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Self-similar fragmentations derived from the stabletree I : splitting at heightsGrégory MiermontDMA, Éole Normale Supérieure,and LPMA, Université Paris VI.45, rue d'Ulm,75230 Paris Cedex 05∗RésuméThe basi objet we onsider is a ertain model of ontinuum random tree, alledthe stable tree. We onstrut a fragmentation proess (F−(t), t ≥ 0) out of this treeby removing the verties loated under height t. Thanks to a self-similarity propertyof the stable tree, we show that the fragmentation proess is also self-similar. Thesemigroup and other features of the fragmentation are given expliitly. Asymptotiresults are given, as well as a ouple of related results on ontinuous-state branhingproesses.Key Words. Self-similar fragmentation, stable tree, stable proesses, ontinuous-statebranhing proess.A.M.S. Classi�ation. 60J25, 60G52, 60J80.
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1 INTRODUCTION 21 IntrodutionThe reent advanes in the study of oalesene and fragmentation proesses pointed atthe key role played by tree strutures in this topi, both at the disrete and ontinuous level[15, 3, 4℄. Our goal here is to push further the investigation, begun in [3, 9℄, of a ategoryof fragmentations obtained by utting a ertain lass a ontinuum random tree. The treethat was fragmented in the latter artiles is the Brownian Continuum Random Tree ofAldous, and the fragmentation is related to the so-alled standard additive oalesent. Thefamily of trees we onsider is a natural but tehnially involved �Lévy generalization� ofthe Brownian tree. It has been introdued in Duquesne and Le Gall [14℄, and impliitlyonsidered in the previous work of Kersting [18℄. Some of these trees, as their Brownianompanion, enjoy ertain self-similar properties. In the present work the ruial propertyis that when removing the verties of the stable tree loated under a �xed height (ordistane to the root), the remaining objet is a forest of smaller trees that have thesame law as the original one up to resaling. This is formalized in Lemma 3 below. Thisway of logging the stable tree indues a fragmentation proess whih by the propertyexplained above turns out to be a self-similar fragmentation, the theory of suh proessesbeing extensively studied by Bertoin [8, 9, 10℄. The goal of this paper is to desribe theharateristis and give some properties of this fragmentation proess. We will have to usestohasti proesses and ombinatorial approahes in the same time ; in partiular, we willenounter σ-�nite generalizations of the (α, θ)-partitions of [26℄, whih are distributionson the set of partitions of N = {1, 2, . . .}, as well as we will need the onstrution ofthe stable tree out of Lévy proesses and its onnetion to ontinuous-state branhingproesses (CSBP) explained in [14℄.In a ompanion paper [23℄ we will onsider another way of obtaining a self-similarfragmentation by another utting devie on the stable tree, using the heuristi fat thatwhen utting at random one hub in the the stable tree, the trunk and branhes that havebeen separated are saled versions of the initial tree. Surprisingly, although this otherdevie looks quite di�erent from the �rst (no mass is lost when utting a hub, whereasthere is a loss of mass when we throw everything that is loated under the height h), itturns out that the only di�erene between these two fragmentations is the speed at whihfragments deay.To state our main results, let us introdue quikly the already mentioned tree stru-tures and fragmentation proesses, postponing the details to a further setion.Let S = {s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,
∑

i≥1 si ≤ 1}. A ranked self-similarfragmentation proess (F (t), t ≥ 0) with index β ∈ R is a S-valued Markov proess thatis ontinuous in probability, suh that F (0) = (1, 0, 0, . . .) and suh that onditionally on
F (t) = (x1, x2, . . .), F (t+ t′) has the law of the dereasing arrangement of the sequenes
xiF

(i)(xβ
i t

′), where the F (i) are independent with the same law as F . That is, after time
t, the di�erent fragments evolve independently with a speed that depends on their size.It has been shown in [9℄ that suh fragmentations are haraterized by a 3-tuple (β, c, ν),where β is the index, c ≥ 0 is an �erosion� real onstant saying that the fragments maymelt ontinuously at some rate depending on c, and ν is a σ-�nite measure on S thatattributes mass 0 to (1, 0, . . .) and that integrates s 7→ (1− s1). This measure governs thesudden disloations in the fragmentation proess, and the integrability assumption ensuresthat these disloations do not our too quikly, although the fragmentation epohs may



1 INTRODUCTION 3form a dense subset of R+ as soon as ν(S) = +∞. When β < 0, a positive fration ofthe mass an disappear within a �nite time, even though there is no loss of mass due toerosion nor to sudden disloations. This phenomenon will be ruial in the fragmentation
F− below.The trees we are onsidering are ontinuum random trees. Intuitively, they are metrispaes with an �in�nitely rami�ed� tree struture, whih an be onsidered as genealogialstrutures ombined with two measures : a σ-�nite length measure supported by the �skele-ton� of the tree and a �nite mass measure supported by its leaves, whih are everywheredense in the tree. These trees an be de�ned in several equivalent ways :� as a weak limit of Galton-Watson trees� through its height proess H , whih is a positive ontinuous proess on [0, 1]. To apoint u ∈ [0, 1] orresponds a vertex of the tree with height (distane to the root)equal to Hu, and the mass measure on the tree is represented by Lebesgue's measureon [0, 1]� through its expliit �marginals�, that is, the laws of subtrees spanned by a randomsample of leaves.We will have to use the seond (stohasti proess) and third (ombinatorial) points ofview. We know from the works of Duquesne and Le Gall [14℄ and Duquesne [13℄ thatone may de�ne a partiular instane of tree, alled the stable tree with index α (for some
α ∈ (1, 2]). When α = 2, the stable tree is equal to the Brownian CRT of Aldous [2℄. Wewill reall the rigorous onstrution of the height proess of the stable tree in Set. 2.2,but let us state our results now. Fix α ∈ (1, 2) and let (Hs, 0 ≤ s ≤ 1) be the heightproess of the stable tree with index α.The fragmentation proess, that we all F−, is de�ned as follows. For eah t ≥ 0, let
I−(t) be the open subset of (0, 1) de�ned by

