz
p

(t)
1 (−z)ρ

(t)
1 (z)

p1(0)
P (∆T[0,z] ∈ ds|Tz = 1).We will need a 
ouple of intermediate lemmas. Sin
e Z(t) is non-de
reasing, under thelaw N

(1), the pro
ess X(t) starts at 0 and hits −Z
(t)
1 at time 1 for the �rst time. Sin
ewe are interested in the 
onstan
y intervals of X(t), and thanks to Vervaat's theorem, wewould like to relate these 
onstan
y intervals to the bridge of X. We now work under thelaw of the bridge with unit duration P

1
0→0, so we may suppose that the ex
ursion of Xwith duration 1 is equal to the Vervaat transform V X. Let m = −X1 be the absolutevalue of the minimum of X, and τ2 = Tm− be the (a.s. unique) time when X attainsthis minimum, so V X = V τ2X. De
ompose X as X(t) + Z(t) where Z(t) is the 
umulativepro
ess of marked jumps. Then V X = V τ2X(t) + V τ2Z(t), and by independen
e of themarking pro
edure of jumps we 
an 
onsider that V τ2Z(t) is the 
umulative pro
ess ofmarked jumps for the ex
ursion V X. The problem is now to des
ribe the law of lengthsof the 
onstan
y intervals of the pro
ess V τ2X(t). Let m(t) = −X

(t)
1 be the absolute valueof the minimum of X(t) and τ3 = T

(t)

m(t)−
be the (a.s. unique) time when X(t) attains thisminimum. Let also τ1 = T

(t)

m(t)−Z
(t)
1

be the �rst time when X(t) attains the value Z
(t)
1 −m(t).The following lemma is somehow �deterministi
�. For a < b, write X[a,b] for the pro
ess

(Xa+s −Xa, 0 ≤ s ≤ b− a).Lemma 14 One has τ1 ≤ τ2 ≤ τ3 a.s., and the sequen
e of lengths of the 
onstan
yintervals of V τ2X(t), ranked in de
reasing order, is equal to that of the pro
ess X
(t)
[τ1,τ3], towhi
h has been added (at the appropriate rank) the extra term 1− τ3 + τ1.
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e Z(t) is an in
reasing pro
ess, one has X
(t)
τ2 = Xτ2 − Z

(t)
τ2 ≤ Xs − Z

(t)
s forany s ≤ τ2. Hen
e, X

(t)
τ2 = X(t)

τ2 whi
h implies τ2 ≤ τ3. On the other hand, one has
−m(t) = Xτ3 − Z

(t)
τ3 ≥ −m− Z

(t)
1 and thus m(t) − Z

(t)
1 ≤ m, implying τ1 ≤ τ2.For 
onvenien
e, if (f(x), 0 ≤ x ≤ ζ) and (f ′(x), 0 ≤ x ≤ ζ ′) are two 
àdlàg fun
tions,we let f ⊲⊳ f ′ be the 
on
atenation of the paths of f and f ′, de�ned by

f ⊲⊳ f ′(s) =

{
f(s) if 0 ≤ s < ζ

f ′(s− ζ) + f(ζ) if ζ ≤ s ≤ ζ + ζ ′ .We let Y 1 = X
(t)
[0,τ2]

, Y 2 = X
(t)
[τ2,τ3] and Y 3 = X

(t)
[τ3,1], so X(t) = Y 1 ⊲⊳ Y 2 ⊲⊳ Y 3, and

V τ2X(t) = Y 2 ⊲⊳ Y 3 ⊲⊳ Y 1.Observing that Y3 is non-negative, we obtain that Y 2 ⊲⊳ Y 3 = Y 2 ⊲⊳ 0[0,1−τ3] where
0[0,a] is the null pro
ess on [0, a]. Sin
e the �nal value of Y3 is m(t) − Z

(t)
1 , we obtain that

V τ2X(t) = Y 2 ⊲⊳ 0[0,1−τ3] ⊲⊳ 0[0,τ1] ⊲⊳ X
(t)
[τ1,τ2] = Y 2 ⊲⊳ 0[0,1−τ3+τ1] ⊲⊳ X

