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Self-similar fragmentations derived from the stabletree II : splitting at nodesGrégory MiermontDMA, Éole Normale Supérieure,and LPMA, Université Paris VI.45, rue d'Ulm,75230 Paris Cedex 05RésuméWe study a natural fragmentation proess of the so-alled stable tree introduedby Duquesne and Le Gall, whih onsists in removing the nodes of the tree aordingto a ertain proedure that makes the fragmentation self-similar with positive index.Expliit formulas for the semigroup are given, and we provide asymptoti results.We also give an alternative onstrution of this fragmentation, using paths of Lévyproesses, hene ehoing the two alternative onstrutions of the standard additiveoalesent by fragmenting the Brownian ontinuum random tree or using Brownianpaths, respetively due to Aldous-Pitman and Bertoin.Key Words. Self-similar fragmentation, stable tree, stable proesses.A.M.S. Classi�ation. 60J25, 60G52.
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1 INTRODUCTION 21 IntrodutionThe goal of this paper is to investigate a Markovian fragmentation of the so-alledstable tree. It is a model of ontinuum random tree (CRT) depending on a parameter
α ∈ (1, 2] that has been introdued reently by Duquesne and Le Gall [16℄, and whihbasially orresponds to a possible saling limit as n → ∞ of a size n Galton-Watsontree with given progeny distribution. The stable tree is denoted by T . It is a randommetri spae with distane d, whose elements v are alled verties. One of these vertiesis distinguished and alled the root. This spae is a tree in that for v, w ∈ T , there is aunique non-self-rossing path [[v, w]] from v to w in T , whose length equals d(v, w). Forevery v ∈ T , all height of v in T and denote by ht(v) the distane of v to the root. Theleaves L(T ) of T are those verties that do not belong to the interior of any path leadingfrom one vertex to another, and the skeleton of the tree is the set T \ L(T ) of non-leafverties. The branhpoints are the verties b so that there exist v 6= b, w 6= b suh that
[[root, v]] ∩ [[root, w]] = [[root, b]]. With eah realization of T is assoiated the uniformprobability measure µ, alled the mass measure, that is supported by L(T ). Details aregiven in Setion 3.When α = 2, the stable tree is, up to a sale fator, the Brownian CRT of Aldous [2℄.It has been shown by Aldous and Pitman [3℄ that a ertain devie for logging this treegives rise to a fragmentation proess whih is the time-reversed proess of the so-alledstandard additive oalesent. The idea is as follows. The Brownian CRT T is desribedby a σ-�nite length measure ℓ arried by the skeleton (non-leaf verties), and a (uniform)probability measure µ on its leaves, alled the mass measure. For t ≥ 0, onsider a Poissonrandom measure on T with intensity tℓ, in a onsistent way as t varies. When the markedverties of the tree are removed, the tree is deomposed into a random forest, whoseranked µ-masses form an element FAP(t) of the spae

S :=

{
s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,

∞∑

i=1

si ≤ 1

}
.It is atually heked that the sum of omponents of FAP(t) is 1 a.s. Then Bertoin [9℄notied (it was impliit in [3℄) that the proess (FAP(t), t ≥ 0) is an S-valued self-similarfragmentation with index 1/2, in the following sense.De�nition 1 An S-valued self-similar fragmentation with index β ∈ R is an S-valuedMarkov proess starting a.s. from (1, 0, . . .), whih is ontinuous in probability and satis�esthe following fragmentation property :Given F (t) = s = (s1, s2, . . .), the law of F (t+t′) is that of the dereasing rear-rangement of the sequenes siF

(i)(sβ
i t′), i ≥ 1, where the F (i)'s are independentopies of F .Suh fragmentations have been introdued and extensively studied by Bertoin in [8, 9℄.By [5℄, the laws of the self-similar fragmentations are haraterized by a 3-tuple (β, c, ν),where β is the self-similarity index, c ≥ 0 is an erosion oe�ient and, more importantly,

ν is a σ-�nite disloation measure on S that integrates the map s 7→ 1− s1. This measure
ν desribes the �jumps� of the fragmentation proess, i.e. the way sudden disloationsour. Roughly speaking, xβν(ds) is the instantaneous rate at whih an objet with size x



1 INTRODUCTION 3fragments to form objets with sizes xs (see also Lemma 10 below). In [9℄, Bertoin showedthat the erosion of FAP is 0, and that the disloation measure νAP is haraterized by thetwo formulas
νAP(s1 ∈ dx) =

dx√
2πx3(1− x)3

, x ∈ [1/2, 1),and νAP{s : s1 + s2 < 1} = 0 (suh fragmentations are alled binary).The main motivation of the present paper is to seek for a possible generalization of thefragmentation FAP, when the Brownian CRT is replaed by the general α ∈ (1, 2)-stabletree. The game is made interesting in that there are important strutural di�erenes be-tween the Brownian tree and the other stable trees, whih imply that the Aldous-Pitmanfragmentation devie explained above (homogeneous fragmentation on the skeleton) givesrise to a binary fragmentation proess whih is not self-similar. It seems that the fragmen-tations hene obtained are related to the ones studied in [20℄ in relation with the additiveoalesent, but this will be studied elsewhere. The defet in the self-similarity propertyomes from the fat that, ontrary to the Brownian tree whih is binary (its branhpointshave degree 3), the branhpoints of the stable tree are hubs with in�nite degree and withdi�erent �magnitudes�. These are not a�eted by the Aldous-Pitman fragmentation devie,whih a.s. never uts at branhpoints. Therefore, as time passes, this devie reates smalltrees with unusually �large� hubs, whih annot be resaled opies of the initial stabletree. Rather, to obtain self-similarity, it is needed to diretly remove the hubs themselveswith a ertain strategy.Call H(T ) the set of branhpoints of T , whih will also be referred to as the set ofhubs of T when dealing with the stable (α ∈ (1, 2)) tree. To evaluate the magnitude of
b ∈ H(T ), onsider the fringe subtree Tb rooted at b, i.e. the subset {v ∈ T : b ∈ [[root, v]]}.Then one an de�ne the loal time, or width of the hub b as the limit

L(b) = lim
ε↓0

1

ε
µ{v ∈ Tb : d(v, b) < ε} (1)whih exists a.s. and is positive : see Proposition 2 below.Now given a realization of T and for every b ∈ H(T ), take a standard exponentialrandom variable eb, so that the variables eb are independent as b varies (notie that

H(T ) is ountable). For all t ≥ 0 de�ne an equivalene relation ∼t on T by saying that
v ∼t w if and only if the path [[v, w]] does not ontain any hub b for whih eb < tL(b).Alternatively, following more losely the spirit of Aldous-Pitman's fragmentation, we analso say that we onsider Poisson point proess (b(t), t ≥ 0) on the set of hubs withintensity dt ⊗

∑
b∈H(T ) L(b)δb(dv), and for eah t we let v ∼t w if and only if no atom ofthe Poisson proess that has appeared before time t belongs to the path [[v, w]]. We let

T t
1 , T t

2 , . . . be the distint equivalene lasses for ∼t, ranked aording to the dereasingorder of their µ-masses (provided these are well-de�ned quantities). It is easy to see thatthese sets are trees (in the same sense as T ), and that the families (T t
i , i ≥ 1) are nestedas t varies, that is, for every t′ > t and i ≥ 1, there exists j ≥ 1 suh that T t′

i ⊂ T
t

j .If we let F+(t) = (µ(T t
1 ), µ(T t

2 ), . . .), F+ is thus a fragmentation proess in the sensethat F+(t′) is obtained by splitting at random the elements of F+(t). We mention thatthe fragmentation F+ is also onsidered and studied in the work in preparation [1℄, withindependent methods.



1 INTRODUCTION 4We now state our main result, postponing de�nitions and properties of stable subor-dinators to the next setion. Let
Dα =

α(α− 1)Γ
(
1− 1

α

)

Γ(2− α)
=

α2Γ
(
2− 1

α

)

Γ(2− α)
.Theorem 1 The proess F+ is a self-similar fragmentation with index 1/α ∈ (1/2, 1)and erosion oe�ient c = 0. Its disloation measure να is haraterized by

να(G) = DαE
[
T1G(T−1

1 ∆T[0,1])
]for any positive measurable funtion G, where (Tx, 0 ≤ x ≤ 1) is a stable subordinatorwith index 1/α, haraterized by the Laplae transform

E[exp(−λT1)] = exp(−λ1/α) λ ≥ 0,and ∆T[0,1] is the sequene of the jumps of T , ranked by dereasing order of magnitude.In a ompanion paper [21℄, we studied a self-similar fragmentation proess (F−(t), t ≥
0) whih onsisted in the dereasing sequenes of the µ-masses of the onneted ompo-nents of the set {v ∈ T : ht(v) > t} at time t, i.e. the forest obtained by putting asidethe verties of the stable tree height less than t. This fragmentation was studied in theBrownian ase by Bertoin [9℄, although this work does not mention trees and only usesthe enoding height proess, whih is well-known to be twie the standard Brownian ex-ursion, and it was showed that it was self-similar with harateristis (−1/2, 0, νAP) (in[9℄ the disloation measure is found to be 2νAP, but it is done with a di�erent normal-ization, using the standard exursion instead of twie this exursion). In [21℄, we showedthat F− has harateristis (1/α− 1, 0, να), with να as in Theorem 1. Bertoin's observa-tion that the two devies desribed above for fragmenting the Brownian CRT are �dual�(same disloation measure but indies with di�erent signs) is therefore quite surprisinglygeneralized in the larger ontext of stable trees. Heuristially, this is made possible by anexhangeability property of the root of the stable tree with other verties (with respet tothe measure µ), whih indeed suggests that when removing a hub or removing the vertiesbelow a given hub, the subsequent forests will have the same law up to resaling.Let us now present a seond motivation for studying the fragmentation F+. As therest of the paper will show, our proofs involve a lot the theory of Lévy proesses, andompared with the study of F−, whih made a onsequent plae to ombinatori treestrutures, the study of F+ will be mainly �analyti�. The fat that Lévy proesses maybe involved in fragmentation proesses is not new. Aording to [7℄ and [20℄, adding a driftto a ertain lass of Lévy proesses allows to onstrut interesting fragmentations relatedto the entrane boundary of the stohasti additive oalesent. Here, rather than addinga drift, whih by analogy between [4℄ and [7℄ amounts to ut the skeleton of a ontinuumrandom tree with a homogeneous Poisson proess, we will perform a �removing the jumps�operation analog to our inhomogeneous utting on the hubs of the tree.Preisely, let (Xs, s ≥ 0) be the anonial proess in the Skorokhod spae D([0,∞), R)and let P be the law of the stable Lévy proess with index α ∈ (1, 2), upward jumps only,haraterized by the Laplae exponent

E[exp(−λX1)] = exp(λα).



2 SOME FACTS ABOUT LÉVY PROCESSES 5As we will reall from the work of Chaumont [12℄ in the following setion, we may de�nethe law N (1) of the exursion with unit duration of this proess above its in�mum proess.Under this law, Xs = 0 for s > 1, so we let ∆X[0,1] be the sequene of the jumps
∆Xs = Xs − Xs− for s ∈ (0, 1], ranked in dereasing order of magnitude. Consider thefollowing marking proess on the jumps : onditionally on X, let (es, s : ∆Xs > 0) be afamily of independent random variables with standard exponential distribution, indexedby the ountable set of jump-times of X. For every t ≥ 0 let

Z(t)
s =

∑

0≤u≤s

∆Xu1{eu<t∆Xu}.That is, eah jump with magnitude ∆ is marked with probability 1− exp(−t∆) indepen-dently of the other jumps and onsistently as t varies, and Z(t) is the proess that sumsthe marked jumps. We will see that Z(t) is �nite a.s., so we may de�ne X(t) = X − Z(t)under N (1). Let
X(t)

s = inf
0≤u≤s

X(t)
u , 0 ≤ s ≤ 1,and let F ♮(t) be the sequene of lengths of the onstany intervals of the proess X(t),ranked in dereasing order.Theorem 2 The proess (F ♮(t), t ≥ 0) has the same law as (F+(t), t ≥ 0).We organize the paper as follows. In Set. 2 we reall some fats about Lévy proesses,exursions, and onditioned subordinators that will be ruial for our study. In Set. 3we give the rigorous desription of Duquesne and Le Gall's Lévy trees, and rephrase thede�nition of F+ given above in terms of a partition of the unit interval assoiated to aertain marked exursion of a stable Lévy proess. Setions 4 and 5 are then respetivelydediated to the study of F+ and F ♮. Asymptoti results are �nally given onerning thebehavior at small and large times of F+ in Set. 6.2 Some fats about Lévy proesses2.1 Stable proesses, inverse subordinatorsLet (Xs, s ≥ 0) be the anonial proess in the Skorokhod spae D([0,∞), R) of àdlàgpaths on [0,∞). We �x α ∈ (1, 2). Let P be the law on D([0,∞), R) that makes X thespetrally positive stable proess with index α, that is, X has independent and stationaryinrements under P , it has only positive jumps, and its marginal law at some (and thenall) s > 0 has Laplae transform given by the Lévy-Khinthine formula :

E[e−λXs ] = exp(sλα) = exp

(
s

∫ ∞

0

Cαdx

x1+α
(e−λx − 1 + λx)

)
, λ ≥ 0, (2)where Cα = α(α − 1)/Γ(2 − α). A fundamental property of X under P is the salingproperty (

1

λ1/α
Xλs, s ≥ 0

)
d
= (Xs, s ≥ 0) for all λ > 0.