I−(t) = {s ∈ (0, 1) : Hs > t}.With our intuitive interpretation of the height proess, I−(t) is the set of verties of thetree with height > t. We denote by F−(t) the dereasing sequene of the lengths of theonneted omponents of I−(t). Hene, F−(t) is the sequene of the masses of the treeomponents obtained by utting the stable tree below height t. Notie that F− is a diretgeneralization of the fragmentation F in [9, Setion 4℄. The boundedness of H impliesthat F−(t) = (0, 0, . . .) as soon as t ≥ max0≤s≤1Hs.Proposition 1 The proess F− is a ranked self-similar fragmentation with index 1/α−
1 ∈ (−1/2, 0) and erosion oe�ient 0.Notie that, as mentioned before, F− loses some mass, and eventually disappearsompletely in �nite time even though the erosion is 0. This is due, of ourse, to the fatthat the self-similarity index is negative.Our main result is a desription of the disloation measure ν−(ds) of F−. Let usintrodue some notation. For α ∈ (1, 2), let (Tx, x ≥ 0) be a stable subordinator withLaplae exponent λ1/α, that is, Tx is the sum of the magnitudes of the atoms of a Poissonpoint proess on (0,∞) with intensity cαxdr/r1+1/α, where cα = (αΓ(1 − 1/α))−1. Wedenote by ∆Tx = Tx − Tx− the jump at level x and by ∆T[0,x] the sequene of the jumps



2 PRELIMINARIES 4of T before time x, and ranked in dereasing order. De�ne the measure να on S by
να(ds) = E

[
T1 ;

∆T[0,1]

T1

∈ ds

] (1)where the last expression means that for any positive measurable funtion G, the quantity
να(G) is equal to E[T1 G(T−1

1 ∆T[0,1])].Theorem 1 The disloation measure of F− is ν− = Dανα, where
Dα =

α(α− 1)Γ
(
1 − 1

α

)

Γ(2 − α)
=
α2Γ

(
2 − 1

α

)

Γ(2 − α)
.Some omments about this. First, the disloation measure harges only the sequenes

s for whih∑i≥1 si = 1, that is, no mass an be lost within a sudden disloation. Seond,we reognize an expression lose to [27℄, of a Poisson-Dirihlet type distribution. However,it has to be notied that this orresponds to a forbidden parametrization θ = −1, andindeed, the measure that we obtain is in�nite sine E[T1] = ∞. This measure integrates
1− s1 though, just as it has to. Indeed, E[T1 −∆1] is �nite if ∆1 denotes the largest jumpof T before time 1. To see this, notie that ∆1 ≥ ∆∗

1 where ∆∗
1 is a size-biased pik fromthe jumps of T before time 1, and it follows from Lemma 1 in Set. 2.1 below and salingarguments that T − ∆∗

1 has �nite expetation.The rest of the paper is organized as follows. In Set. 2 we �rst reall some fats aboutLévy proesses, exursions, and onditioned subordinators. Then we give the rigorousdesription of the stable tree, and state some properties of the height proess that wewill need. Last we reall some fats about self-similar fragmentations. We then obtainthe harateristis of F− in Set. 3 and derive its semigroup. We insist on the fat thatknowing expliitly the semigroup of a fragmentation proess is in general a very om-pliated problem, see [24℄ for somehow surprising negative results in this vein. However,most of the fragmentation proesses that have been extensively studied in reent years[3, 7, 22, 9℄ do have known, and sometimes strange-looking semigroups involving ondi-tioned Poisson louds. And as a matter of fat, the fragmentation F+ onsidered in theompanion paper [23℄ has also an expliit semigroup. We end the study of F− by givingasymptoti results for small times in Set. 4. These results need some properties of on-ditioned ontinuous-time branhing proesses, whih are in the vein of Jeulin's results forthe resaled Brownian exursion and its loal times. We prove these properties in Set.5, where we give the rigorous de�nition of some proesses that are used heuristially inSet. 3 to onjeture the form of the disloation measure.2 Preliminaries2.1 Stable proesses, exursions, onditioned inverse subordina-torThroughout the paper, we let (Xs, s ≥ 0) be the anonial proess in the Skorokhodspae D([0,∞)) of àdlàg paths on [0,∞). Reall that a Lévy proess is a real-valuedàdlàg proess with independent and stationary inrements. We �x α ∈ (1, 2). Let P be



2 PRELIMINARIES 5the law that makes X a stable Lévy proess with no negative jumps and Laplae exponent
E[exp(−λXs)] = exp(λα) for s, λ ≥ 0, where E is the expetation assoiated with P . Suha proess has in�nite variation and satis�es E[X1] = 0. When there is no ambiguity, wemay sometimes speak of X as being itself the Lévy proess with law P . Writing this inthe form of the Lévy-Khinthine formula, we have :

E[exp(−λXs)] = exp

(
s

∫ ∞

0

Cαdx

x1+α
(e−λx − 1 + λx)

)
, s, λ ≥ 0, (2)where Cα = α(α − 1)/Γ(2 − α). In partiular, the Lévy measure of X under P is

Cαx
−1−αdx1{x>0}. An important property of X is then the saling property : under P ,

(
1

λ1/α
Xλs, s ≥ 0

)
d
= (Xs, s ≥ 0) for all λ > 0.It is known [30℄ that under P , Xs has a density (ps(x), x ∈ R) for every s > 0, suh that

ps(x) is jointly ontinuous in x and s.Exursions Let X be the in�mum proess of X, de�ned for s ≥ 0 by
Xs = inf{Xu, 0 ≤ u ≤ s}.By It�'s exursion theory for Markov proesses, the exursions away from 0 of the proess

X−X under P are distributed aording to a Poisson point proess that an be desribedby the It� exursion measure, whih we all N . We now either onsider the proess Xunder the law P that makes it a Lévy proess starting at 0, or under the σ-�nite measure
N under whih the sample paths are exursions with �nite lifetime ζ (sine E[X1] = 0).Let N (v) be a regular version of the probability law N(·|ζ = v), whih is weakly ontinuousin v. That is, for any positive ontinuous funtional G,

N(G) =

∫

(0,∞)

N(ζ ∈ dv)N (v)(G)and limN (w)(G) = N (v)(G) as w → v. Suh a version an be obtained by saling : for any�xed η > 0, the proess
(
(v/ζ)1/αXζs/v, 0 ≤ s ≤ v

) under N(·|ζ > η) =
N(·, ζ > η)

N(ζ > η)is N (v). See [12℄ for this and other interesting ways to obtain proesses with law N (v) bypath transformations. In partiular, one has the saling property at the level of onditionedexursions : under N (v), (v−1/αXvs, 0 ≤ s ≤ 1
) has law N (1).First-passage subordinator Let T be the right-ontinuous inverse of the inreasingproess −X , that is,

Tx = inf{s ≥ 0 : Xs < −x}.Then it is known that under P , T is a subordinator, that is, an inreasing Lévy proess.Aording to [6, Theorem VII.1.1℄, its Laplae exponent φ is the inverse funtion of the