(t)
[τ1,τ2]

.It follows that the 
onstan
y intervals of V τ2X(t) are the same as those of X(t), ex
eptfor the �rst and last 
onstan
y intervals of X(t) whi
h are merged to form the 
onstan
yinterval with length 1− τ3 + τ1. �The rest of the se
tion is devoted to the study of these 
onstan
y intervals. Re
all fromLemma 3 that under P
1
0→0, the pro
ess X(t) has law P 1

0→−Z , where Z is an independentrandom variable with law P (Z ∈ dz) = p1(0)−1p
(t)
1 (−z)ρ

(t)
1 (z)dz. It thus su�
es to analyzethe 
onstan
y intervals of X [τ1,τ3] under the law P 1

0→−z for �xed z > 0, where we now 
all
m = −X1, τ1 the time when X �rst hits level z−m and τ3 the �rst time when X attainslevel −m.For z > 0, let (P v

0↓−z, v > 0) be a regular version of the 
onditional law P (−z,∞)[·|Tz =
v]. Call this the law of the �rst-passage bridge from 0 to −z with length v. A 
onsequen
eof the Markov property isLemma 15 Let a, b > 0. For (Lebesgue) almost every v > 0, under the law P v

0↓−(a+b), thelaw of Ta is given by
P v

0↓−(a+b)(Ta ∈ ds) = ds
qa(s)qb(v − s)

qa+b(v)
.Moreover, 
onditionally on Ta, the paths (Xs, 0 ≤ s ≤ Ta) and (Xs+Ta − a, 0 ≤ s ≤

Ta+b − Ta) are independent with respe
tive laws P Ta
0↓−a and P v−Ta

0↓−b .We also state a generalization of Williams' de
omposition of the ex
ursion of Brownianmotion at the maximum, given in Chaumont [11℄. We need to make a step out of theworld of probability and 
onsider σ-�nite measures instead of probability laws. Re
all that
mv = −Xv is the absolute value of the minimum before time v, and with our notations
Tmv− is the �rst time (and a.s. last before v) when X attains this value. Write

X←−s = Xs 0 ≤ s ≤ Tmv−,

X−→s = mv + Xs+Tmv−
0 ≤ s ≤ v − Tmv−for the pre- and post- minimum pro
esses of X before time v. Then by [11℄,



5 STUDY OF F ♮ 26Lemma 16 One has the identity for σ-�nite measures
∫ ∞

0

dvP v(X←− ∈ dω, X−→ ∈ dω′) =

∫ ∞

0

dxP (−x,∞)(dω)⊗

∫ ∞

0

duN>u(dω′),where N>u is the �nite measure 
hara
terized by N>u(F (X)) = N(F (Xs, 0 ≤ s ≤
u), ζ(X) > u) for every non-negative measurable F . This in turn determines entirelythe laws P v for v > 0.Loosely speaking, if v is �random� with �law� the Lebesgue measure on (0,∞), the pre-and post- minimum pro
esses are independent with respe
tive �laws� ∫∞

0
dxP (−x,∞)(dω)and ∫∞

0
duN>u(dω). As a 
onsequen
e of this identity, we have that under P v for some�xed v > 0, 
onditionally on mv and Tmv− = τ , the pro
esses X←− and X−→ are independentwith respe
tive laws P τ

0↓−mv
(dω) and (N>v−τ (1))−1N>v−τ (dω′).Lemma 17 Let z > 0. Under the probability P 1

0→−z, 
onditionally on τ3 − τ1 = t, theranked sequen
e of lengths of the 
onstan
y intervals of the in�mum pro
ess of (Xs+τ1 , 0 ≤
s ≤ τ3 − τ1) have the same law as ∆T[0,z] given Tz = t under P .Proof. We �rst 
ondition by the value of (m, τ3). Then by Lemma 16 the path X←− has thelaw P τ3