2 SOME FACTS ABOUT LÉVY PROCESSES 6We let (ps(x), s > 0, x ∈ R) be the density with respet to Lebesgue measure of the law
P (Xs ∈ dx), whih is known to exist and to be jointly ontinuous in s and x.Denote by X the in�mum proess of X de�ned by

Xs = inf
0≤u≤s

Xu , s ≥ 0.Let T be the right-ontinuous inverse of the inreasing proess −X de�ned by
Tx = inf{s ≥ 0 : Xs < −x}.Then it is known that under P , T is a stable subordinator with index 1/α, that is, aninreasing Lévy proess with Laplae exponent

E[e−λTx ] = exp(−xλ1/α) = exp

(
−x

∫ ∞

0

cαdy

y1+1/α
(1− e−λy)

) for λ, x ≥ 0,where cα = (αΓ(1− 1/α))−1. We denote by (qx(s), x, s > 0) the family of densities withrespet to Lebesgue measure of the law P (Tx ∈ ds), by [6, Corollary VII.1.3℄ they aregiven by
qx(s) =

x

s
ps(−x). (3)We also introdue the notations P s for the law of of the proesses X under P , killed attime s, and P (−x,∞) := P Tx for the law of the proess killed when it �rst hits −x.Let us now disuss the onditioned forms of distributions of jumps of subordinators. Aneasy way to obtain regular versions for these onditional laws is developed in [23, 24℄. First,we de�ne the size-biased permutation of the sequene ∆T[0,x] of the ranked jumps of T inthe interval [0, x] as follows. Write ∆T[0,x] = (∆1(x), ∆2(x), . . .) with ∆1(x) ≥ ∆2(x) ≥ . . .,and reall that Tx =

∑
i ∆i(x). We de�ne, following [23, 24℄, the size-biased orderedsequene ∆∗

k(x), k ≥ 1 as follows. Let 1∗ be a r.v. suh that
P (1∗ = i|∆T[0,x]) =

∆i(x)

Txfor all i ≥ 1, and set ∆∗
1(x) = ∆1∗(x). Reursively, let k∗ be suh that

P (k∗ = i|∆T[0,x], (j
∗, 1 ≤ j ≤ k − 1)) =

∆i(x)

Tx −∆∗
1(x)− . . .−∆∗

k−1(x)for i ≥ 1 distint of the j∗, 1 ≤ j ≤ k − 1, and �nally set ∆∗
k(x) = ∆k∗(x). ThenLemma 1 (i) For k ≥ 1,

P
(
∆∗

k(x) ∈ dy
∣∣Tx, (∆

∗
j(x), 1 ≤ j ≤ k − 1)

)
=

cαxqx(s− y)

sy1/αqx(s)
dywhere s = Tx −∆∗

1(x)− . . .−∆∗
k−1(x).(ii) Consequently, given Tx = t, ∆∗

1(x) = y, the sequene (∆∗
2(x), ∆∗

3(x), . . .) has thesame law as (∆∗
1(x), ∆∗

2(x) . . .) given Tx = t − y. Conversely, if we are given a randomvariable Y with same law as ∆∗
1(x) given Tx = t and, given Y = y, a sequene (Y1, Y2, . . .)with same law as (∆∗

1(x), ∆∗
2(x)) given Tx = t − y, then (Y, Y1, Y2, . . .) has same law as

(∆∗
1(x), ∆∗

2(x), . . .) given Tx = t.This gives a regular onditional version for (∆∗
i (x), i ≥ 1) given Tx, and thus induesa onditional version for ∆T[0,x] given Tx by ranking.



2 SOME FACTS ABOUT LÉVY PROCESSES 72.2 Marked proessesWe are now going to enlarge the original probability spae to mark the jumps of thestable proess. We let MX be the law of a sequene e = (es, s : ∆Xs > 0) of independentstandard exponential random variables, indexed by the (ountable) set of times wherethe anonial proess X jumps1. We let P(dX, de) = P (dX)⊗MX(de). This probabilityallows to mark the jumps of X, preisely we say that a jump ourring at time s is markedat level t ≥ 0 if es < t∆Xs. Write
Z(t)

s =
∑

0≤u≤s

∆Xu1{eu<t∆Xu)}for the umulative proess of marked jumps at level t. We also let X(t) = X − Z(t). Weknow that the proess (∆Xs, s ≥ 0) of the jumps of X is under P a Poisson point proesswith intensity Cαx−1−αdx on (0,∞), it is then standard that the proess (∆Z
(t)
s , s ≥ 0) isa Poisson point proess with intensity Cαx−α−1(1− e−tx)dx, meaning that under P, Z(t)is a subordinator with no drift and Lévy measure Cαx−α−1(1−e−tx)dx, more preisely itsLaplae transforms are given by

E[e−λZ
(t)
s ] = exp

(
−s

∫ ∞

0

Cα(1− e−tx)
1− e−λx

xα+1
dx

)
= exp(−s(λ + t)α + sλα + stα).We denote by (ρ

(t)
s (x), s, x ≥ 0) the densities of the laws P (Z

(t)
s ∈ dx). It an be heked by[25, Proposition 28.3℄ from the expression of the Lévy measure of Z(t) that these densitiesexist and are jointly ontinuous. Likewise, the proess X(t) is under P a Lévy proess withLévy measure Cαe−txx−α−1dx, and the Laplae transform of X

(t)
s is given by

E[e−λX
(t)
s ] = exp

(
sλαtα−1 + s

∫ ∞

0

Cαe−tx dx

xα+1
(e−λx − 1 + λx)

)
= exp(s(λ + t)α − stα),whih is obtained by dividing the Laplae exponent of Xs by that of Z

(t)
s .We now state an absolute ontinuity result that is analogous to Cameron-Martin'sformula for Brownian motion with drift.Proposition 1 For every t, s ≥ 0, we have the following absolute ontinuity relation :for every positive measurable funtional F ,

E[F (X(t)
u , 0 ≤ u ≤ s)] = E[exp(−stα − tXs)F (Xu, 0 ≤ u ≤ s)].Proof. By the expression for the Laplae exponent of X(t), we get

E[e−λX
(t)
s ] = e−stαE[e−(λ+t)Xs ],hene giving P(X

(t)
s ∈ dx) = e−stα−txP (Xs ∈ dx). The result easily follows by the Markovproperty. �1One way to attah suh variables in a measurable way to the ω-dependent set of times {s : ∆Xs > 0}is to onsider a doubly-indexed family (ei,j , i, j ≥ 1) of iid standard exponential variables independent of

X , and to attah ei,j to the time of ourrene of the i-th largest jump of X in the interval [j − 1, j).



2 SOME FACTS ABOUT LÉVY PROCESSES 8Remark. Suh an identity is a speial ase of the so alled density transformations forLévy proesses, see e.g. [25, Theorem 33.2℄.As a �rst onsequene, it immediately follows that X(t) also has jointly ontinuousdensities under P, whih are given by
p(t)

s (x) =
P(X

(t)
s ∈ dx)

dx
= exp(−stα − tx)ps(x).We let X(t) be the in�mum proess of X(t) and T (t) the right-inverse proess of −X (t),de�ned as we did above de�ne X and T .It is easily obtained that for every t ≥ 0, the proess (X, Z(t)) is again a Lévy proessunder the law P. We will also denote by P

s, P(−x,∞) the laws derived from P s and P (−x,∞)by marking the jumps with MX ; Z(t) and X(t) are then de�ned as before.2.3 Bridges, exursionsFor r ∈ R and s > 0 we will denote by P s
0→r the law of the stable bridge from 0to r with length s, so the family (P s

0→r, r ∈ R) forms a regular onditional version for
P s(·|Xs = r). By [17℄, a regular version (whih is the one we will always onsider) isobtained as the unique law on the Skorokhod spae D([0, s], R) that satis�es the followingabsolute ontinuity relation : for every a ∈ (0, s) and any ontinuous funtional F ,

P s
0→r(F (Xu, 0 ≤ u ≤ s− a)) = E

[
F (Xu, 0 ≤ u ≤ s− a)

pa(r −Xs−a)

ps(r)

]
. (4)We let P

s
0→r be the marked analog of P s

0→r on an enrihed probability spae. Notie thatProposition 1 immediately implies that the bridge laws for the proess X(t) under P arethe same as those of X. Stable bridges from 0 to 0 satisfy the following saling property :under P v
0→0, the proess (v−1/αXvs, 0 ≤ s ≤ 1) has law P 1

0→0.Lemma 2 The following formula holds for any positive measurable f, g, H :
E1

0→0

[
H(X)

∑

0≤s≤1

∆Xsf(s)g(∆Xs)

]

=

∫ 1

0

ds f(s)

∫ ∞

0

dx
Cαp1(−x)

xαp1(0)
g(x)E1

0→−x[H(X ⊕ (s, x))],where X⊕(s, x) is the proess X to whih has been added a jump at time s with magnitude
x. Otherwise said, a stable bridge from 0 to 0 together with a jump (s, ∆Xs) piked a-ording to the σ-�nite measure m(ds, dx) =

∑
u:∆Xu>0 ∆Xuδ(u,∆Xu)(ds, dx) is obtained bytaking a stable bridge from 0 to −x and adding a jump with magnitude x at time s, where

s is uniform in (0, 1) and x is independent with σ-�nite �law� Cαp1(−x)p1(0)−1x−αdx.Proof. By the Lévy-It� deomposition of Lévy proesses, one an write, under P , that
Xs is the ompensated sum

Xs = lim
ε→0

(
∑

0≤u≤s

∆Xu1{∆Xu>ε} − (α− 1)−1Cαε1−αs

)
, s ≥ 0,



2 SOME FACTS ABOUT LÉVY PROCESSES 9where (∆Xu, u ≥ 0) is a Poisson point proess with intensity Cαx−α−1dx, and where theonvergene is almost sure. By the Palm formula for Poisson proesses, we obtain that forpositive measurable f, g, h, H :
E1

[
h(X1)H(X)

∑

0≤s≤1

∆Xsf(s)g(∆Xs)

]

=

∫ 1

0

ds f(s)

∫ ∞

0

dx
Cα

xα
g(x)E1[h(x + X1)H(X ⊕ (s, x))].The result is then obtained by disintegrating with respet to the law of X1. �We now state a useful deomposition of the stable bridge from 0 to 0. Reall that

(ρ
(t)
s (x), x ≥ 0) is the density of Z

(t)
s under P and that X

(t)
1 + Z

(t)
1 = X1, whih is a sumof two independent variables. From this we onlude that (p1(0)−1p

(t)
1 (x)ρ

(t)
1 (x), x ≥ 0) isa probability density on R+.Lemma 3 Take a random variable Z with law P (Z ∈ dz) = p

(t)
1 (−z)ρ

(t)
1 (z)p1(0)−1dz.Conditionally on Z = z, take X ′ with law P 1

0→−z and Z with law P
1(Z(t) ∈ ·|Z

(t)
1 = z),independently. That is, Z is the bridge of Z(t) with length 1 from 0 to z. Then X ′ +Z haslaw P 1

0→0.Remark. The de�nition for the bridges of Z(t) under P
1 has not been given before. Onean either follow an analogous de�nition as (4), or use Lemma 1 about onditioned jumpsof subordinators. We explain this for bridges of T , the onstrution for bridges of Z(t)being similar. Take (∆i, i ≥ 1) a sequene whose law is that of the jumps ∆T[0,1] of Tunder P before time 1, ranked in dereasing order, and onditioned by T1 = z, in thesense of Lemma 1. Take also a sequene (Ui, i ≥ 1) of independent uniformly distributedrandom variables on [0, 1], independent of ∆T[0,1]. Then one heks from the Lévy-It�deomposition for Lévy proesses that the law Qz of the proess T br

s =
∑

∆i1{s≥Ui}, with
0 ≤ s ≤ 1, de�nes as z varies a regular version of the onditional law P 1(T ∈ ·|T1 = z).Proof. Reall that under P

1, X an be written as X(t) + Z(t) with X(t) and Z(t) inde-pendent. Consequently, for f and G positive ontinuous, we have
E1[f(X1)G(X)] = E