2 PRELIMINARIES 6restrition of the Laplae exponent of X to R+. Thus φ(λ) = λ1/α, and T is a stablesubordinator with index 1/α, as de�ned above. The Lévy-Khinthine formula gives,
E[exp(−λTx)] = exp(−xλ1/α) = exp

(
x

∫ ∞

0

cαdy

y1+1/α
(1 − e−λy)

) for λ, x ≥ 0.where cα has been de�ned in the introdution. Reall our assumption that X has amarginal density at time s under P , alled ps(·). Then under P , the inverse subordinator
T has also biontinuous densities, given e.g. by [6, Corollary VII.1.3℄ :

qx(s) =
P (Tx ∈ ds)

ds
=
x

s
ps(x). (3)This equation an be derived from the ballot theorem of Takás [31℄.Let us now disuss the onditioned forms of distributions of the sequene ∆T[0,x]. Aneasy way to obtain nie regular versions for these onditional laws is developed in [25, 27℄,and uses the notion of size-biased fragment. Preisely, the range of any subordinator,with drift 0 say (whih we will assume in the sequel), between times 0 and x, induesa partition of [0, Tx] into subintervals with sum Tx. Consider a sequene (Ui, i ≥ 1) ofindependent uniform (0, 1) variables, independent of T , and let ∆∗

1(x),∆
∗
2(x), . . . be thesequene of the lengths of these intervals in the order in whih they are disovered by the

Ui's. That is, ∆∗
1(x) is the length of the interval in whih TxU1 falls, ∆∗

2(x) is the lengthof the �rst interval di�erent from the one ontaining TxU1 in whih TxUi falls, and so on.Then Palm measure results for Poisson louds give the following result (speialized to thease of stable subordinators).Lemma 1 The joint law under P of (∆∗
1(x), Tx) is

P (∆∗
1(x) ∈ dy, Tx ∈ ds) =

cαxqx(s− y)

sy1/α
dyds, (4)and more generally for j ≥ 1,

P
(
∆∗

j(x) ∈ dy
∣∣Tx = s0,∆

∗
1(x) = s1, . . . ,∆

∗
j−1(x) = sj−1

)
=
cαxqx(s− y)

sy1/αqx(s)
dy,where s = s0 − s1 − . . .− sj−1.This gives a nie regular onditional version for (∆∗

i (x), i ≥ 1) given Tx, and thusindues a onditional version for ∆T[0,x] given Tx, by ranking, where ∆T[0,x] is the sequeneof jumps of T before x, ranked in dereasing order of magnitude.2.2 The stable treeWe now introdue the models of trees we will onsider. This setion is mainly inspiredby [14, 13℄. With the notations of setion 2.1, for u ≥ 0, let R(u) be the time-reversedproess of X at time u :
R(u)

s = Xu −X(u−s)− , 0 ≤ s ≤ u.



2 PRELIMINARIES 7It is standard that this proess has the same law as X killed at time u under P . Let also
R

(u)

s = sup
0≤v≤s

R(u)
v , 0 ≤ s ≤ ube its supremum proess. We let Hu be the loal time at 0 of the proess R(u) re�etedunder its supremum R

(u) up to time u. The normalization an be hosen so that
Hu = lim

ε↓0

1

ε

∫ u

0

1
{R

(u)
s −R

(u)
s ≤ε}

dsIt is known by [14, Theorem 1.4.3℄ that H admits a ontinuous version, with whih weshall work in the sequel. It has to be notied that H is not a Markov proess (the onlyexeption in the theory of Lévy trees is the Brownian tree obtained when P is the law ofBrownian motion with drift, whih has been exluded in our disussion). As a matter offat, it an be heked that H admits loal minima that are attained an in�nite numberof times as soon as X has jumps, a property that sounds strange by ontrast with mostof the usually studied stohasti proesses. To see this, onsider a jump time t of X, andlet t1, t2 > t so that inft≤u≤ti Xu = Xti and Xt− < Xti < Xt, i ∈ {1, 2}. Then it is easy tosee that Ht = Ht1 = Ht2 and that one may in fat �nd an in�nite number of distint ti'ssatisfying the properties of t1, t2. On the other hand, it is not di�ult to see that Ht is aloal minimum of H .It is shown in [14℄ that the de�nition of H still makes sense under the σ-�nite measure
N rather than the probability law P . The proess H is then de�ned only on [0, ζ ], andwe all it the exursion of the height proess. One an de�ne without di�ulty, using thesaling property, the height proess under the laws N (v) : this is simply the law of

((
v

ζ

)1−1/α

Hζt/v, 0 ≤ t ≤ v

) under N(·, ζ > η)Call it the law of the exursion of the height proess with duration v. The following salingproperty is the key for the self-similarity of F− : for every x > 0,
(v1/α−1Hsv, 0 ≤ s ≤ 1) under N (v) d

= (Hs, 0 ≤ s ≤ 1) under N (1). (5)This property is inherited from the saling property of X, and it is easily obtained e.g.by the above de�nition of H as an approximation.An important tool for studying the height proess is its loal time proess, or widthproess, whih we will denote by (Lt
s, t ≥ 0, s ≥ 0). It an be obtained a.s. for every �xed

s, t by
Lt

s = lim
ε↓0

1

ε

∫ s

0

1{t<Hu≤t+ε}du.

Lt
s is then the density of the oupation measure of H at level t and time s. For t = 0, onehas that (L0

s, s ≥ 0) is the inverse of the subordinator T , whih is a reminisent of the fatthat the exursions of the height proess are in one-to-one orrespondene with exursionsof X with the same lengths. Aording to the Ray-Knight theorem [14, Theorem 1.4.1℄,for every x > 0, the proess (Lt
Tx
, t ≥ 0) is a ontinuous-time branhing proess with



2 PRELIMINARIES 8branhing mehanism λα, in short α-CSBP. We will reall basi and less basi featuresabout this proesses in Set. 5, where in partiular an interpretation for the law of theproess (Lt
1, t ≥ 0) under N (1) will be given. For now we just note that for every x theproess (Lt
Tx
, t ≥ 0) is a proess with no negative jumps, and a jump of this proess attime t orresponds preisely to one of the in�nitely often attained loal in�ma of theheight proess. With the forthoming interpretation of the tree enoded within exursionsof the height proess, this means that there is a branhpoint with in�nite degree at level

t. It is again possible to de�ne the loal time proess under the exursion measure N , andby saling it is also possible to de�ne the loal time proess under N (v).Let us now motivate the term of �height proess� for H . Under the σ-�nite �law� N ,we de�ne a tree struture following [2, 21℄.First we introdue some extra voabulary. Let T be the set of �nite rooted plane trees,that is, for any T ∈ T, eah set of hildren of a vertex v ∈ T is ordered as �rst, seond,..., last hild. Let T
∗ ⊂ T be those rooted plane trees for whih the out-degree (number ofhildren) of verties is never 1. Let Tn and T