0↓−m of the �rst-passage bridge from 0 to −z with lifetime τ3. Applying Lemma 15and the Markov property we obtain that 
onditionally on τ1 the path (Xs+τ1 +m− z, 0 ≤
s ≤ τ3−τ1) is a �rst passage bridge ending at −z at time τ3−τ1. Sin
e it depends only on
τ3 − τ1, we have obtained the 
onditional distribution given τ3 − τ1. Hen
e, the sequen
ede�ned in the lemma's statement has the same 
onditional law as the ranked lengths ofthe 
onstan
y intervals of the in�mum pro
ess of su
h a �rst-passage bridge, that is, ithas the same law as ∆T ′

[0,z] given T ′
z = τ3 − τ1, with T ′ as in the statement. �The last lemma gives an expli
it form for the law of the remaining length 1− τ3 + τ1under P 1

0→−z.Lemma 18 One has
P 1

0→−z(1− τ3 + τ1 ∈ ds) = ds
cαzqz(1− s)

s1/αqz(1)
,whi
h is the law of a size-biased pi
k of the sequen
e ∆T[0,z] given Tz = 1 under P .Proof. By Lemma 16, if s is �distributed� a

ording to Lebesgue measure on R+, then un-der P s, the pro
esses X←− and X−→ are independent with respe
tive �laws� ∫∞

0
dxP (−x,∞)(dω)and ∫∞

0
duN>u(dω′). Our �rst task is to disintegrate these laws to obtain a relation under

P 1
0→−z. Let H and H ′ be two 
ontinuous bounded fun
tionals and f be 
ontinuous witha 
ompa
t support on (0,∞). Then, letting T ω

· = inf{s ≥ 0 : ω(s) < ·},
∫ ∞

0

dsf(s)Es[H(X←−)H ′(X−→) | |Xs + z| < ε]

=

∫ ∞

0

dx

∫ ∞

0

du

∫∫
P (−x,∞)(dω)N>u(dω′)f(T ω

x + u)H(ω)H ′(ω′)
1{|z−x+ω′(u)|<ε}

P (|XT ω
x +u + z| < ε)

=

∫ ∞

0

du

∫
N>u(dω′)H ′(ω′)

∫ ∞

0

dx
1{|z−x+ω′(u)|<ε}

2ε

∫
P (−x,∞)(dω)

f(T ω
x + u)H(ω)

(2ε)−1P (|XT ω
x +u + z| < ε)

.



5 STUDY OF F ♮ 27The measure (2ε)−11{|z−x+ω′(u)|<ε}dx 
onverges weakly as ε → 0 to the Dira
 mass at
z + ω′

u. Re
all that the family of probability measures P (−x,∞) is 
ontinuous as x varies.Sin
e f has 
ompa
t support, we 
an restrain T ω
x + u to stay in a 
ompa
t set. Then, thedenominator in the last integral, whi
h 
onverges to pT ω

x +u(−z), remains bounded and
onverges uniformly in x and u. Then the boundedness of H implies that the two lastintegrals 
onverge to ∫
P (−z−ω′

u,∞)(dω)
f(T ω

z+ω′(u) + u)

pT ω
x +u(−z)

.Now, the measure N>u is a �nite measure, so the fa
t that u a
tually stays in a 
ompa
tset and the fa
t that the two last integrals above remain bounded allow to apply thedominated 
onvergen
e theorem to obtain
∫ ∞

0

dsf(s)P s
0→−z(H(X←−)H ′(X−→))

=

∫ ∞

0

du

∫
N>u(dω′)H ′(ω′)

∫
P (−z−ω′(u),∞)(dω)H(ω)

f(Tz+ω′(u)(ω) + u)

pT ω
x +u(−z)Now we disintegrate this relation by taking f(s) = (2ε)−11[1−ε,1+ε](s), so a similar argu-ment as above gives that the left hand side 
onverges to P 1

0→−z(H(X←−)H ′(X−→)) as ε ↓ 0,whereas the right hand side is
∫ ∞

0

du

∫
N>u(dω′)H ′(ω′)

∫
P (−z−ω′(u),∞)(dω)H(ω)

1[1−ε,1+ε](T
ω
z+ω′(u) + u)

2εpT ω
z+ω′(u)

+u(−z)
.The third integral may be rewritten as

P (|T ω
z+ω′(u) + u− 1| < ε)

2ε
E(−z−ω′(u),∞)