1[f(X
(t)
1 + Z

(t)
1 )G(X(t) + Z(t))]so

∫

R

dx p1(x)f(x)E1
0→x[G(X)] =

∫

R

dx p1(x)

∫ ∞

0

dz
p

(t)
1 (x− z)ρ

(t)
1 (z)

p1(x)
f(z)

×E
1[G(X(t) + Z(t))|X

(t)
1 = x− z, Z

(t)
1 = z].Thus, for (Lebesgue) almost every x, the bridge with law P 1

0→x is obtained by taking abridge of X(t) (or X by previous remarks) from 0 to −Zx and an independent bridgeof Z(t) from 0 to Zx, where Zx is a r.v. with law dz p1(x)−1p
(t)
1 (x − z)ρ

(t)
1 (z) on R+. Weextend this result to every x ∈ R by an easily heked ontinuity result for the laws ofbridges whih stems from (4) and the ontinuity of the densities. Taking x = 0 gives theresult. �



3 THE STABLE TREE 10We now turn our attention to exursions. The fat that X has no negative jumpsimplies that −X is a loal time at 0 for the re�eted proess X − X. Let N be the It�exursion measure of X−X away from 0, so that the path of X−X is obtained by onate-nation of the atoms of a Poisson measure with intensity N(dX)⊗dt on D†([0,∞), R)×R+,where D†([0,∞), R) denotes the Skorokhod spae of paths that are killed at some time ζ .Under N , almost every path X starts at 0, is positive on an interval (0, ζ) and dies at the�rst time ζ(X) ∈ (0,∞) it hits 0 again. We let N be the enrihed law with marked jumps.It follows from exursion theory that the Lévy proess (X, Z(t)) under P is obtained bytaking a Poisson point measure∑i∈I δXi,ei,si indexed by a ountable set I, with intensity
N(dX, de) ⊗ ds, writing Z(t),i for the umulative proess of marked jumps for X i andletting

Xs = −si + X i


s−

∑

j:sj<si

ζj(X
j)


and

Z(t)
s =

∑

j:sj<si

Z
(t),j

ζj(Xj) + Z(t),i



s−
∑

j:sj<si

ζj(X
j)



 ,whenever ∑j:sj<si ζj(X
j) ≤ s ≤

∑
j:sj≤si ζj(X

j).If X is stopped at some time s, for any u ∈ [0, s] we de�ne the rotated proess
VuX(r) = (Xr+u −Xu)1{0≤u<s−u} + (X(r − s + u) + Xs −Xu)1{s−u≤r≤s}.Let ms = −Xs and suppose that this minimum is attained only one on [0, s]. We de�nethe Vervaat transform of X as V X = VT (ms−)X, the rotation of X at the time where itattains its in�mum. Provided that X0 = 0 and Xs = Xs− = 0 (say that X is a bridge),

V X is then an exursion-like funtion, starting and ending at 0, and staying positive inthe meanwhile.We will denote by N (v) the law of V X under P v
0→0, and N

(v) the orresponding�marked� version. Call it the law of the exursion of X with duration v. The �Vervaattheorem� in [12℄ shows that N (v) is indeed a regular onditional version for the �law�
N(·|ζ = v) : for any positive measurable funtional F and funtion f ,

N(F (Xs, 0 ≤ s ≤ ζ)f(ζ)) =

∫

R+

f(ζ)N(ζ ∈ dv)N (v)(F (Xs, 0 ≤ s ≤ v)).As for bridges, we also have the saling property at the level of onditioned exursions :under N (v), (v−1/αXvs, 0 ≤ s ≤ 1
) has law N (1). Notie also (either by Vervaat's theoremor diretly, using Proposition 1) that the exursions of X(t) under P, onditioned to havea �xed duration v are the same as that of X under N (v).3 The stable tree3.1 Height Proess, width proessWe now introdue the rigorous de�nition and useful properties of the stable tree. Thissetion is mainly inspired by [16, 14℄. With the notations of setion 2, and for t ≥ 0, let



3 THE STABLE TREE 11
R(t) be the time-reversed proess of X at time t :

R(t)
s = Xt −X(t−s)− 0 ≤ s ≤ t.It is standard that this proess has the same law as X killed at time t under P . Let R

(t)be its supremum proess, and L̂(t) be the loal time proess at level 0 of the re�etedproess R
(t)
− R(t). We let Ht = L̂

(t)
t . The normalization for L̂(t) is hosen so that

Ht = lim
ε↓0

1

ε

∫ t

0

1{R(t)

s − R(t)
s ≤ ε}ds,in probability for every t. It is proved in [16℄ that H admits a ontinuous modi�ation,whih is the one we are going to work with from now on. It has to be notied that Htis not a Markov proess, exept in the ase where X is Brownian motion. As a matterof fat, it an be notied that H admits in�nitely many loal minima attaining the samevalue as soon as X has jumps. To see this, onsider a jump time t of X, and let t1, t2 > tso that inft≤u≤ti Xu = Xti and Xt− < Xti < Xt, i ∈ {1, 2}. Then it is easy to see that

Ht = Ht1 = Ht2 and that one may in fat �nd an in�nite number of distint ti's satisfyingthe properties of t1, t2. On the other hand, it is not di�ult to see that Ht is a loalminimum of H , see Proposition 2 below.It is shown in [16℄ that the de�nition of H still makes sense under the σ-�nite measure
N rather than the probability law P . The proess H is then de�ned only on [0, ζ ], andwe all it the exursion of the height proess. Using the saling property, one an thende�ne the height proess under the laws N (v). Call it the law of the exursion of the heightproess with duration v.The key tool for de�ning the loal time of hubs is the loal time proess of the heightproess. We will denote by (Lt

s, t, s ≥ 0). It an be obtained a.s. for every �xed s, t by
Lt

s = lim
ε→0

1

ε

∫ s

0

1{t<Hu≤t+ε}du. (5)That is, Lt
s is the density of the oupation measure of H at level t and time s. For t = 0,one gets (L0

s, s ≥ 0) = (Xs, s ≥ 0), whih is a reminisent of the fat that the exursionsof the height proess are in one-to-one orrespondene with exursions of X with the samelengths.It is again possible to de�ne the loal time proess under the exursion measures Nand N (v). Duquesne and Le Gall [16℄ have shown that under P , the proess (Lt
Tx

, t ≥ 0)has the law of the ontinuous-stable branhing proess starting at x > 0, with stable (α)branhing mehanism. One an get interpretations for the proess (Lt
ζ , t ≥ 0) under themeasure N or of (Lt

v, t ≥ 0) under N (v) in terms of onditioned ontinuous-state branhingproesses, see [21℄.3.2 The tree strutureLet us motivate the term of �height proess� for H by embedding a tree inside H ,following [19, 2℄. Consider the height proess H under the law N (1). We an de�ne a pseudometri D on [0, 1] by letting D(s, s′) = Hs +Hs′−2 infu∈[s,s′] Hu (with the onvention that
[s, s′] = [s′, s] if s′ < s). Let s ≡ s′ if and only if D(s, s′) = 0.



3 THE STABLE TREE 12De�nition 2 The stable tree (T , d) is the quotient of the pseudo-metri spae ([0, 1], D)by ≡. The root of T is the equivalene lass of 0. The mass measure µ is the Borel measureindued on T by Lebesgue's measure on [0, 1] (so its support is T ).In the sequel, we will often identify T with [0, 1], even if the orrespondene is not one-to-one. Some omments on this de�nition. First, the way the tree is embedded in the funtion
H an seem quite intriate. It is not di�ult, however, to see what its �marginals� looklike. For any �nite set of verties s1, s2, . . . , sk ∈ [0, 1], one reovers the struture of thesubtree spanned by the root and s1, s2, . . . , sk, aording to the following simple rules :� The height of s is ht(s) = Hs.� The ommon anestor of s1, . . . , sk is b = b(s1, . . . , sk) ∈ [min1≤i≤k si, max1≤i≤k si]suh that Hb = inf{Hs : s ∈ [min1≤i≤k si, max1≤i≤k si]}.Notie that all suh b are equivalent with respet to ≡. The fat that (T , d) is indeed atree (a omplete metri spae suh that the only simple path leading from a vertex toanother is the geodesi) is intuitive and proven in [15℄. It follows from the onstrution of�marginals� of T in [16℄ that given µ, µ-a.e. vertex is a leaf of T .We now relate properties on the stable tree to path properties of the underlying Lévyproess we started with to onstrut the height proess. We understand here that X and
H are de�ned under N (1). Reall that Tb stands for the fringe subtree rooted at b.Proposition 2 (i) Eah hub b ∈ H(T ) is enoded by exatly one time τ(b) ∈ [0, 1] suhthat L(b) = ∆Xτ(b) > 0, and L(b) is given by (1) a.s.(ii) If σ(b) = inf{s ≥ τ(b) : Xs = Xτ(b)−}, then Tb = [τ(b), σ(b)]/ ≡.(iii) More preisely, let T 1

b , T 2
b , . . . be the onneted omponents of Tb \{b}, arranged indereasing order of mass. Let ([τi(b), σi(b)], i ≥ 1) be the onstany intervals of the in�mumproess of (Xs −Xτ(b), τ(b) ≤ s ≤ σ(b)), and ranked in dereasing order of length. Then

T i
b = (τi(b), σi(b))/ ≡.Proof. (i) Working �rst under P , �x ℓ > 0 and let τℓ = inf{s ≥ 0 : ∆Xs > ℓ}. Then τℓ is astopping time for the natural �ltration assoiated to X, as well as σℓ = inf{s > τℓ : Xs =

Xτℓ−
}. By the Markov property, the proess X[τℓ,σℓ] = (Xτℓ+s − Xτℓ

, 0 ≤ s ≤ σℓ − τℓ) isindependent of (Xs+σℓ
−Xσℓ

, s ≥ 0), whih has the same law as X, and of (Xs, 0 ≤ s ≤ τℓ)onditionally on its �nal jump ∆Xτℓ
. Now if we remove this jump, that is, if we let

(X̃s, 0 ≤ s ≤ τℓ) be the modi�ation of (Xs, 0 ≤ s ≤ τℓ) that is left-ontinuous at τℓ, then
X̃ has the law of a stable Lévy proess killed at some independent exponential time, andonditioned to have jumps with magnitude less than ℓ. Also, onditionally on ∆Xτℓ

= x,
X[τℓ,σℓ] has the law P (−x,∞) of the stable proess killed when it �rst hits −x. Hene, bythe additivity of the loal time and the de�nition of H , one has that for every s ∈ [τℓ, σℓ],
Hs = Hτℓ

+ H̃s−τℓ
, where H̃ is an independent opy of H , killed when its loal time at 0attains x. Consequently, one has Hs ≥ Hτℓ

for every s ∈ [τℓ, σℓ] and Hσℓ
= Hτℓ

, moreover,one has that for every ε > 0,
inf

(τℓ−ε)∨0≤s≤τℓ

Hs ∨ inf
σℓ≤s≤σℓ+ε

Hs < Hτℓ
, (6)as a onsequene of the following fat. By the left-ontinuity of X at τℓ, for any ε > 0we may �nd s ∈ [τℓ − ε, τℓ] suh that infu∈[s,τℓ] Xu = Xs. This implies Hs = Hτℓ

− L̂
(τℓ)
τℓ−s,and this last term is a.s. stritly less than Hτℓ

beause 0 is is a.s. not a holding point



3 THE STABLE TREE 13for (L̂
(τℓ)
s , 0 ≤ s ≤ τℓ). This last fat is obtained by a time-reversal argument, using thefat that the points of inrease of the loal time L̂(t) orrespond to that of the supremumproess of R(t). Moreover, the fat that X has only positive jumps under P implies thatfor some suitable ε′ > 0, one an �nd some s′ ∈ [σℓ, σℓ + ε′] and some s′′ ∈ [τℓ − ε, τℓ]suh that Hu ≥ Hs′ = Hs′′ for every u ∈ [s′, s′′], and suh that again infu∈[s′′,τℓ] Xu = Xs′′.Thus the laimed inequality. In terms of the struture of the stable tree, (6) implies thata branhpoint b of the tree is present at height Hτℓ

, whih is enoded by all the s ∈ [τℓ, σℓ]suh that Hs = Hτℓ
, i.e. suh that Xs = infu∈[τℓ,s] Xu (there is always an in�nite numberof them). By de�nition, the mass measure of the verties in Tb at distane less than εof b is exatly the Lebesgue measure of {s ∈ [τℓ, σℓ] : H̃s−τℓ

< ε}. Thus by (5) we anonlude that L(b) de�ned at (1) exists and equals L̃0
σℓ−τℓ