∗
n be the orresponding sets of trees that haveexatly n leaves (verties with out-degree 0). A marked tree ϑ is a pair (T , {hv, v ∈ T })where T ∈ T and hv ≥ 0 for every vertex v of T (whih we denote by v ∈ T ). The tree

T is alled the skeleton of ϑ, and the hv's are the marks. These marks indue a distanetree, given by dϑ(v, v
′) =

∑
w∈[[v,v′]] hw if v, v′ ∈ ϑ are two verties of the marked tree,where [[v, v′]] is the set of verties of the path from v to v′ in the skeleton. The distaneof a vertex to the root will be alled its height. Let T∗

n be the set of marked trees with nleaves and no out-degree equal to 1.Let (Ui, i ≥ 1) be independent random variables with uniform law on (0, 1) and in-dependent of the exursion H of the height proess. One may de�ne a random markedtree ϑ(U1, . . . , Uk) = ϑk ∈ T∗
k, as follows. For u, v ∈ [0, ζ ] let m(u, v) = infs∈[u,v]Hs.Roughly, the key fat about ϑk is that the height of the i-th leaf to the root is HU(i)

,where (U(i), 1 ≤ i ≤ k) are the order statistis of (Ui, 1 ≤ i ≤ k), and the anestor ofthe i-th and j-th leaves has height m(ζU(i), ζU(j)) for every i, j. This allows to build re-ursively a tree by �rst putting the mark hroot = inf1≤i<j≤km(Ui, Uj) on a root vertex.Let croot be the number of exursions of H above level hroot in whih at least one ζUifalls. Attah croot verties to the root, and let the i-th of these verties be the root of thetree embedded in the i-th of these exursions above level hroot. Go on until the exursionsseparate the variables Ui. By onstrution ϑk ∈ T∗
k. Adding a (k + 1)-th variable Uk+1 tothe �rst k just adds a new branh to the tree in a onsistent way as k varies.As noted above, we may as well de�ne the trees (ϑk, k ≥ 0) under the law N (1) bymeans of saling.De�nition 1 The family of marked trees (ϑk, k ≥ 1) assoiated with the height proessunder the law N (1) is alled the stable tree.Remark. The previous de�nition is not the only way to haraterize the same objet.After all, we ould have alled the height proess H under N (1) itself the stable tree.Alternatively, one easily sees that the marked tree ϑk an be interpreted as a subset of l1,eah new branh going in a diretion orthogonal to the preeding branhes, in a onsistentway as k varies. Then it makes sense to take the ompletion of ∪k≥1ϑk, whih we ouldalso all the stable tree. The distane on the tree then orresponds to the metri de�nedunder N (1) by

d(u, v) = Hu +Hv − 2m(u, v), u, v ∈ [0, 1].



2 PRELIMINARIES 9With this way of looking at things, the leaves of the tree are unountable and everywheredense in the tree, and the empirial distribution on the leaves of ϑk onverges weakly toa probability measure on the stable tree, alled the mass measure. Then it turns out that
ϑk is equal in law to the subtree of the stable tree that is spanned by the root and kindependent leaves distributed aording to the mass measure. Hene, the mass measureis represented by Lebesgue measure on [0, 1] in the oding of the stable tree through itsheight proess. This is oherent with the de�nition of F−(t) as the �masses of the treeomponents loated above height t�. The equivalene between these possible de�nitions isdisussed in [2℄.The key property for obtaining the disloation measure of F− is the following desrip-tion of the law of the skeleton of ϑn, and the mark of the root of ϑ1. For T ∈ T let NTbe the set of non-leaf verties of T and for v ∈ NT let cv(T ) be the number of hildrenof v. From the more omplete desription of the marked trees in [14, Theorem 3.3.3℄, wereall thatProposition 2 The probability that the skeleton of ϑn is T ∈ T

∗
k is

n!

(α− 1)(2α− 1) . . . ((n− 1)α− 1)

∏

v∈NT

|(α− 1)(α− 2) . . . (α− cv(T ) + 1)|

cv(T )!
.Moreover, the law of the mark of the root in ϑ1 is

N (1)(HU1 ∈ dh) = αΓ

(
1 −

1

α

)
χαh(1)dh,where χx(s) is the density of the stable 1− 1/α subordinator (with Laplae exponent equalto λ1−1/α) at time x.2.3 Some results on self-similar fragmentationsIn this setion we are going to reall some basi fats about the theory of self-similarfragmentations, and also introdue some useful ways to reover the harateristis of thesefragmentations. We will suppose that the fragmentations we onsider are not trivial, thatis, they are not equal to their initial state for every time. It will be useful to onsider notonly S-valued (or ranked) fragmentations, but also fragmentations with values in the setof open subsets of (0, 1) and in the set of partitions of N = {1, 2, . . .}, respetively alledinterval and partition-valued fragmentations. As established in [9, 5℄, there is a one-to-onemapping between the laws of the three kinds of fragmentation when they satisfy a self-similarity property that is similar to that of the ranked fragmentations. That is, eah ofthem is haraterized by the same 3-tuple (β, c, ν) introdued above. To be ompletelyaurate, we should stress that there atually exist several versions of interval partitionsthat give the same ranked or partition-valued fragmentation, but all these versions havethe same harateristis (β, c, ν). Let us make the terms preise.Let P be the set of unordered partitions of N. An exhangeable partition Π is a P-valued random variable whose restrition Πn to [n] = {1, . . . , n} has an invariant lawunder the ation of the permutations of [n]. By Kingman's representation theorem [19, 1℄,



2 PRELIMINARIES 10the bloks of exhangeable partitions of N admit almost-sure asymptoti frequenies, thatis, if Π = {B1, B2, . . .} where the Bi's are listed by order of their least element, then
Λ(Bi) = lim

n→∞

|Bi ∩ [n]|

nexists a.s. for every i ≥ 0. Denoting by Λ(Π) the ranked sequene of these asymptotifrequenies, Λ(Π) is then a S-valued random variable, whose law haraterizes that of Π.A self-similar partition-valued fragmentation (Π(t), t ≥ 0) with index β is a P-valuedàdlàg proess that is ontinuous in probability, exhangeable, meaning that for everypermutation σ of N, (σΠ(t), t ≥ 0) and (Π(t), t ≥ 0) have the same law, and suh thatgiven Π(t) = {B1, B2, . . .}, the variable Π(t+ t′) has the law of the partition with bloks
Π(i)(Λ(Bi)