[
H(ω)

pT ω
z+ω′(u)

+u(−z)

∣∣∣∣∣ |T
ω
z+ω′(u) + u− 1| < ε

]
,with a slightly improper writing (the ω's should not appear in the expe
tation, but we keepthem to keep the distin
tion with the expe
tation with respe
t to ω′). Similar argumentsas above imply that the limit we are looking for is

P 1
0→−z(H(X←−)H ′(X−→)) = p1(−z)−1

∫ 1

0

duN>u
[
H ′(ω′)qz+ω′(u)(1− u)E1−u

0↓−(z+ω′(u))[H(ω)]
]
.This in turn 
ompletely determines the law of the bridge by a monotone 
lass argument.A 
areful appli
ation of the above identity thus gives

E1
0→−z[f(1−(τ3−τ1))] = p1(−z)−1

∫ 1

0

duN>u
[
qz+ω′(u)(1− u)E1−u

0↓−(z+ω′(u))[f(u + T ω
ω′(u))]

]
.Applying Lemma 15 to the rightmost expe
tation term, this is equal to

p1(−z)−1

∫ 1

0

duN>u

[
qz+ω′(u)(1− u)

∫ 1−u

0

dv
qω′(u)(v)qz(1− u− v)

qω′(u)+z(1− u)
f(u + v)

]

= p1(−z)−1

∫ 1

0

du

∫ 1

u

dsf(s)qz(1− s)N>u
[
qω′(u)(s− u)

]

= zqz(1)−1

∫ 1

0

dsf(s)qz(1− s)

∫ s

0

duN>u
[
qω′(u)(s− u)

]



5 STUDY OF F ♮ 28It remains to 
ompute the se
ond integral. Using s
aling identities for N>u and qx(s) wehave
∫ s

0

duN>u
[
qω′(u)(s− u)

]
=

∫ 1

0

drN>sr
[
qω′(sr)(s(1− r))

]

= s−1/α

∫ 1

0

drs1/αN>sr
[
qs−1/αω′(sr)(1− r)

]

= s−1/α

∫ 1

0

drN>r
[
qω′(r)(1− r)

]
.Finally, the integral in the right hand side does not depend on s, we 
all it c and obtain

E1
0→−z[f(1− (τ3 − τ1))] =

∫ 1

0

dsf(s)
czqz(1− s)

s1/αqz(1)
.So we ne
essarily have c = cα, and the 
laim follows. �Proof of Proposition 4. The proof is now easily obtained by 
ombining the last lemmas.Under P

1
0→0, 
onditionally on Z

(t)
1 = z, the law of the lengths of 
onstan
y intervals of

V τ2X(t) is obtained by adjoining the term 1− (τ3− τ1) to a sequen
e whi
h, 
onditionallyon 1− (τ3 − τ1) = t, has same law as ∆T[0,z] given Tz = 1 − t under P (Lemma 17). ByLemma 18, 1− (τ3 − τ1) has itself the law of a size-biased pi
k from ∆T[0,z] given Tz = 1under P , so Lemma 1 shows the whole sequen
e has the law of ∆T[0,z] given Tz = 1. Last,by Lemma 3, Z
(t)
1 has density p

(t)
1 (−z)ρ

(t)
1 (z)p1(0)−1dz, entailing the 
laim. �5.3 Proof of Theorem 2To re
over the dislo
ation measure of F ♮, we use the following variation of Lemma 10and [22, Corollary 1℄. For details on size-biased versions of measures on S, see e.g. [13℄,whi
h deals with probability measures, but the results we mention are easily extended to

σ-�nite measures.Proposition 5 Let (F (t), t ≥ 0) be a ranked self-similar fragmentation with 
hara
ter-isti
s (β, 0, ν), β ≥ 0. For every t, let F∗(t) be a random size-biased permutation ofthe sequen
e F (t) (de�ned on a possibly enlarged probability spa
e). Let G be a 
ontin-uous bounded fun
tion on the set of non-negative sequen
es with sum ≤ 1, dependingonly on the �rst I terms of the sequen
e, with support in
luded in a set of the form
{si ∈ [η, 1− η], 1 ≤ i ≤ I}. Then

1

t
E[G(F∗(t)]→

t↓0
ν∗(G),where ν∗ is the size-biased version of ν 
hara
terized by

ν∗(G) =

∫

S

ν(ds)
∑

j1,...,jI

G(sj1, . . . , sjI
)sj1

sj2

1− sj1

. . .
sjI

1− sj1 − . . .− sjI

,where the sum is on all possible distin
t j1, . . . , jI . Moreover, ν 
an be re
overed from ν∗.