= x where L̃ is the loal timeassoiated to H̃. The same argument allows to handle the seond, third, ... jumps thatare > ℓ. Letting ℓ ↓ 0 implies that to any jump of X with magnitude x orresponds a hubof the stable tree with loal time x. By exursion theory and saling, the same propertyholds under N and N (1).Conversely, suppose that b is a branhpoint in the stable tree. This means that thereexist times s1 < s2 < s3 suh that Hs1 = Hs2 = Hs3 and Hs ≥ Hs1 for every s ∈ [s1, s3].Let
τ(b) = inf{s ≤ s2 : Hs = Hs2 and Hu ≥ Hs2∀u ∈ [s, s2]}and
σ(b) = sup{s ≥ s2 : Hs = Hs2 and Hu ≥ Hs2∀u ∈ [s2, s]}(whih are not stopping times). If ∆Xτ(b) > 0, we are in the preeding ase. Suppose that

∆Xτ(b) = 0, then by the same arguments as above, Xs ≥ Xτ(b) for s ∈ [τ(b), σ(b)], elsewe ould �nd some s′ ∈ [τ(b), σ(b)] suh that Hs′ < Hτ(b). Also, the points s ∈ [τ(b), σ(b)]suh that Hs = Hτ(b) must then satisfy Xs = Xτ(b) (else there would be a strit inreaseof the loal time of the reversed proess). This implies that Xτ(b) is a loal in�mum of
X, attained at s. By standard onsiderations, suh loal in�ma annot be attained morethan three times on the interval [τ(b), σ(b)], a.s. But if it was attained exatly three times,then the branhpoint would have degree 3, whih is impossible aording to the analysisof F− in [21℄, whih implies that all hubs of the stable tree have in�nite degree.Assertion (ii) follows easily from this, and (iii) omes from the fat that the points
u ∈ [τ(b), σ(b)] with Hu = Hτ(b) are exatly those points where infr∈[τ(b),u] Xr = Xu, andthe de�nition of the mass measure on T . �3.3 A seond way to de�ne F+We will now give some elementary properties of F+ and rephrase its de�nition diretlyfrom the exursion of the underlying stable exursion X rather than the tree itself. Firstreall that given T , we de�ned F+ through a marking proedure on H(T ) by taking aPoisson proess (b(t), t ≥ 0) with intensity dt ⊗

∑
b∈H(T ) L(b)δb(dv), and by saying that

b is marked at level t if b ∈ {b(s), 0 ≤ s ≤ t}. By proposition 2, F+ an thus be de�nedunder the marked law N
(1). To desribe this onstrution a bit more, we begin with thefollowing



3 THE STABLE TREE 14Lemma 4 Let s ∈ [0, 1], and write v(s) for the vertex of T enoded by s. Then almost-surely, ∑

b∈H(T )∩[[root,v(s)]]

L(b) <∞.In partiular, almost surely, for every hub b ∈ H(T ) and t ≥ 0, there is at most a �nitenumber of hubs marked at level t on the path [[root, b]].Proof. Let s be the leftmost time in [0, 1] that enodes v. It follows from Proposition 2(ii) (and the fat that a.s. under P , every exursion of R(s) below R
(s) ends by a jump)that the hubs b in the path [[root, v]] are all enoded by the times s′ < s suh that R

(s)jumps at time s−s′. This jump orresponds to a jump of the reversed proess R(s), whosemagnitude ∆R
(s)
s−s′ ≥ ∆R

(s)

s−s′ equals L(b) by Proposition 2 (i). Therefore, we have to showthat the sum of these jumps is �nite a.s. By exursion theory and time-reversal, it su�esto show that under P , letting X be the supremum proess of X,
∑

0≤s′≤s:∆Xs′>0

∆Xs′ <∞ , s ≥ 0. (7)Now by exursions and Poisson proesses theories (see e.g. Formula (10) in the proof of[16, Lemma 1.1.2℄), after appropriate time-hange by the inverse loal time at 0 of theproess X −X, the jumps ∆Xs′ that ahieve new suprema form a Poisson point proesswith intensity x × Cαx−1−αdx. Sine this measure integrates x on a neighborhood of 0,the sum in (7) is a.s. �nite.The statement on hubs follows sine for any hub b enoded by a jump-time τ(b), thereis a rational number r′ ∈ [τ(b), σ(b)] whih enodes some vertex v in the fringe subtreerooted at b. Therefore, almost-surely, for every b ∈ H(T ), the sum of widths of the hubson the path [[∅, b]] is �nite. It is then easy to hek that if (x1, x2, . . .) is a sequene with�nite sum and if the i-th term is marked with probability 1− e−txi , then a.s. only a �nitenumber of terms are marked. Therefore, a.s. for every b ∈ H(T ), there is only a �nitenumber of marked hubs on the path [[∅, b]]. �By de�nition, two verties v, w ∈ T satisfy v ∼t w if and only if {b(s) : 0 ≤ s ≤
t} ∩ [[v, w]] = ∅. Let Ht = {b(s) : 0 ≤ s ≤ t}. For b ∈ Ht, let T 1

b , T 1
b , . . . be the onnetedomponents of Tb \{b} ranked in dereasing order of total mass. We know that these treesare enoded by intervals of the form (τi(b), σi(b)) whose union is [τ(b), σ(b)] \ {u : u ≡ b}.De�ne

C(t, b, i) = T i
b \

⋃

b′∈Ht∩T i
b

Tb′ ,so C(t, b, i) is the onneted omponent of the i-th largest subtree growing from b obtainedwhen the hubs marked at level t are deleted. Plainly, C(t, b, i) is an equivalene lass for
∼t for every b ∈ Ht and i ≥ 1. By (iii) in Proposition 2, with obvious notations,

C(t, b, i) ≡ (τi(b), σi(b)) \
⋃

b′∈T b
i ∩Ht

[τ(b′), σ(b′)].We also let C(t, ∅) be the set of verties whose path to the root does not ross anymarked hub at level t, whih is equivalent to [0, 1] \
⋃

b∈Ht
[τ(b), σ(b)]. Then C(t, ∅) is also



3 THE STABLE TREE 15an equivalene lass for ∼t. Intuitively, the lasses C(t, ∅) and C(t, b, i) for b a hub are theequivalene lasses for ∼t that have a positive weight. We will see later that the rest is aset of leaves of mass zero.Let us now translate the relation ∼t in terms of the stable exursion X under N
(1).Let s, s′ ∈ [0, 1] enode respetively the verties v 6= w ∈ T . Again by Proposition 2 (ii),the branhpoint b(v, w) of v and w is enoded by the largest u suh that the proesses

(R
(s)

s−u+r, 0 ≤ r ≤ u) and (R
(s′)

s′−u+r, 0 ≤ r ≤ u) oinide. Let u(s, s′) be the jump-time of Xthat enodes this branhpoint. Then v ∼t w if and only if the (left-ontinuous) proesses
(R

(s)

s−r, u(v, w) ≤ r ≤ s) and (R
(s)

s′−r, u(v, w) ≤ r ≤ s′) never jump at times when markedjumps at level t for X our.In partiular, we may rewrite the equivalene lasses C(t, b, i) and C(t, ∅) as follows.Let zt
1 ≥ zt

2 ≥ . . . ≥ 0 be the marked jumps of X at level t under N
(1), ranked in dereasingorder, and let τ t

1, τ
t
2, . . . the orresponding jump times (i.e. suh that ∆Z

(t)

τ t
i

= zt
i). For every

i, let
σt

i = inf{s > τ t
i : Xs = Xτ t

i −
= Xτ t

i
− zt

i}be the �rst return time to level Xτ t
i −

after time τ t
i . De�ne the intervals I t

i = [τ t
i , σ

t
i ], so

I t
i/ ≡ is the fringe subtree of the marked hub that has width zt

i . Notie that the I t
i 'sare by no means disjoint, sine these fringe subtrees ontain other marked hubs, thatmight even have greater width. For eah i, the jump with magnitude zt

i gives rise to afamily of exursions of X above its minimum. Preisely, let (X t
i,1, X

t
i,2, . . .) the sequeneof exursions above its in�mum of the proess

X t
i (s) = Xτ t

i +s −Xτ t
i

0 ≤ s ≤ σt
i − τ t

i , i ≥ 1where the (X t
i,j, j ≥ 1) are arranged by dereasing order of duration. Let also I t

i,j =

[τ t
i,j, σ

t
i,j ] be the interval in whih X t

i,j appears in X, so that ⋃j I t
i,j = I t

i . Consider the set
Ct

i,j = I t
i,j \

⋃

k:It
k(It

i

I t
k.By Lemma 4, there exists some set of indies k′ suh that I t

k′ ( I t
i,j and so that the I t

k′'sare maximal with this property (else we ould �nd an in�nite number of marked hubs ona path from the root to one of the hubs enoded by the left-end of some I t
k ( I t

i,j). TheLebesgue measure of Ct
i,j is thus equal to

|Ct
i,j| = σt

i,j − τ t
i,j −

∑
(σt

k − τ t
k),where the sum is over the k's suh that I t

k ( I t
i and the I t

k's are maximal with thisproperty. Writing Ct
0 = [0, 1] \

⋃∞
i=1 I t

i , we �nally get (identifying Borel subsets of [0, 1]with Borel subsets of T ) :Lemma 5 The sets Ct
0 and Ct

i,j, for i, j ≥ 1, are a relabeling of the sets C(t, ∅) and
C(t, b, i).Notie also that another onsequene of Lemma 4 is that F+ is ontinuous in proba-bility at time 0. Indeed, as t ↓ 0, the omponent C(t, ∅) of the fragmented tree ontainingthe root inreases to C(0+, ∅). Suppose µ(C(0+, ∅)) < 1 with positive probability. Given
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T take L1, L2, . . . independent with law µ. By the law of large numbers, with positiveprobability a positive proportion of the Li's are separated from the root at time 0+. How-ever, as a onsequene of Lemma 4, a.s. for every n ≥ 1 and t small enough, there is nomarked hub on the paths [[root, Li]], 1 ≤ i ≤ n, hene a ontradition.4 Study of F+The goal of this setion is to study the fragmentation F+ through the representationgiven in the last setion. The �rst step is to study the behavior of the exursion on theequivalene lasses Ct

i,j and Ct
0 de�ned previously.4.1 Self-similarityThis setion is devoted to the proof that F+ is a self-similar fragmentation with index

1/α and no erosion.Let us �rst introdue some notation. Let (f(x), 0 ≤ x ≤ ζ) ∈ D†([0,∞), R) be a àdlàgfuntion with lifetime ζ ∈ [0,∞). By onvention we let f(x) = f(ζ) for x > ζ . We de�nethe unplugging operation UNPLUG as follows. Let ([an, bn], n ≥ 1) be a sequene of disjointlosed intervals with non-empty interior, suh that 0 < an < bn < ζ for every n. De�nethe inreasing ontinuous funtion
x−1(s) = s−

∑

n≥1

(s ∧ bn − an)+ , s ≥ 0,where a+ = a∨0 and where the sum onverges uniformly on [0, ζ ]. We say that the intervals
[an, bn] are separated if x−1(an) < x−1(am) for every n 6= m suh that an < am. This isequivalent to the fat that for every n 6= m with an < am, the set [an, am] \

⋃
i[ai, bi] haspositive Lebesgue measure, and it implies that the onstany intervals of x−1 are exatly

[an, bn], n ≥ 1. If ([an, bn], n ≥ 1) is separated, de�ne x as the right-ontinuous inverse of
x−1, then f ◦ x is àdlàg (notie that (f ◦ x)(s−) = f(x(s−)−) for s ∈ [0, x−1(ζ)]), all it
UNPLUG(f, [an, bn], n ≥ 1). The ation of UNPLUG is thus to remove the bits of the path of fthat are inluded in [an, bn]. Last, if we are given intervals [an, bn] that are not overlapping(i.e. suh that an < am < bn < bm does not happen for n 6= m, though we might have
[an, bn] ⊂ [am, bm]), but suh that there is a separated subsequene ([aφ(n), bφ(n)], n ≥ 1)of maximal intervals that overs ⋃n[an, bn], we similarly de�ne the unplugging operationby simply ignoring the non-maximal intervals.Lemma 6 Let ([an, bn], n ≥ 1) be a sequene of separated intervals, and let π be a partitionof N with bloks π1, π2, . . .. Then, as N → ∞, UNPLUG(f, [an, bn] : n ∈ π1 ∪ . . . ∪ πN)onverges to UNPLUG(f, [an, bn], n ≥ 1) in the Skorokhod topology.Proof. De�ne

x−1
N (s) = s−

∑

n∈π1∪...∪πN

(s ∧ bn − an)+ , s ≥ 0.The separation of intervals ensures that every jump of x orresponds to a jump of xN forsome large N , and it is not hard to see that this implies xN(x−1
N (x(s))) = x(s) for all s.