βt′) ◦ Bi where the Π(i) are independent opies of Π. Here , the operation ◦ isthe natural �fragmentation� operation of a set by a partition : if Π = {B1, B2, . . .} and
C ⊂ N, then Π ◦ C is the partition of C with bloks Bi ∩ C.A self-similar interval partition (I(t), t ≥ 0) with index β is a proess with values in theopen subsets of (0, 1) whih is right-ontinuous and ontinuous in probability for the usualHausdor� metri, with the property that given I(t) = ∪i≥1Ii say, where the Ii are thedisjoint onneted omponents of I(t), the set I(t+ t′) has the law of ∪i≥1gi(I

(i)(t′|Ii|β)),where |Ii| is the length of Ii, gi is the a�ne transformation that maps (0, 1) to Ii andonserves orientation and the I(i) are independent opies of I.Consider an interval self-similar fragmentation (I(t), t ≥ 0), with harateristi 3-tuple
(β, 0, ν) (the ase when c > 0 would be similar, but we do not need it in the sequel). Let
Ui, i ≥ 1 be independent uniform random variables on (0, 1). These indue a partition-valued fragmentation (Π(t), t ≥ 0) by saying that i Π(a)

∼ j i� Ui and Uj are in the sameonneted omponent of I(t). It is known [9℄ that Π is a self-similar fragmentation withvalues in the set of partitions of N and harateristis (β, 0, ν). For n ≥ 2 let P∗
n be the setof partitions of N whose restrition to [n] is non-trivial, i.e. di�erent from {[n]}. Then thereis some random time tn > 0 suh that the restrition of Π(t) to [n] jumps from the trivialstate {[n]} to some non-trivial state at time tn. Let ρ(n) be the law of the restrition of

Π(tn) to [n]. The next Lemma states that the knowledge of the family (ρ(n), n ≥ 2) almostdetermines the disloation measure ν of the fragmentation. Preisely, we introdue from[8℄ the notion of harateristi measure of the fragmentation. This measure, denoted by
κ, is a σ-�nite measure supported by the non-trivial partitions of N, whih is determinedby the disloation measure of the fragmentation. Preisely, this measure may be writtenas

κ(dπ) =

∫

S

ν(ds)κs(dπ),where κs is the law of the exhangeable partition of N with ranked asymptoti frequeniesgiven by s. Conversely, this measure haraterizes the disloation measure ν (simply bytaking the asymptoti frequenies of the typial partition under κ).Lemma 2 The restrition of κ to the non-trivial partitions of [n], for n ≥ 2, equals
q(n)ρ(n), for some sequene (q(n), n ≥ 2) of stritly positive numbers. As a onsequene,the disloation measure of the fragmentation I is haraterized by the sequene of laws
(ρ(n), n ≥ 2), up to a multipliative onstant.



3 STUDY OF F− 11Otherwise said, and using the orrespondene between self-similar fragmentations withsame disloation measure and di�erent indies established by Bertoin [9℄ by introduingthe appropriate time-hanges, if we have two interval-valued self-similar fragmentations
I and I ′ with the same index and no erosion, and with the same assoiated probabilities
ρ(n) and ρ′(n), n ≥ 1, then there exists K > 0 suh that (I(Kt), t ≥ 0) has the samedisloation measure as I ′.Proof. Suppose β = 0, then the result is almost immediate by the results of [8℄ onhomogeneous fragmentation proesses. In this ase q(n) is the inverse of the expetedjump time of Π in P∗

n, and the restrition of the measure q(n + 1)ρ(n + 1) to the set ofnon-trivial partitions of [n] is q(n)ρ(n), for every n ≥ 1. Hene, it is easy to see that theknowledge on ρ(n) determines uniquely the sequene (q(n), n ≥ 1), up to a multipliativepositive onstant : one simply has q(n)/q(n + 1) = ρ(n + 1)(π|[n] : π ∈ P∗
n), where π|[n]denotes the restrition of π to [n]. It remains to notie that the sequene of restritions

(q(n)ρ(n), n ≥ 2) haraterizes κ.When β 6= 0, we obtain the same results by notiing that the law ρ(n) still equals thelaw of the restrition to [n] of the exhangeable partition with limiting frequenies havingthe �law� ν and restrited to P∗
n, up to a multipliative onstant. Indeed, let I∗(t) be thesubinterval of I(t) ontaining U1 at time t, and reall [9℄ that if

a(t) = inf

{
u ≥ 0 :

∫ u

0

|I∗(v)|βdv > t

}
,then (|I∗(a(t))|, t ≥ 0) evolves as the fragment ontaining U1 in an interval fragmentationwith harateristis (0, 0, ν). Now, before time tn, the fragment ontaining U1 is the sameas that ontaining all the (Ui, 1 ≤ i ≤ n). Hene, a(tn) is the �rst time when Π′ jumps in

P∗
n for some homogeneous partition-valued fragmentation proess Π′ with harateristis

(0, 0, ν), and the law of Π′(a(tn)) restrited to [n] is ρ(n). Hene the result. �We also ite the following result [24, Proposition 3℄ whih allows to reover the dis-loation measure of a self-similar fragmentation with positive index out of its semigroup.We will not use this proposition in a proof, but it is useful to keep it in mind to onjeturethe form of the disloation measure of F−, as it will be done below.Proposition 3 Let (F (t), t ≥ 0) be a ranked self-similar fragmentation with harateris-tis (β, 0, ν), β ≥ 0. Then for every ontinuous bounded funtion G on S whih is null onan open neighborhood of (1, 0, . . .), one has
1

t
E[G(F (t))] →

t↓0
ν(G).3 Study of F−We now spei�ally turn to the study of F− de�ned in the introdution. Althoughsome of the results below may be easily generalized to a broader �Lévy ontext�, wewill suppose in this setion that X is a stable proess with index α ∈ (1, 2), with �rst-passage subordinator T . The index α will be dropped from the notation by ontrastwith the introdution. The referenes to height proesses, exursion measures and soon, will always be with respet to this proess, unless otherwise spei�ed. Also, for the