6 ASYMPTOTICS 29Proof of Theorem 2. Let G be a fun
tion of the form G(x) = f1(x1) . . . fI(xk) for
x = (x1, x2, . . .) and ∑i xi ≤ 1, with f1, . . . , fI 
ontinuous bounded fun
tions on [0, 1]that are null on a set of the form [0, 1]\]η, 1−η[. Let ∆∗T[0,z] be the sequen
e of the jumpsof T on the interval [0, z], listed in size-biased order (whi
h involves some enlargementof the probability spa
e). Using Lemma 1, it is easy that z 7→ E[G(∆∗T[0,z])|Tz = 1] isa 
ontinuously di�erentiable fun
tion with derivative bounded by some M > 0. Let also
F ♮
∗(t) be the sequen
e F ♮(t) listed in size-biased order. Now by Proposition 4,

N
(1)

[
G(F ♮

∗(t))

t

]
=

1

t
E

[
e−tα+tZ

(t)
1 p1(−Z

(t)
1 )p1(0)−1Ẽ

[
G(∆∗T̃

[0,Z
(t)
1 ]

)
∣∣∣T̃Z

(t)
1

= 1
]]

,where T̃ is a 
opy of T with law Ẽ, independent of the marked pro
ess X. Consider afun
tion f(t, z) that is 
ontinuous in t and x and null at (t, 0) for every t ≥ 0. Then the
ompensation formula applied the subordinator Z(t) between times 0 and 1 gives
1

t
E[f(t, Z

(t)
1 )] =

1

t

∫ 1

0

dx

∫
Cα(1− e−ts)s−α−1dsE[f(t, Z(t)

x + s)− f(t, Z(t)
x )]

→
t→0

Cα

∫ 1

0

dx

∫
s−α ds f(0, s) = Cα

∫
s−αdsf(0, s),as soon as we may justify the 
onvergen
e above. Take

f(t, z) = exp(−tα + tz)p1(−z)p1(0)−1E[G(∆T ∗
[0,z])|Tz = 1],then we have to 
he
k that s−α

E[|f(t, Z
(t)
x + s) − f(t, Z

(t)
x )|] is bounded independentlyon x ∈ [0, 1]. By the hypotheses on G, it is again true that z 7→ f(t, z) is a 
ontinuouslydi�erentiable fun
tion with uniformly bounded derivative, when t stays in a neighborhoodof 0. Hen
e the expe
tation above is bounded by (M ′s ∧M ′′)s−α for some M ′, M ′′ > 0,whi
h allows to apply the dominated 
onvergen
e theorem. By Proposition 5, we obtain,denoting by ν♮ the dislo
ation measure of F ♮,

t−1
N

(1)[G(F ♮
∗(t))] →

t→0

∫

S

ν♮(ds)G(sj1, . . . , sjI
)
∑

j1,...,jI

sj1

sj2

1− si1

. . .
sjI

1− sj1 − . . .− sjI−1

= Cα

∫ ∞

0

ds
s−αp1(−s)

p1(0)
E[G(∆T ∗

[0,s])|Ts = 1],allowing to 
on
lude that ν♮ = ν+ with the same 
omputations as in the proof of Lemma12. �6 Asymptoti
sIn this se
tion we dis
uss asymptoti
 results for F+.6.1 Small-time asymptoti
sProposition 6 Let Z be a non-negative stable (α−1) random variable with Lapla
e trans-form E[exp(−λZ)] = exp(−αλα−1). Denote by ∆1, ∆2, . . . the ranked jumps of (Tx, 0 ≤
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x ≤ Z), where T is as before the stable 1/α subordinator, whi
h is taken independent of
Z. Then

tα/(1−α)(F+
2 (t), F+

3 (t), . . .)
d
→

t→0+
(∆1, ∆2, . . .).We �rst need theLemma 19 Let Z

(t)
1 have the law ρ

(t)
1 (s)ds above, then

t1/(1−α)Z
(t)
1

d
→

t→0+
Z,where Z is as above a stable variable with Lapla
e exponent αλα−1.Proof. Re
all that Z(t) is a subordinator with 
hara
teristi
 exponent given by