4 STUDY OF F+ 17Sine f ◦ x is àdlàg with duration ζ ′ = ζ −
∑

n(bn − an), for every N we may �nd asequene of times 0 = s0 < s1 < s2 < . . . < sk(N) = ζ ′ suh that the osillation
ω(f ◦ x, [si, si+1)) = sup

s,s′∈[si,si+1)

|f ◦ x(s)− f ◦ x(s′)| →
N→∞

0,this uniformly in 1 ≤ i < k(N). Let also sN
i = x−1

N (x(si)) be the orresponding times for
f ◦ xN . We build a time hange λN (a stritly inreasing ontinuous funtion) by setting
λN(si) = sN

i for 1 ≤ i ≤ k(N), and interpolating linearly between these times. Easily
|λN(si)− si| ≤

∑
n/∈π1∪...∪πN

(bn− an)→ 0, and it follows that λN onverges pointwise anduniformly to the identity funtion of [0, ζ ′]. On the other hand, f ◦x(si) = f ◦xN ◦λN(si),so for s ∈ (si, si+1),
|f ◦ xN ◦ λN (s)− f ◦ x(s)| ≤ ω(f ◦ x, [si, si+1)) + |f ◦ xN ◦ λN (s)− f ◦ xN ◦ λN(si)|.To bound the seond term, notie that xN ((sN

i , sN
i+1)) ⊂ x((si, si+1))∪

⋃
n/∈π1∪...∪πN

[an, bn].Therefore
|f ◦ xN ◦ λN(s)− f ◦ xN ◦ λN(si)| ≤ ω(f ◦ x, [si, si+1))

+ sup
n/∈π1∪...∪πN

(f(an)− f(an−) + ω(f, [an, bn])).We an onlude that f ◦ xN ◦ λN onverges uniformly to f ◦ x sine the osillation
ω(f, [an, bn]) onverges to 0 uniformly in n /∈ π1 ∪ . . . ∪ πN as N →∞, as does the jump
f(an)− f(an−). �Under the law P

(−z,∞) under whih X is killed when it �rst attains −z, for every t > 0we let zt
1 ≥ zt

2 ≥ . . . ≥ 0 be the marked jumps of X at level t, ranked in dereasing orderof magnitude, and τ t
i be the time of ourrene of the jump with magnitude zt

i , while σt
i isthe �rst time after τ t

i when X hits level Xτ t
i −

(notie that τ t
i , σ

t
i are not stopping times).Similarly as before, we let I t

i = [τ t
i , σ

t
i ].Lemma 7 For every z, t ≥ 0, the proess UNPLUG(X, (I t

i : i ≥ 1)) has same law as X(t)under P, killed when it �rst hits −z.Part of this lemma is that it makes sense to apply the unplugging operation with theintervals I t
i , that is, that these intervals admit a separated overing maximal sub-family.Proof. The fat that the intervals I t

i admit a overing maximal sub-family is obtainedby re-using the proof of Lemma 4 and the argument given just after the de�nition of Ct
i,jin the preeding setion. Next, write X = X(t) + Z(t). For a > 0, let τ t,a

1 be the time ofthe �rst jump of Z(t) that is > a, and let σt,a
1 = inf{u ≥ τ t,a

1 : Xu = Xτ t,a
1 −}. Reursively,let τ t,a

i+1 = inf{u ≥ τ t,a
i : ∆Z

(t)
u > a} and σt,a

i+1 = inf{u ≥ τ t,a
i+1 : Xu = Xτ t,a

i+1−
}. Let

Z
(t,a)
s =

∑
u≤s ∆Z

(t)
u 1

{∆Z
(t)
u ≤a}

. The τ t,a
i 's are stopping times for the �ltration generatedby (X(t), Z(t)), as well as the σt,a

i 's. By a repeated use of the Markov property at thesetimes we get
UNPLUG(X; (I t

i : zt
i > a))

d
= X(t) + Z(t,a),where this last proess is killed at the time T

(t,a)
z when it �rst hits −z. In partiular,

Tz −
∑

i(σ
t,a
i − τ t,a

i ) has the same law as T
(t,a)
z , whih onverges in law to T

(t)
z as a ↓
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0 beause Z(t,a) onverges to 0 uniformly on ompat sets, and X(t) enters (−∞,−z)immediately after T

(t)
z by the Markov property and the fat that 0 is a regular pointfor Lévy proesses with in�nite total variation. Therefore, writing |I t

i | for the Lebesguemeasure of I t
i , Tz −

∑′
k |I

t
k| (where the sum is over the I t

k that are maximal) has samelaw as T
(t)
z , and in partiular it is nonzero a.s. Now to hek that the intervals I t

i areseparated (we are only interested by those whih are maximal), onsider two left-ends ofsuh intervals suh as τ t,a
i < τ t,a

j (where a is small enough). The regularity of 0 for theLévy proess X implies that infs∈[σt,a
i ,τ t,a

i ] Xs < Xσt,a
i
, so by the same arguments as aboveand the Markov property at σt,a

i , there exists a (random) εa
i,j > 0 suh that given εa

i,j,
τ t,a
j − σt,a

i −
∑

It
k⊂[σt,a

i ,τ t,a
j ]

|I t
k|1{It

k maximal}is stohastially larger than T
(t)
εa
i,j
. This ensures the a.s. separation of the I t

k's, so the a.s.onvergene of UNPLUG(X, (I t
i : zt

i > a)) to UNPLUG(X, (I t
i , i ≥ 1)) as a ↓ 0 omes fromLemma 6. Identifying the limiting law follows from the above disussion. �Now let as before X t

i (s) = Xτ t
i +s − Xτ t

i
for 0 ≤ s ≤ σt

i − τ t
i and i ≥ 0, where byonvention τ t

0 = 0, and σt
0 = T1. We write −τ t

i + I t
k = [τ t

k − τ t
i , σ

t
k − τ t

i ]. The next lemmadoes most of the job to extrat the di�erent tree omponents of the logged stable tree attime t.Lemma 8 (i) Under the law P
(−1,∞), as a ↓ 0, the proesses UNPLUG(X t

i , (−τ t
i +I t

k, k : I t
k (

I t
i and zt

k > a)), i ≥ 1 onverge in D†([0,∞), R) to the proesses Y t
i = UNPLUG(X t

i , (−τ t
i +

I t
k, k : I t

k ( I t
i )), i ≥ 1.(ii) The proess Y t

i has the same law as zt
i + X(t) under P, killed when it �rst hits 0,and these proesses are independent onditionally on (zt

i , i ≥ 1).(iii) The sum of the durations of Y t
i , i ≥ 0 equals T1 a.s.Proof. (i) Fix a > 0, we modify slightly the notations of the preeding proof by letting

τ t,a
1 < . . . < τ t,a

k(a) be the times when Z(t) aomplishes a jumps that is > a, and letting
σt,a

i = inf{u ≥ τ t,a
i : Xu = Xτ t,a

i −}. Let also τ t,a
0 = 0, σt,a

0 = T1. Write I t,a
i = [τ t,a

i , σt,a
i ],and let X t,a

i (s) = Xτ t,a
i +s − Xτ t,a

i
for 0 ≤ s ≤ σt,a

i − τ t,a
i . By the Markov property attimes τ t,a

i , σt,a
i , we obtain that for every i, X t,a

i is independent of UNPLUG(X, I t,a
i ) giventhe jump ∆Xτ t,a

i
. By a repeated use of the Markov property, we obtain the independeneof the proesses UNPLUG(X t,a

i , (−τ t
i + I t,a

k : I t,a
k ( I t,a

i )) given (∆Xτ t,a
i

, 1 ≤ i ≤ k(a)),and moreover, the law of X t,a
i given ∆Xτ t,a

i
is that of X under P , killed when it �rsthits −∆Xτ t,a

i
. Letting a ↓ 0 and applying Lemma 7 �nally gives the onvergene to theproesses Y t

i , as well as the onditional independene and the distribution of the proesses,giving also (ii).(iii) Let us introdue some extra notation. Say that the marked jump with magnitude
zt

i is of the j-th kind if and only if the future in�mum proess (infs≤u≤τ t
i
Xu, 0 ≤ s ≤ τ t

i )aomplishes exatly j jumps at times that orrespond to marked jumps of X. Write |I t
i |for the duration of X t

i and let Aj be the set of indies i suh that τ t
i is a jump time of the

j-th kind. By a variation of Lemma 4 already used above, every marked jump is of the
j-th kind for some j a.s. By Lemma 7 the duration of Y t

0 is T1−
∑

i∈A1
|I t

i |, similarly, one



4 STUDY OF F+ 19has that if i ∈ Aj , the duration of Y t
i equals |I t

i |−
∑

k∈Aj+1
|I t

k|1{It
k⊂It

i}
. Therefore, provingthat the sum of durations of Y t

i equals T1 amounts to showing that ∑i∈Aj
|I t

i | → 0 inprobability as j →∞. But the sum of the marked jumps is �nite a.s., sine onditionallyon a marked jump zt
i , the duration of the orresponding X t

i has same law as Tzt
i
, and sinewe have independene as i varies. Hene this sum is (onditionally on (zt

i , i ≥ 1)) equal inlaw to T∑
i∈Aj

zt
i
under P, and it onverges to 0. �Lemma 9 The proess (F+(t), t ≥ 0) is a Markovian self-similar fragmentation withindex 1/α. Its erosion oe�ient is 0Proof. For every v > 0, de�ne the proesses X t

i under N
(v) as in the preeding setion,replaing the duration 1 by v. By virtue of Lemma 8 and by exursion theory, we obtainthat for almost every v > 0, and for all t in a dense ountable subset of R+, under N

(v), theproesses UNPLUG(X t
i , (−τ t

i + I t
k : I t

k ( I t
i and zt

k > a)) onverge as a ↓ 0 to proesses Y t
ithat are independent onditionally on the zt

i 's and on their durations, and whose durationssum to v (by onvention we let X t
0 = X). By saling, this statement remains valid for

v = 1. We then extend it to all t ≥ 0 by a ontinuity argument. The ase t = 0 is obvious,so take t0 > 0 and t ↑ t0 in the dense subset of R+. Almost surely, t0 is not a time atwhih a new hub is marked, so X t0
i = X t

i for t lose enough of t0, and by Lemma 6 andthe fat that {I t
i , i ≥ 0} ⊂ {I t0

i , i ≥ 0} for t ≤ t0,
Y t0

i = UNPLUG(X t
i , (−τ t

i + I t0
k : I t0

k ( I t0
i )) = lim

t↑t0
UNPLUG(X t

i , (−τ t
i + I t

k : I t
k ( I t

i )).Now reall the notation X t
i,j, I

t
i,j = [τ t

i,j , σ
t
i,j] from Set. 3.3, and for j ≥ 1 write Y t

i,j =
UNPLUG(X t

i,j, (−τ t
i,j + I t

k : I t
k ( I t

i,j)) for the exursions of Y t
i above its in�mum, ranked inthe order orresponding to Xi,j. Then by the same arguments as in the proof of Lemma7, the joint law of the durations of Y t

0 , Y t
i,j, i ≥ 1, j ≥ 1 equals the law of (|Ct

0|, |C
t
i,j|, i ≥

1, j ≥ 1) with notations above. Hene, by Lemma 5 and the fat that exursions of X(t)with presribed duration are stable exursions, it holds that onditionally on F+(t) =
(x1, x2, . . .), the exursions Y t

i,j are independent stable exursions with respetive durations
x1, x2, . . ..Now let ∼t,i,j

t′ be the equivalene relation de�ned for the exursion Y t
i,j in a similar wayas ∼t for the normalized exursion of X. Write also jt(u) = u− τ t

i,j−
∑

k:It
k(It

i ,σt
k<u |I

t
k| for

u ∈ [0, 1], whenever u ∈ Ct
i,j. Then it is lear that if x, y ∈ Ct

i,j, one has also x ∼t+t′ y ifand only if jt(x) ∼t,i,j
t′ jt(y). By the saling property, a stable exursion εx with duration xwhere every jump with magnitude ℓ is marked with probability 1− exp(−t′ℓ) is obtainedby taking a normalized exursion (ε1

s, 0 ≤ s ≤ 1), marking every jump with magnitude
ℓ independently with probability 1 − exp(−t′x1/αℓ), and then letting εx

s = x1/αε1
s/x for

0 ≤ s ≤ x ; the marked jumps of εx ourring at the times sx whenever s is a markedjump time for ε1. This means that given F+(t) = (x1, . . .), the proess (F+(t + t′), t′ ≥ 0)has the same law as ((x1F
+,1(x

1/α
1 t′), x2F

+,2(x
1/α
2 t′), . . .)↓, t′ ≥ 0) where the F+,i's areindependent opies of F+. This entails both the Markov property and the self-similarproperty, the self-similarity index being 1/α. Moreover, Lemma 8 (iii) shows that the sumof durations of Y t

i,j is 1 a.s. under N
(1), so ∑i F

+
i (t) = 1 a.s. and the erosion oe�ientmust be 0 aording to [9℄.To onlude, we notie that the previous result of ontinuity in probability of F+ attime 0 extends to any time t ≥ 0 by the self-similar fragmentation property. �



4 STUDY OF F+ 204.2 Splitting rates and disloation measureTo omplete the study of the harateristis of F+, we must identify the disloationmeasure. This is done by omputing the splitting rate of the stable tree, that is, the rateat whih the tree with mass 1 instantaneously splits into a sequene of subtrees with givenmasses s1 ≥ s2, . . . with ∑i si = 1, by analogy with the splitting rate of the BrownianCRT in [3℄.We will need the following lemma from [22℄, whih is similar to Lévy's method toompute the jump measure of a Lévy proess.Lemma 10 Let (F (t), t ≥ 0) be a self-similar fragmentation with index β ≥ 0 and erosionoe�ient c = 0. Then for every funtion G that is ontinuous and null on a neighborhoodof (1, 0, . . .) in S,
t−1E[G(F (t))]→

t↓0
ν(G).Reall that our marking proess on the hubs of the tree amounts to taking a Poissonproess with intensity m(dv) =

∑
b L(b)δb(dv) on T , where the sum is over hubs b ∈ T . For

v ∈ T , let T1(v), T2(v), . . . be the tree omponents of the forest obtained when removing
v, arranged by dereasing order of masses, and let

r(ds) = N (1) (m{v ∈ T : (µ(T1(v)), µ(T2(v)), . . .) ∈ ds})be the rate at whih a m-piked vertex splits T into trees with masses in a volume element
ds (reall that the stable tree is de�ned under the normalized exursion law N (1)). It isquite intuitive that the splitting rate equals the disloation measure of F+, and Theorem1 redues to the two following lemmas :Lemma 11 The splitting rate r(ds) equals the disloation measure ν+ of F+.Proof. For t ≥ 0 we let T (t) be the forest obtained by our logging proedure of the stabletree at time t. Let n ≥ 2, and onsider n leaves L1, . . . , Ln ∈ T that are independentand distributed aording to the mass measure µ, onditionally on µ (we are impliitlyworking on an enlarged probability spae). Write Πn(t) for the partition of [n] = {1, . . . , n}obtained by letting i and j be in the same blok of Πn(t) if and only if Li and Lj belongto the same tree omponent of T (t). For K > 2 let Λn

K(t) be the event that at time t,the leaves L1, . . . , Ln are all ontained in tree omponents of T (t) with masses > 1/K.Write P∗
n for the set of partitions π of [n] = {1, . . . , n} with at least two non void bloks

A1, . . . , Ak (for some arbitrary ordering onvention). Given F+(t) = s = (s1, s2, . . .), theprobability that Πn(t) equals some partition π ∈ P∗
n and that Λn

K(t) happens is
GK(s) = N

(1)(Πn(t) = π, Λn
K(t)|F+(t) = s) =

∗K∑

i1,...,ik

k∏

j=1

s
#Aj

ij
,the sum being over pairwise distint ij 's suh that sij > 1/K. This last funtion isontinuous and null on a neighborhood of (1, 0, . . .), so Lemma 10 (whih we may use byLemma 9) gives

lim
t↓0

t−1
N

(1)(Πn(t) = π, Λn
K(t)) =

∫

S

ν+(ds)

∗K∑

i1,...,ik

k∏

j=1

s
#Aj

ij
. (8)



4 STUDY OF F+ 21We laim that knowing this quantity for every n, π, K haraterizes ν+. One an obtainthis by �rst letting K →∞ by monotone onvergene, and then using an argument basedon exhangeable partitions as in [18, p. 378℄ (a Stone-Weierstrass argument an also work).On the other hand, for any b in the set H(T ) of branhpoints of T , let πb
n be thepartition of [n] obtained by letting i and j be in the same blok if and only if b is not onthe path from Li to Lj . Let also TLi

(b) be the tree omponent of the forest obtained byremoving b from T that ontains Li. For K ∈ (2,∞] and π ∈ P∗
n, let Ψn

K(π) be the set ofbranhpoints b ∈ T suh that πb
n = π and suh that µ(TLi

(b)) > 1/K for 1 ≤ i ≤ n, and let
Ψn

K =
⋃

π∈P∗
n
Ψn

K(π). Reall that we may onstrut the fragmentation F+ by utting thestable tree at the points of a Poisson point proess (b(s), s ≥ 0) with intensity ds⊗m(db).Now for Πn(t) = π to happen, it is plainly neessary that at least one b(s) falls in Ψn
∞ forsome s ∈ [0, t], if in addition Λn

K(t) happens then no b(s), 0 ≤ s ≤ t must fall in Ψn
∞ \Ψn

K .Therefore,
N

(1)(Πn(t) = π, Λn
K(t)) = N

(1) (∃! s ∈ [0, t] : b(s) ∈ Ψn
∞, and b(s) ∈ Ψn

K(π), Λn
K(t))+R(t),(9)where the residual R(t) is bounded by the probability that b(s) falls in Ψn

∞ for at least two
s ∈ [0, t]. Hene R(t) = o(t) by standard properties of Poisson proesses provided we anshow that N (1)[m(Ψn

∞)] <∞. This ould be shown using the forthoming lemma, but wemay also just notie that if N (1)[m(Ψn
∞)] was in�nite, then there would be arbitrarily many

b(s), 0 ≤ s ≤ t falling in Ψn
∞ \ Ψn

K for some appropriately large K, and the probabilityin (9) would be 0, whih is impossible from the beginning of this proof and sine F+is a self-similar fragmentation with nonzero disloation measure (beause it has erosionoe�ient 0 and it is not onstant). On the other hand, onditionally on the event onthe right-hand side of (9), the b(s), 0 ≤ s ≤ t that do not fall in Ψn
∞ (all them b′(s))form an independent Poisson point proess with intensity m(· ∩ H(T ) \ Ψn

∞). Therefore,the size of the tree omponent of the forest obtained when removing the points b′(s), 0 ≤
s ≤ t that ontains L1 onverges a.s. to 1 as t ↓ 0 (so it also ontains the other Li'sfor small t a.s.), as it is stohastially bigger than the omponent of T (t) ontaining
L1, and sine F+(t) → (1, 0, . . .) in probability as t ↓ 0. It follows that one an remove
Λn

K(t) from the right-hand side of (9), and basi properties of Poisson measures �nallygive t−1
N

(1)(Πn(t) = π, Λn
K(t)) → N

(1)[m(Ψn
K(π))] = N (1)[m(Ψn

K(π))]. This last quantityis �nally equal to ∫
S

r(ds)
∑∗K

i1,...,ik

∏k
j=1 s

#Aj

ij
sine Li belongs to B ⊂ T with probability

µ(B) that is equal to the Lebesgue measure of the subset of [0, 1] enoding B. Identifyingwith (8) gives the laim. �Lemma 12 One has r(ds) = να(ds) with the notations of Theorem 1.Proof. We must see what is the e�et of splitting T at a hub b piked aording to m(dv).By de�nition, m piks a hub proportionally to its loal time, and by Proposition 2, hubsare in one-to-one orrespondene with jumps of the stable exursion with duration 1. Morepreisely, if b is the hub that has been piked and with the notations τ(b), σ(b) above, themasses of the tree omponents obtained when removing b are equal to the lengths of theonstany intervals of the in�mum proess of (Xτ(b)+s −Xτ(b), 0 ≤ s ≤ σ(b) − τ(b)), andthe extra term 1−(σ(b)−τ(b)). By Vervaat's theorem, we may suppose that the exursionis the Vervaat transform of a stable bridge and that the marked jump in the exursionorresponds to a jump (s, ∆Xs) of the bridge piked aording to the σ-�nite measure
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∑

u:∆Xu>0 ∆Xuδ(u,∆Xu)(ds, dx). By Lemma 2, this marked jump equals (s, x) aording toa ertain σ-�nite �law�, while given (s, ∆Xs) = (s, x), the bridge X has the same law as
X ⊕ (s, x), under the law P 1

0→−x.Therefore, we have have obtained a representation of the exursion together with amarked jump as a bridge X with law P 1
0→−x, where x is independent with some σ-�nite�law�, to whih has been added the marked jump of size x at an independent uniformtime s, and whih has �nally undergone the Vervaat transformation. Using the invarianeof bridge laws under independent yli shifts, it is now easy to see that the lengths ofthe onstany intervals of (Xτ(b)+s − Xτ(b), 0 ≤ s ≤ σ(b) − τ(b)) de�ned above have thesame law as the intervals of onstany of the in�mum proess of (Xs′+s−Xs, 0 ≤ s′ ≤ Tx)under P 1

0→−x (with x as above), while the remaining term 1− (σ(b)− τ(b)) has (jointly)law 1− Tx.It is now easy that onditionally on x, Tx = t these onstany intervals have the samelaw as ∆T[0,x] given Tx = t under P (one atually heks that (Xu, 0 ≤ u ≤ Tx) is the�rst-passage bridge with law P t
0↓−x de�ned before Lemma 15 below). The law of 1 − Txgiven x is simply obtained by using the de�nition of bridges and the Markov property :for a < 1 and positive measurable f ,

E1
0→−x[f(1− Tx)1{Tx<a}] = E1[f(1− Tx)1{Tx<a}p1(−x)−1p1−a(−x−Xa)]

=

∫ a

0

ds qx(s)f(1− s)p1(−x)−1

∫
dy pa−s(y)p1−a(−y)

→
a→1

∫ 1

0

ds qx(s)f(1− s)p1−s(0)p1(−x)−1.In the last integral, hange variables 1− s→ s, use p1(−x) = x−1qx(1), hek by salingthat ps(0) = s−1/αp1(0), and onlude by identifying with Lemma 1 that 1 − Tx under
P 1

0→−x has same law as a size-biased pik from ∆T[0,x] given Tx = 1 under P (notie thatin partiular we must have p1(0) = cα). By Lemma 1 (ii), it follows that given the loaltime x of the marked hub b, the law of the sizes of the stable tree split at this hub is thesame as that of ∆T[0,x] given Tx = 1 under P .Putting piees together and realling the distribution of the marked jump x fromLemma 2 we obtain the formula
r(ds) =

∫ ∞

0

dx
Cαp1(−x)

xαp1(0)
P (∆T[0,x] ∈ ds|Tx = 1).By using the saling property for T and its density (qx(1) = x−αq1(x

−α)), formula (3) anda hange of variables, we obtain
r(ds) =

∫ ∞

0

dx
Cαq1(x

−α)

cαx2α+1
P (T−1

1 ∆T[0,1] ∈ ds|T1 = x−α)

= α−1c−1
α Cα

∫ ∞

0

du u q1(u)P (T−1
1 ∆T[0,1] ∈ ds|T1 = u),whih gives the desired formula, after heking that α−1c−1

α Cα = Dα. �



5 STUDY OF F ♮ 235 Study of F ♮Reall the onstrution of F ♮ (under the measure N
(1)) from Set. 1. As notied above,this fragmentation proess somehow generalizes the one onsidered in [7, 20℄ (we ouldatually build it in an analogous way for a large lass of Lévy proesses with no negativejumps, though the resulting fragmentations would not be self-similar due to the abseneof saling). Notie that none of the fragmentation proesses of [20℄ are self-similar, but forthe Brownian ase. The reason for this was a lak of a Girsanov-type theorem saying thata Lévy proess plus drift has a law that is absolutely ontinuous with the initial proess,but for the Brownian ase. Here, this is �xed by Proposition 1, but where the operationis removing jumps rather than adding a drift.5.1 The self-similar fragmentation propertyFor any t′ > t ≥ 0 let µt(x, ds) be a kernel from R∗

+ to S de�ned as follows : µt(x, ds)is the law of the ranked lengths of the onstany intervals of the proess X(t) under N
(x).Moreover, de�ne F ♮,1 exatly as F ♮, but where X is under the law P

(−1,∞). In partiular,
F ♮,1(t) is not S-valued (the sum of its omponents is random).Proposition 3 (i) The proesses F ♮,1 and F ♮ enjoy the fragmentation property, with frag-mentation kernel µt(x, ds). That is, onditionally on F ♮,1(t) = (x1, x2, . . .) (resp. F ♮(t)),
F ♮,1(t + t′) (resp. F ♮(t + t′)) has the same law as the dereasing rearrangement of inde-pendent sequenes si with respetive laws µt′(xi, ds).(ii) The proess F ♮ is a self-similar fragmentation with index 1/α, and no erosion.The fat that F ♮ is a fragmentation proess diretly omes from the fat that theproesses X(t′) −X(t) = Z(t) − Z(t′) are non-inreasing. We now prove the fragmentationproperty. The key lies in a Skorokhod-like relation that is analogous to that in [7℄ andgeneralized in [20℄.Lemma 13 For every t, t′ ≥ 0 and s ≥ 0, one has