3 STUDY OF F− 12needs of the proofs below, we de�ne the proess (F−(t), t ≥ 0) not only under the law
N (1) used to de�ne the stable tree, but also for all the exursion measures N (v) and N .Under N (v), let F−(t) be the dereasing sequene of lengths of the onstany intervals of
I−(t) = {s ∈ (0, v) : Hs > t} (v is replaed by ζ under N). To avoid onfusions, we willalways mention in Set. 3.1 the measure we are working with, but this formalism will beabandoned in the following setions where no more use of N (v) is made with v 6= 1.The study ontains four steps. First we prove that self-similarity property for F−and make its semigroup expliit. Heuristi arguments based on generators of onditionedCSBP's allow us to onjeture the rough shape of the disloation measure . Then we provethat the erosion oe�ient is 0 by studying the evolution of a tagged fragment. We arethen able to apply Lemma 2, giving us the disloation measure up to a onstant, andwe �nally reover the onstant by re-obtaining the results needed in the seond step byanother omputation.3.1 Self-similarity and semigroupThe self-similarity and the desription of the semigroup rely strongly on the followingresult, whih is a variant of [14, Proposition 1.3.1℄. For t, s ≥ 0 let

γt
s = inf{u ≥ 0 :

∫ u

0

1{Hv>t}dv > s}and
γ̃t

s = inf{u ≥ 0 :

∫ u

0

1{Hv≤t}dv > s}.Denote by Ht the sigma-�eld generated by the proess (Hγ̃t
s
, s ≥ 0) and the P -negligiblesets. Let also (H t

s, s ≥ 0) be the proess (Hγt
s
−t, s ≥ 0). Then under P , H t is independentof Ht, and its law is the same as that of H under P .As a �rst onsequene, we obtain that the exursions of H above level t, that is,the exursions of H t above level 0, are, onditionally on their durations, independentexursions of H . This simple result allows us to state the Markov property and self-similarity of F−. In the following statement, it has to be understood that we work underthe probability N (1) and that the proess H that is onsidered is the same that is used toonstrut F−.Lemma 3 Conditionally on F−(t) = (x1, x2, . . .), the exursions of H above level t, thatis, of H t away from 0, are independent exursions with respetive laws N (x1), N (x2), . . ..As a onsequene, the proess F− is a self-similar fragmentation proess with index

1/α− 1.Proof. By the previous onsiderations on H t, we have that under P , given that thelengths of interval omponents of the set {s ∈ [0, T1] : Hs > t} ranked in dereasing orderare equal to (x1, x2, . . .), the exursions of the killed proess (H(t), 0 ≤ t ≤ T1) abovelevel t are independent exursions of H with durations x1, x2, . . .. The �rst part of thestatement follows by onsidering the �rst exursion of H (or of X) that has durationgreater than some v > 0, whih gives the result under the measure N(·, ζ > v), hene for
N , hene for N (v) for almost all v, and then for v = 1 by ontinuity of the measures N (v).



3 STUDY OF F− 13Thus, onditionally on F−(t) = (x1, x2, . . .), the proess (F−(t+t′), t ≥ 0) has the samelaw as the random sequene obtained by taking independent exursions H (x1), H(x2), . . .with durations x1, x2, . . . of the height proess, and then arranging in dereasing order thelengths of onstany intervals of the sets
{s ∈ [0, xi] : H(xi)

s > t′}.It thus follows from the saling property (5) of the exursions of H that onditionally on
F−(t) = (x1, x2, . . .), the proess (F−(t + t′), t′ ≥ 0) has the same law as the dereasingrearrangement of the proesses (xiF

−
(i)(x

1/α−1
i t′), t′ ≥ 0), where the F−

(i)'s are independentopies of F−. The fat that F− is a Markov proess that is ontinuous in probability easilyfollows, as does the self-similar fragmentation property with the index 1/α− 1. �We now turn our attention to the semigroup of F−.Proposition 4 For every t ≥ 0 one has
N (1)(F−(t) ∈ ds) =

∫

R+×[0,1]

N (1)

(
Lt

1 ∈ dℓ,

∫ ∞

t

db Lb
1 ∈ dz

)
P
(
∆T[0,ℓ] ∈ ds |Tℓ = z

)
,(6)with the onvention that the law P (∆T[0,0] ∈ ds|T0 = z) is the Dira mass at the sequene

(z, 0, 0 . . .) for every z ≥ 0.Proof. It su�es to prove the result for some �xed t > 0. Let ω(t) = inf{s ≥ 0 : Hs > t},
dω(t) = inf{s ≥ ω(t) : Xs = Xs} and gω(t) = sup{s ≤ ω(t) : Xs = Xs}. Call F−(t) theranked sequene of the lengths of the interval omponents of the set {s ∈ [ω(t), dω(t)] :
Hs > t}. Notie that under the law N (1), F− would be F−, but we will �rst de�ne F−under P . By the de�nition of H , ω(t) and dω(t) are stopping times with respet to thenatural �ltration generated by X. In fat, it also holds that ω(t) is a terminal time, thatis,

ω(t) = s+ inf{u ≥ 0 : Hs+u > t} on {ω(t) > s}.Moreover, 0 < ω(t) <∞ P -a.s., beause of the ontinuity ofH and the fat that exursionsof H have a positive probability to hit level t (whih follows e.g. by saling). Reall thenotations at the beginning of the setion, and denote by At and Ãt the right-ontinuousinverses of γt and γ̃t. Then the loal time Lt
dω(t)

is the loal time at level 0 and time At
dω(t)of the proess H t. This is also equal to the loal time of (Hγ̃t

s
, s ≥ 0) at level t and time

Ãt
dω(t)

. This last time is Ht-measurable, as it is the �rst time the proess (Hγ̃t
s
, s ≥ 0)hits bak 0 after �rst hitting t. Hene Lt

dω(t)
is Ht-measurable, hene independent of

H t. Let T t be the inverse loal time of H t at level 0, whih is σ(H t)-measurable, heneindependent ofHt, and has same law as T sineH t has same law asH under P . Notie that
F−(t) equals the sequene ∆T t

[0,Lt
dω(t)

], and that the σ(H t)-measurable random variable
∫∞

t
db Lb

dω(t)
= T t(Lt

dω(t)
). Thus, onditionally on Lt

dω(t)
= ℓ and ∫∞

t
db Lb

dω(t)
= z, F−(t)has law P (∆T[0,ℓ] ∈ ds|Tℓ = z). Hene

P (F−(t) ∈ ds) =

∫

R+×R+

P

(
Lt

dω(t)
∈ dℓ ,

∫ ∞

t

db Lb
dω(t)

∈ dz

)
P (∆T[0,ℓ] ∈ ds|Tℓ = z),



3 STUDY OF F− 14and also, sine dω(t) − gω(t) =
∫∞

0
db (Lb

dω(t)
− Lb

gω(t)
) and sine ∫ t

0
db (Lb

dω(t)
− Lb

gω(t)
) isindependent of σ(H t), the result also holds onditionally on dω(t) − gω(t), namely

P (F−(t) ∈ ds|dω(t) − gω(t))