E[e−λZ
(t)
1 ] = exp

(
−

∫ ∞

0

Cα(1− e−tx)dx

xα+1
(1− e−λx)

)
.Therefore, evaluating the Lapla
e exponent at the point t1/(1−α)λ, 
hanging variables andusing dominated 
onvergen
e entails

E[exp(−λt1/(1−α)Z
(t)
1 )] →

t→0+
exp

(
−

∫ ∞

0

Cαdy

yα
(1− e−λy)

)
.Thus the 
onvergen
e to some limiting Z. Using now the expli
it value for Cα, we see thatthe Lapla
e exponent of Z has to be αλα−1, as 
laimed. �The proof of Proposition 6 follows the same lines as for Proposition 6 in [21℄, so wewill only sket
h it. One �rst begins with proving that if Z is as in Lemma 3 a randomvariable distributed a

ording to the law that has density ρ

(t)
1 (z)p

(t)
1 (−z)dz/p1(0), then

t1/(1−α)Z 
onverges in law to Z. This is a 
onsequen
e of the pre
eding lemma, sin
e as
t→ 0, X(t) 
onverges to X, so one 
an write

E[g(t1/(1−α)Z)] = E[g(t1/(1−α)Z
(t)
1 )p

(t)
1 (−Z

(t)
1 )/p1(0)],where Z

(t)
1 is distributed as above. By Skorokhod's representation theorem, we may sup-pose that t1/(1−α)Z

(t)
1 
onverges a.s. to its limit in law Z, So it remains to show that a.s.

p
(t)
1 (−Z

(t)
1 )→ p1(0) as t→ 0 to apply dominated 
onvergen
e, and this is done by re
all-ing that p

(t)
1 (z) = e−tα−tzp1(z). Then one reasons by indu
tion just as in [21, Proposition6℄, using the expli
it form of the semigroup of F+.6.2 Large-time asymptoti
sBy a dire
t appli
ation of Theorem 3 in [10℄, one gets the large t asymptoti
 behaviorfor F+. Re
all that the Gamma law with parameter a is the law with density proportionalto xa−1e−x on R+. The moments of this law are given, for r > −a, by

1

Γ(a)

∫ ∞

0

xr+a−1e−xdx =
Γ(a + r)

Γ(a)
.



RÉFÉRENCES 31Proposition 7 De�ne
ρt(dy) =

∞∑

i=1

Fi(t)δtαFi(t)(dy),then ρt is a probability measure that 
onverges in law as t → ∞ to the deterministi
Gamma law with parameter 1− 1/α.Proof. We know by [10, Theorem 3℄ that ρt 
onverges to some probability ρ∞ that is
hara
terized by its moments,
∫ ∞

0

yk/αρ∞(dy) =
α(k − 1)!

Φ′(0+)Φ
(

1
α

)
. . .Φ

(
k−1
α

)for every k ≥ 1, where Φ is the Lapla
e exponent of a subordinator related to a taggedfragment of the pro
ess F+. This exponent depends only on the dislo
ation measure (andnot the index), so it is the same as for F− in [21℄. By taking the expli
it value of Φ (Se
tion3.2 therein), we easily get
∫ ∞

0

yk/αρ∞(dy) =

(
αΓ
(
1 + 1

α

)

Γ
(

1
α

)
)k

Γ
(
1 + k−1

α

)

Γ
(
1− 1

α

) =
Γ
(
1 + k−1

α

)

Γ
(
1− 1

α

) .Repla
ing k by αk, one 
an re
ognize the moments of the Gamma law with the 
laimedparameter. �A
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