X(t)
s = inf

0≤u≤s
(X(t+t′)

u + (Z(t+t′)
u − Z(t)

u )).The proof an be done following exatly the same lines as in [7, Lemma 2℄. As aonsequene, we obtain that the sigma-�eld Gt = σ{X(t), (Z(s), 0 ≤ s ≤ t)} indues a�ltration, with respet to whih F ♮,1 is adapted.The end of the proof of the fragmentation property in Proposition 3 also goes as in [7℄.For any variable K that is Gt-measurable, the exursions of X(t) above its in�mum andbefore time T
(t)
K are independent exursions onditionally on Gt, respetively onditioned tohave durations ℓ

(t)
1,X , ℓ

(t)
2,X , . . . where the last family is the dereasing sequene of onstanyintervals of X(t) before time T

(t)
K . Take K = X

(t)
T1
, whih is measurable with respet to Gt byvirtue of the Skorokhod property. Then T

(t)
K = T1, whih gives readily that onditionallyon Gt, the exursions of X(t) above X(t) are independent with durations (F ♮,1

i (t), i ≥ 0).To onlude, it remains to notie that the lak of memory of the exponential lawimplies that the jumps that are unmarked at time t but that are marked at time t + t′



5 STUDY OF F ♮ 24an be obtained also by marking with probability 1− e−t′ℓ any unmarked jump at time tthat has magnitude ℓ. Thus, onditionally on F ♮,1(t), we obtain a sequene with the samelaw as F ♮,1(t + t′) by taking independent sequenes (si, i ≥ 1) with laws µt′(F
♮,1
i (t), ds)and rearranging, as laimed. This remains true for F ♮ by exursion theory and saling.To show the self-similarity for F ♮, it then su�es to hek, using the saling propertyof the exursions of stable proesses, that µt(x, ds) is the image of µtx1/α(1, ds) by s 7→ xs.The fat that F ♮ has no erosion again omes from the fat that ∑i F

♮
i (t) = 1 a.s.5.2 The semigroupAording to the preeding setion, and sine plainly there is no loss of mass in thefragmentation F ♮ (so the erosion oe�ient is 0), proving Theorem 2 requires only to hekthat the disloation measure of F ♮ equals that of F+. It is intuitively straightforward thatthis is the ase, by looking at the proedure we use for deleting jumps, and indeed weould easily follow the same lines as above and ompute a �splitting rate� for the bridge,when the ��rst� marked jump is deleted. However, a nie feature of this fragmentationis that we an ompute expliitly its semigroup (hene that of F+), as will follow. Thesemigroup then gives enough information to re-obtain the disloation measure, and thiswill prove Theorem 2. Reall from Set. 2 that ρ

(t)
1 is the density of Z

(t)
1 under P.Proposition 4 The semigroup of F ♮ is given by

N
(1)(F ♮(t) ∈ ds) =

∫ ∞

0

dz
p

(t)
1 (−z)ρ

(t)
1 (z)

p1(0)
P (∆T[0,z] ∈ ds|Tz = 1).We will need a ouple of intermediate lemmas. Sine Z(t) is non-dereasing, under thelaw N

(1), the proess X(t) starts at 0 and hits −Z
(t)
1 at time 1 for the �rst time. Sinewe are interested in the onstany intervals of X(t), and thanks to Vervaat's theorem, wewould like to relate these onstany intervals to the bridge of X. We now work under thelaw of the bridge with unit duration P

1
0→0, so we may suppose that the exursion of Xwith duration 1 is equal to the Vervaat transform V X. Let m = −X1 be the absolutevalue of the minimum of X, and τ2 = Tm− be the (a.s. unique) time when X attainsthis minimum, so V X = V τ2X. Deompose X as X(t) + Z(t) where Z(t) is the umulativeproess of marked jumps. Then V X = V τ2X(t) + V τ2Z(t), and by independene of themarking proedure of jumps we an onsider that V τ2Z(t) is the umulative proess ofmarked jumps for the exursion V X. The problem is now to desribe the law of lengthsof the onstany intervals of the proess V τ2X(t). Let m(t) = −X

(t)
1 be the absolute valueof the minimum of X(t) and τ3 = T

(t)

m(t)−
be the (a.s. unique) time when X(t) attains thisminimum. Let also τ1 = T

(t)

m(t)−Z
(t)
1

be the �rst time when X(t) attains the value Z
(t)
1 −m(t).The following lemma is somehow �deterministi�. For a < b, write X[a,b] for the proess

(Xa+s −Xa, 0 ≤ s ≤ b− a).Lemma 14 One has τ1 ≤ τ2 ≤ τ3 a.s., and the sequene of lengths of the onstanyintervals of V τ2X(t), ranked in dereasing order, is equal to that of the proess X
(t)
[τ1,τ3], towhih has been added (at the appropriate rank) the extra term 1− τ3 + τ1.



5 STUDY OF F ♮ 25Proof. Sine Z(t) is an inreasing proess, one has X
(t)
τ2 = Xτ2 − Z

(t)
τ2 ≤ Xs − Z

(t)
s forany s ≤ τ2. Hene, X

(t)
τ2 = X(t)

τ2 whih implies τ2 ≤ τ3. On the other hand, one has
−m(t) = Xτ3 − Z

(t)
τ3 ≥ −m− Z

(t)
1 and thus m(t) − Z

(t)
1 ≤ m, implying τ1 ≤ τ2.For onveniene, if (f(x), 0 ≤ x ≤ ζ) and (f ′(x), 0 ≤ x ≤ ζ ′) are two àdlàg funtions,we let f ⊲⊳ f ′ be the onatenation of the paths of f and f ′, de�ned by

f ⊲⊳ f ′(s) =

{
f(s) if 0 ≤ s < ζ

f ′(s− ζ) + f(ζ) if ζ ≤ s ≤ ζ + ζ ′ .We let Y 1 = X
(t)
[0,τ2]

, Y 2 = X
(t)
[τ2,τ3] and Y 3 = X

(t)
[τ3,1], so X(t) = Y 1 ⊲⊳ Y 2 ⊲⊳ Y 3, and

V τ2X(t) = Y 2 ⊲⊳ Y 3 ⊲⊳ Y 1.Observing that Y3 is non-negative, we obtain that Y 2 ⊲⊳ Y 3 = Y 2 ⊲⊳ 0[0,1−τ3] where
0[0,a] is the null proess on [0, a]. Sine the �nal value of Y3 is m(t) − Z

(t)
1 , we obtain that

V τ2X(t) = Y 2 ⊲⊳ 0[0,1−τ3] ⊲⊳ 0[0,τ1] ⊲⊳ X
(t)
[τ1,τ2] = Y 2 ⊲⊳ 0[0,1−τ3+τ1] ⊲⊳ X

(t)
[τ1,τ2]

.It follows that the onstany intervals of V τ2X(t) are the same as those of X(t), exeptfor the �rst and last onstany intervals of X(t) whih are merged to form the onstanyinterval with length 1− τ3 + τ1. �The rest of the setion is devoted to the study of these onstany intervals. Reall fromLemma 3 that under P
1
0→0, the proess X(t) has law P 1

0→−Z , where Z is an independentrandom variable with law P (Z ∈ dz) = p1(0)−1p
(t)
1 (−z)ρ

(t)
1 (z)dz. It thus su�es to analyzethe onstany intervals of X [τ1,τ3] under the law P 1

0→−z for �xed z > 0, where we now all
m = −X1, τ1 the time when X �rst hits level z−m and τ3 the �rst time when X attainslevel −m.For z > 0, let (P v

0↓−z, v > 0) be a regular version of the onditional law P (−z,∞)[·|Tz =
v]. Call this the law of the �rst-passage bridge from 0 to −z with length v. A onsequeneof the Markov property isLemma 15 Let a, b > 0. For (Lebesgue) almost every v > 0, under the law P v

0↓−(a+b), thelaw of Ta is given by
P v

0↓−(a+b)(Ta ∈ ds) = ds
qa(s)qb(v − s)

qa+b(v)
.Moreover, onditionally on Ta, the paths (Xs, 0 ≤ s ≤ Ta) and (Xs+Ta − a, 0 ≤ s ≤

Ta+b − Ta) are independent with respetive laws P Ta
0↓−a and P v−Ta

0↓−b .We also state a generalization of Williams' deomposition of the exursion of Brownianmotion at the maximum, given in Chaumont [11℄. We need to make a step out of theworld of probability and onsider σ-�nite measures instead of probability laws. Reall that
mv = −Xv is the absolute value of the minimum before time v, and with our notations
Tmv− is the �rst time (and a.s. last before v) when X attains this value. Write

X←−s = Xs 0 ≤ s ≤ Tmv−,

X−→s = mv + Xs+Tmv−
0 ≤ s ≤ v − Tmv−for the pre- and post- minimum proesses of X before time v. Then by [11℄,



5 STUDY OF F ♮ 26Lemma 16 One has the identity for σ-�nite measures
∫ ∞

0

dvP v(X←− ∈ dω, X−→ ∈ dω′) =

∫ ∞

0

dxP (−x,∞)(dω)⊗

∫ ∞

0

duN>u(dω′),where N>u is the �nite measure haraterized by N>u(F (X)) = N(F (Xs, 0 ≤ s ≤
u), ζ(X) > u) for every non-negative measurable F . This in turn determines entirelythe laws P v for v > 0.Loosely speaking, if v is �random� with �law� the Lebesgue measure on (0,∞), the pre-and post- minimum proesses are independent with respetive �laws� ∫∞

0
dxP (−x,∞)(dω)and ∫∞

0
duN>u(dω). As a onsequene of this identity, we have that under P v for some�xed v > 0, onditionally on mv and Tmv− = τ , the proesses X←− and X−→ are independentwith respetive laws P τ

0↓−mv
(dω) and (N>v−τ (1))−1N>v−τ (dω′).Lemma 17 Let z > 0. Under the probability P 1

0→−z, onditionally on τ3 − τ1 = t, theranked sequene of lengths of the onstany intervals of the in�mum proess of (Xs+τ1 , 0 ≤
s ≤ τ3 − τ1) have the same law as ∆T[0,z] given Tz = t under P .Proof. We �rst ondition by the value of (m, τ3). Then by Lemma 16 the path X←− has thelaw P τ3

0↓−m of the �rst-passage bridge from 0 to −z with lifetime τ3. Applying Lemma 15and the Markov property we obtain that onditionally on τ1 the path (Xs+τ1 +m− z, 0 ≤
s ≤ τ3−τ1) is a �rst passage bridge ending at −z at time τ3−τ1. Sine it depends only on
τ3 − τ1, we have obtained the onditional distribution given τ3 − τ1. Hene, the sequenede�ned in the lemma's statement has the same onditional law as the ranked lengths ofthe onstany intervals of the in�mum proess of suh a �rst-passage bridge, that is, ithas the same law as ∆T ′

[0,z] given T ′
z = τ3 − τ1, with T ′ as in the statement. �The last lemma gives an expliit form for the law of the remaining length 1− τ3 + τ1under P 1

0→−z.Lemma 18 One has
P 1

0→−z(1− τ3 + τ1 ∈ ds) = ds
cαzqz(1− s)

s1/αqz(1)
,whih is the law of a size-biased pik of the sequene ∆T[0,z] given Tz = 1 under P .Proof. By Lemma 16, if s is �distributed� aording to Lebesgue measure on R+, then un-der P s, the proesses X←− and X−→ are independent with respetive �laws� ∫∞

0
dxP (−x,∞)(dω)and ∫∞

0
duN>u(dω′). Our �rst task is to disintegrate these laws to obtain a relation under

P 1
0→−z. Let H and H ′ be two ontinuous bounded funtionals and f be ontinuous witha ompat support on (0,∞). Then, letting T ω

· = inf{s ≥ 0 : ω(s) < ·},
∫ ∞

0

dsf(s)Es[H(X←−)H ′(X−→) | |Xs + z| < ε]

=

∫ ∞

0

dx

∫ ∞

0

du

∫∫
P (−x,∞)(dω)N>u(dω′)f(T ω

x + u)H(ω)H ′(ω′)
1{|z−x+ω′(u)|<ε}

P (|XT ω
x +u + z| < ε)

=

∫ ∞

0

du

∫
N>u(dω′)H ′(ω′)

∫ ∞

0

dx
1{|z−x+ω′(u)|<ε}

2ε

∫
P (−x,∞)(dω)

f(T ω
x + u)H(ω)

(2ε)−1P (|XT ω
x +u + z| < ε)

.