=

∫

R+×R+

P

(
Lt

dω(t)
∈ dℓ ,

∫ ∞

t

db Lb
dω(t)

∈ dz

∣∣∣∣dω(t) − gω(t)

)
P (∆T[0,ℓ] ∈ ds|Tℓ = z).Now notie that the exursion of H straddling time ω(t) is the �rst exursion of H thatattains level t, and apply [29, Proposition XII.3.5℄ to obtain that

P (F−(t) ∈ ds|dω(t) − gω(t) = v) = N (v)(ζ > ω(t))−1N (v)(F−
1 (t) ∈ ds, v > ω(t)),and similarly

P

(
Lt

dω(t)
∈ dℓ ,

∫ ∞

t

db Lb
dω(t)

∈ dz

∣∣∣∣dω(t) − gω(t) = v

)

= N (v)(ζ > ω(t))−1N (v)

(
Lt

v ∈ dℓ ,

∫ ∞

t

db Lb
v ∈ dz , v > ω(t)

)
,for almost every v. This is generalized for every v by ontinuity of the familyN (v). Finally,notie that F−(t) = F−(t) under N and the N (v)'s and that we may remove the indiatorof v > ω(t) sine a.s. under N (v), Lt

v = 0 if and only if maxH ≤ t, to obtain
N (v)(F−(t) ∈ ds) = N (v)

(
Lt

v ∈ dℓ,

∫ ∞

t

db Lb
v ∈ dz

)
P (∆T[0,ℓ] ∈ ds|Tℓ = z).Taking v = 1 entails the laim. �As a onsequene of this result we may onjeture the shape of the disloation measureof F−. The next subsetions will give essentially the rigorous proof of this onjeture, but�nding ν− diretly from the forthoming omputations would ertainly have been trikywithout any former intuition. Roughly, suppose that the statement of Proposition 3 re-mains true for negative self-similarity indies (whih is probably true, but we will not needit anyway). Then take G a bounded ontinuous funtion that is null on a neighborhoodof (1, 0, . . .) and write

N (1)(G(F−(t))) =

∫

R+×[0,1]

N (1)

(
Lt

1 ∈ dx,

∫ ∞

t

db Lb
1 ∈ dz

)
E[G(∆T[0,x])|Tx = z].Call J(x, z) the expetation in the integral on the right hand side. Dividing by t andletting t ↓ 0 should yield the generator of the R2

+-valued proess ((Lt
1,
∫∞

t
dbLb

1), t ≥ 0),evaluated at the funtion J and at the starting point (0, 1). Now, we interpret (see Set. 5for de�nitions) the proess (Lt
1, t ≥ 0) under N (1) as the α-CSBP onditioned both to startat 0 and stay positive, and to have a total progeny equal to 1. It is thus heuristially aDoob h-transform of the initial CSBP with harmoni funtion h(x) = x, and onditionedto ome bak near 0 when its integral omes near 1. Now as a onsequene of Lamperti'stime-hange between CSBP's and Lévy proesses, the generator of the CSBP started at

x is xL(x, dy) where L is the generator of the stable Lévy proess with index α :
Lf(x) =

∫ ∞

0

Cαdy

yα+1
(f(x+ y) − f(x) − yf ′(x)),



3 STUDY OF F− 15where f stands for a generi funtion in the Shwartz spae. This, together with well-known properties for generators of h-transforms allows to onjeture that the generator
L′ of the CSBP onditioned to stay positive and started at 0 is given by

L′f(0) =

∫ ∞

0

Cαdy

yα
(f(y)− f(0)),for a ertain lass of nie funtions f . On the other hand, onditioning to ome bak to

0 when the integral attains 1 should introdue the term qy(1) (reall its de�nition (3))in the integral with a ertain oe�ient, sine the total progeny of a CSBP started at yis equal in law to Ty, as a onsequene of Ray-Knight's theorem. To be more aurate,the CSBP starting at y and onditioned to stay positive should be in [ε, ε+ dε] when itsintegral equals 1 with probability lose to εy−1qy(1)dε. Indeed, by the onditioned formof Lamperti's theorem of [20℄ and to be realled below, this is the same as the probabilitythat the Lévy proess started at y and onditioned to stay positive is in [ε, ε+dε] at time
1. Then,

Py(X1 ∈ dε|T0 > 1) = εy−1Py(X1 ∈ dε, T0 > 1) ∼
ε↓0

εy−1qy(1 − ε)dε.This, thanks to Lemma 3, allows to onjeture the form of the disloation measure as
ν−(G) = C

∫ ∞

0

dy qy(1)

yα+1
E[G(∆T[0,y])|Ty = 1]for some C > 0, that an be shown to be equal to αDα with some extra are, but we donot need it at this point. It is then easy to redue this to the form of Theorem 1 : byusing the saling identities and hanging variables u = y−α, we have that

∫ ∞

0

dy qy(1)

yα+1
E[G(∆T[0,y])|Ty = 1] =

∫ ∞

0

dy q1(y
−α)

y2α−1
E[G(yα∆T[0,1])|y

αT1 = 1]

=

∫ ∞

0

α−1du u q1(u)E[G(u−1∆T[0,1])|T1 = u]

= α−1E[T1G(T−1
1 ∆T[0,1])],as wanted.This very rough program of proof ould probably be �upgraded� to a real rigorousproof, but the tehnial di�ulties on generators of proesses would undoubtedly make itquite involved. We are going to use a path that uses more the struture of the stable tree.3.2 Erosion and �rst properties of the disloation measureFrom this setion on, F− is exlusively de�ned under N (1), so that we may use the niernotations P (F−(t) ∈ ds) or E[G(F−(t))] instead of N (1)(F−(t) ∈ ds) or N (1)(G(F−(t)))if there is no ambiguity.Lemma 4 The erosion oe�ient c of F− is 0, and the disloation measure ν−(ds)harges only {s ∈ S :

∑+∞
i=1 si = 1}.



3 STUDY OF F− 16Proof. We will follow the analysis of Bertoin [9℄, using the law of the time at whiha tagged fragment vanishes. Let U be uniform on (0, 1) and independent of the heightproess of the stable tree. Reall the de�nition of F−(t) out of the open set I−(t) and let
λ(t) = |I∗(t)| be the size of the interval I∗−(t) of I−(t) that ontains U . As in Set. 2.3, ifwe de�ne

a(t) = inf

{
u ≥ 0 :

∫ u

0

λ(v)1/α−1dv > t

}
, t ≥ 0,then (− log(λ(a(t))), t ≥ 0) is a subordinator with Laplae exponent

Φ(r) = c(r + 1) +

∫

S

(
1 −

+∞∑

n=1

sr+1
n

)
ν−(ds). (7)Moreover, if ξ = HU is the lifetime of the tagged fragment, then

E[ξk] =
k!