5 STUDY OF F ♮ 27The measure (2ε)−11{|z−x+ω′(u)|<ε}dx onverges weakly as ε → 0 to the Dira mass at
z + ω′

u. Reall that the family of probability measures P (−x,∞) is ontinuous as x varies.Sine f has ompat support, we an restrain T ω
x + u to stay in a ompat set. Then, thedenominator in the last integral, whih onverges to pT ω

x +u(−z), remains bounded andonverges uniformly in x and u. Then the boundedness of H implies that the two lastintegrals onverge to ∫
P (−z−ω′

u,∞)(dω)
f(T ω

z+ω′(u) + u)

pT ω
x +u(−z)

.Now, the measure N>u is a �nite measure, so the fat that u atually stays in a ompatset and the fat that the two last integrals above remain bounded allow to apply thedominated onvergene theorem to obtain
∫ ∞

0

dsf(s)P s
0→−z(H(X←−)H ′(X−→))

=

∫ ∞

0

du

∫
N>u(dω′)H ′(ω′)

∫
P (−z−ω′(u),∞)(dω)H(ω)

f(Tz+ω′(u)(ω) + u)

pT ω
x +u(−z)Now we disintegrate this relation by taking f(s) = (2ε)−11[1−ε,1+ε](s), so a similar argu-ment as above gives that the left hand side onverges to P 1

0→−z(H(X←−)H ′(X−→)) as ε ↓ 0,whereas the right hand side is
∫ ∞

0

du

∫
N>u(dω′)H ′(ω′)

∫
P (−z−ω′(u),∞)(dω)H(ω)

1[1−ε,1+ε](T
ω
z+ω′(u) + u)

2εpT ω
z+ω′(u)

+u(−z)
.The third integral may be rewritten as

P (|T ω
z+ω′(u) + u− 1| < ε)

2ε
E(−z−ω′(u),∞)

[
H(ω)

pT ω
z+ω′(u)

+u(−z)

∣∣∣∣∣ |T
ω
z+ω′(u) + u− 1| < ε

]
,with a slightly improper writing (the ω's should not appear in the expetation, but we keepthem to keep the distintion with the expetation with respet to ω′). Similar argumentsas above imply that the limit we are looking for is

P 1
0→−z(H(X←−)H ′(X−→)) = p1(−z)−1

∫ 1

0

duN>u
[
H ′(ω′)qz+ω′(u)(1− u)E1−u

0↓−(z+ω′(u))[H(ω)]
]
.This in turn ompletely determines the law of the bridge by a monotone lass argument.A areful appliation of the above identity thus gives

E1
0→−z[f(1−(τ3−τ1))] = p1(−z)−1

∫ 1

0

duN>u
[
qz+ω′(u)(1− u)E1−u

0↓−(z+ω′(u))[f(u + T ω
ω′(u))]

]
.Applying Lemma 15 to the rightmost expetation term, this is equal to

p1(−z)−1

∫ 1

0

duN>u

[
qz+ω′(u)(1− u)

∫ 1−u

0

dv
qω′(u)(v)qz(1− u− v)

qω′(u)+z(1− u)
f(u + v)

]

= p1(−z)−1

∫ 1

0

du

∫ 1

u

dsf(s)qz(1− s)N>u
[
qω′(u)(s− u)

]

= zqz(1)−1

∫ 1

0

dsf(s)qz(1− s)

∫ s

0

duN>u
[
qω′(u)(s− u)

]



5 STUDY OF F ♮ 28It remains to ompute the seond integral. Using saling identities for N>u and qx(s) wehave
∫ s

0

duN>u
[
qω′(u)(s− u)

]
=

∫ 1

0

drN>sr
[
qω′(sr)(s(1− r))

]

= s−1/α

∫ 1

0

drs1/αN>sr
[
qs−1/αω′(sr)(1− r)

]

= s−1/α

∫ 1

0

drN>r
[
qω′(r)(1− r)

]
.Finally, the integral in the right hand side does not depend on s, we all it c and obtain

E1
0→−z[f(1− (τ3 − τ1))] =

∫ 1

0

dsf(s)
czqz(1− s)

s1/αqz(1)
.So we neessarily have c = cα, and the laim follows. �Proof of Proposition 4. The proof is now easily obtained by ombining the last lemmas.Under P

1
0→0, onditionally on Z

(t)
1 = z, the law of the lengths of onstany intervals of

V τ2X(t) is obtained by adjoining the term 1− (τ3− τ1) to a sequene whih, onditionallyon 1− (τ3 − τ1) = t, has same law as ∆T[0,z] given Tz = 1 − t under P (Lemma 17). ByLemma 18, 1− (τ3 − τ1) has itself the law of a size-biased pik from ∆T[0,z] given Tz = 1under P , so Lemma 1 shows the whole sequene has the law of ∆T[0,z] given Tz = 1. Last,by Lemma 3, Z
(t)
1 has density p

(t)
1 (−z)ρ

(t)
1 (z)p1(0)−1dz, entailing the laim. �5.3 Proof of Theorem 2To reover the disloation measure of F ♮, we use the following variation of Lemma 10and [22, Corollary 1℄. For details on size-biased versions of measures on S, see e.g. [13℄,whih deals with probability measures, but the results we mention are easily extended to

σ-�nite measures.Proposition 5 Let (F (t), t ≥ 0) be a ranked self-similar fragmentation with harater-istis (β, 0, ν), β ≥ 0. For every t, let F∗(t) be a random size-biased permutation ofthe sequene F (t) (de�ned on a possibly enlarged probability spae). Let G be a ontin-uous bounded funtion on the set of non-negative sequenes with sum ≤ 1, dependingonly on the �rst I terms of the sequene, with support inluded in a set of the form
{si ∈ [η, 1− η], 1 ≤ i ≤ I}. Then

1

t
E[G(F∗(t)]→

t↓0
ν∗(G),where ν∗ is the size-biased version of ν haraterized by

ν∗(G) =

∫

S

ν(ds)
∑

j1,...,jI

G(sj1, . . . , sjI
)sj1

sj2

1− sj1

. . .
sjI

1− sj1 − . . .− sjI

,where the sum is on all possible distint j1, . . . , jI . Moreover, ν an be reovered from ν∗.



6 ASYMPTOTICS 29Proof of Theorem 2. Let G be a funtion of the form G(x) = f1(x1) . . . fI(xk) for
x = (x1, x2, . . .) and ∑i xi ≤ 1, with f1, . . . , fI ontinuous bounded funtions on [0, 1]that are null on a set of the form [0, 1]\]η, 1−η[. Let ∆∗T[0,z] be the sequene of the jumpsof T on the interval [0, z], listed in size-biased order (whih involves some enlargementof the probability spae). Using Lemma 1, it is easy that z 7→ E[G(∆∗T[0,z])|Tz = 1] isa ontinuously di�erentiable funtion with derivative bounded by some M > 0. Let also
F ♮
∗(t) be the sequene F ♮(t) listed in size-biased order. Now by Proposition 4,

N
(1)

[
G(F ♮

∗(t))

t

]
=

1

t
E

[
e−tα+tZ

(t)
1 p1(−Z

(t)
1 )p1(0)−1Ẽ

[
G(∆∗T̃

[0,Z
(t)
1 ]

)
∣∣∣T̃Z

(t)
1

= 1
]]

,where T̃ is a opy of T with law Ẽ, independent of the marked proess X. Consider afuntion f(t, z) that is ontinuous in t and x and null at (t, 0) for every t ≥ 0. Then theompensation formula applied the subordinator Z(t) between times 0 and 1 gives
1

t
E[f(t, Z

(t)
1 )] =

1

t

∫ 1

0

dx

∫
Cα(1− e−ts)s−α−1dsE[f(t, Z(t)

x + s)− f(t, Z(t)
x )]

→
t→0

Cα

∫ 1

0

dx

∫
s−α ds f(0, s) = Cα

∫
s−αdsf(0, s),as soon as we may justify the onvergene above. Take

f(t, z) = exp(−tα + tz)p1(−z)p1(0)−1E[G(∆T ∗
[0,z])|Tz = 1],then we have to hek that s−α

E[|f(t, Z
(t)
x + s) − f(t, Z

(t)
x )|] is bounded independentlyon x ∈ [0, 1]. By the hypotheses on G, it is again true that z 7→ f(t, z) is a ontinuouslydi�erentiable funtion with uniformly bounded derivative, when t stays in a neighborhoodof 0. Hene the expetation above is bounded by (M ′s ∧M ′′)s−α for some M ′, M ′′ > 0,whih allows to apply the dominated onvergene theorem. By Proposition 5, we obtain,denoting by ν♮ the disloation measure of F ♮,

t−1
N

(1)[G(F ♮
∗(t))] →

t→0

∫

S

ν♮(ds)G(sj1, . . . , sjI
)
∑

j1,...,jI

sj1

sj2

1− si1

. . .
sjI

1− sj1 − . . .− sjI−1

= Cα

∫ ∞

0

ds
s−αp1(−s)

p1(0)
E[G(∆T ∗

[0,s])|Ts = 1],allowing to onlude that ν♮ = ν+ with the same omputations as in the proof of Lemma12. �6 AsymptotisIn this setion we disuss asymptoti results for F+.6.1 Small-time asymptotisProposition 6 Let Z be a non-negative stable (α−1) random variable with Laplae trans-form E[exp(−λZ)] = exp(−αλα−1). Denote by ∆1, ∆2, . . . the ranked jumps of (Tx, 0 ≤
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x ≤ Z), where T is as before the stable 1/α subordinator, whih is taken independent of
Z. Then

tα/(1−α)(F+
2 (t), F+

3 (t), . . .)
d
→

t→0+
(∆1, ∆2, . . .).We �rst need theLemma 19 Let Z

(t)
1 have the law ρ

(t)
1 (s)ds above, then

t1/(1−α)Z
(t)
1

d
→

t→0+
Z,where Z is as above a stable variable with Laplae exponent αλα−1.Proof. Reall that Z(t) is a subordinator with harateristi exponent given by

E[e−λZ
(t)
1 ] = exp

(
−

∫ ∞

0

Cα(1− e−tx)dx

xα+1
(1− e−λx)

)
.Therefore, evaluating the Laplae exponent at the point t1/(1−α)λ, hanging variables andusing dominated onvergene entails

E[exp(−λt1/(1−α)Z
(t)
1 )] →

t→0+
exp

(
−

∫ ∞

0

Cαdy

yα
(1− e−λy)

)
.Thus the onvergene to some limiting Z. Using now the expliit value for Cα, we see thatthe Laplae exponent of Z has to be αλα−1, as laimed. �The proof of Proposition 6 follows the same lines as for Proposition 6 in [21℄, so wewill only sketh it. One �rst begins with proving that if Z is as in Lemma 3 a randomvariable distributed aording to the law that has density ρ

(t)
1 (z)p

(t)
1 (−z)dz/p1(0), then

t1/(1−α)Z onverges in law to Z. This is a onsequene of the preeding lemma, sine as
t→ 0, X(t) onverges to X, so one an write

E[g(t1/(1−α)Z)] = E[g(t1/(1−α)Z
(t)
1 )p

(t)
1 (−Z

(t)
1 )/p1(0)],where Z

(t)
1 is distributed as above. By Skorokhod's representation theorem, we may sup-pose that t1/(1−α)Z

(t)
1 onverges a.s. to its limit in law Z, So it remains to show that a.s.

p
(t)
1 (−Z

(t)
1 )→ p1(0) as t→ 0 to apply dominated onvergene, and this is done by reall-ing that p

(t)
1 (z) = e−tα−tzp1(z). Then one reasons by indution just as in [21, Proposition6℄, using the expliit form of the semigroup of F+.6.2 Large-time asymptotisBy a diret appliation of Theorem 3 in [10℄, one gets the large t asymptoti behaviorfor F+. Reall that the Gamma law with parameter a is the law with density proportionalto xa−1e−x on R+. The moments of this law are given, for r > −a, by

1

Γ(a)

∫ ∞

0

xr+a−1e−xdx =
Γ(a + r)

Γ(a)
.



RÉFÉRENCES 31Proposition 7 De�ne
ρt(dy) =

∞∑

i=1

Fi(t)δtαFi(t)(dy),then ρt is a probability measure that onverges in law as t → ∞ to the deterministiGamma law with parameter 1− 1/α.Proof. We know by [10, Theorem 3℄ that ρt onverges to some probability ρ∞ that isharaterized by its moments,
∫ ∞

0

yk/αρ∞(dy) =
α(k − 1)!

Φ′(0+)Φ
(

1
α

)
. . .Φ

(
k−1
α

)for every k ≥ 1, where Φ is the Laplae exponent of a subordinator related to a taggedfragment of the proess F+. This exponent depends only on the disloation measure (andnot the index), so it is the same as for F− in [21℄. By taking the expliit value of Φ (Setion3.2 therein), we easily get
∫ ∞

0

yk/αρ∞(dy) =

(
αΓ
(
1 + 1

α

)

Γ
(

1
α

)
)k

Γ
(
1 + k−1

α

)

Γ
(
1− 1

α

) =
Γ
(
1 + k−1

α

)

Γ
(
1− 1

α
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