∏k
i=1 Φ

(
i
(
1 − 1

α

)) . (8)For the omputation we are going to use Proposition 2. Reall that χs(u) is haraterizedby its Laplae transform
∫ +∞

0

e−µuχs(u)du = exp(−sµ1−1/α). (9)We may now ompute the moments of ξ. We have
E[ξk] =

∫ +∞

0

hkαΓ

(
1 −

1

α

)
χαh(1)dh =

Γ
(
1 − 1

α

)

αk

∫ +∞

0

skχs(1)ds.To ompute this we use (9) and Fubini's theorem to get
∫ +∞

0

due−µu

∫ +∞

0

dsχs(u)s
k =

∫ +∞

0

sk exp(−sµ1−1/α)ds =
k!

µ(k+1)(1−1/α)
,and then the last term above is equal to

k!

Γ
(
(k + 1)

(
1 − 1

α

))
∫ +∞

0

du e−µuu(k+1)(1−1/α)−1.Inverting Laplae transforms and taking u = 1 thus give
∫ +∞

0

skχs(1)ds =
k!

Γ
(
(k + 1)

(
1 − 1

α

)) ,hene we �nally get
E[ξk] =

k!Γ
(
1 − 1

α

)

αkΓ
(
(k + 1)

(
1 − 1

α

)) .Using (8) we now obtain that
Φ

(
k

(
1 −

1

α

))
= α

Γ
(
(k + 1)

(
1 − 1

α

))

Γ
(
k
(
1 − 1

α

)) , k = 1, 2, . . .



3 STUDY OF F− 17Thus, for r of the form k(1 − 1/α),
Φ(r) = α

Γ
(
r + 1 − 1

α

)

Γ(r)
=

r

Γ
(
1 + 1

α

)B
(
r + 1 −

1

α
,
1

α

)
. (10)It is not di�ult, using the integral representation of the funtion B, then hangingvariables and integrating by parts, to write this in Lévy-Khinthine form, that is,

r

Γ
(
1 + 1

α

)B
(
r + 1 −

1

α
,
1

α

)
=

∫ ∞

0

dx

(
1 − 1

α

)
ex

Γ
(
1 + 1

α

)
(ex − 1)2−1/α

(
1 − e−xr

)
, (11)and it follows that (10) remains true for every r ≥ 0, hene generalizing Equation (12) in[9℄ in the Brownian ase. It also gives the formula

L(dx) =

(
1 − 1

α

)
exdx

Γ
(
1 + 1

α

)
(ex − 1)2−1/αfor the Lévy measure L(dx) of Φ, hene generalizing Equation (11) in [9℄.To onlude, we just notie that Φ(0) = 0, whih by (7) gives both c = 0 and∫

S
ν−(ds)(1 −

∑∞
i=1 si) = 0, implying the result. �3.3 Disloation measureThe disloation measure of F− will now be obtained by expliitly omputing the lawof the �rst fragmentation of the fragments marked by n independent uniform variables

U1, . . . , Un on (0, 1), as explained in Set. 2.3. This is going to be a purely ombinatorialomputation based on the �rst formula of Proposition 2. What we want to ompute isthe law of the partition of n indued by the partition I−(tn) and the variables U1, . . . , Unat the time tn when they are �rst separated. In terms of the stable tree desribed insetion 2.2, the probability ρ−(n)({πn}) that the partition indued by I−(tn) equals somenon-trivial partition πn of [n] with bloks A1, . . . , Ak having sizes n1, . . . , nk with sum n(n, k ≥ 2) is simply the probability that the skeleton of the marked tree ϑn is suh thatthe root has out-degree k, and the k trees that are rooted at the hildren of the root have
n1, n2, . . . , nk leaves, times n1! . . . nk!/n!, whih is the probability that the labels of theseleaves, inherited from the sample (Ui, 1 ≤ i ≤ n), indue the right partition. Let T

∗
n1,...,nkbe the set of trees of T

∗
n that have this last property. For x ≥ 0 and n ≥ 0 we denote by

[x]n the quantity ∏n−1
i=0 (x+ i) = Γ(x+ n)/Γ(x).Lemma 5 Let πn be a partition of [n] with k ≥ 2 bloks having sizes n1, n2, . . . , nk. Then
ρ−(n)({πn}) =

DαΓ(k − α)

αkΓ
(
n− 1

α

)
k∏

i=1

[
1 −

1

α

]

ni−1

.Proof. Reall that we want to ompute the probability that the skeleton of the markedtree ϑn has a root with k hildren, and the fringe subtrees spanned by these hildren are



3 STUDY OF F− 18trees of T
∗
ni

for 1 ≤ i ≤ k. The fat that the �rst displayed quantity in Proposition 2de�nes a probability on T
∗
n implies

∑

T ∈T∗
n

∏

v∈NT

|(α− 1)(α− 2) . . . (α− cv(T ) + 1)|

cv(T )!
=

(α− 1)(2α− 1) . . . ((n− 1)α− 1)

n!

=
αn−1

n!

[
1 −

1

α

]

n−1

.Now we ompute
ρ−(n)({πn}) =

∑

T ∈T∗
n1,...,nk

n!n1! . . . nk!

αn−1
[
1 − 1

α

]
n−1

n!

∏

v∈NT

|(α− 1)(α− 2) . . . (α− cv(T ) + 1)|

cv(T )!

=
n1! . . . nk!|(α− 1)(α− 2) . . . (α− k + 1)|

αn−1k!
[
1 − 1

α

]
n−1

×
∑

T ∈T∗
n1,...,nk

∏

v∈NT \{root}

|(α− 1)(α− 2) . . . (α− cv(T ) + 1)|

cv(T )!

=
(α− 1)Γ(k − α)Γ

(
1 − 1

α

)

k!αn−1Γ(2 − α)Γ
(
n− 1

α

)

× k!n1! . . . nk!
k∏

i=1

∑

T ∈T∗
ni

∏

v∈NT

|(α− 1)(α− 2) . . . (α− cv(T ) + 1)|

cv(T )!
,where the last equality stems from the de�nition of T

∗
n1,...,nk

, and where the fator k!appears beause the k fringe subtrees spanned by the sons of the root may appear in anyorder. By the �rst formula of the proof this now redues to
ρ−(n)({πn}) =

DαΓ(k − α)
∏k

i=1 ni!

αnΓ
(
n− 1

α

)
k∏

i=1

αni−1

ni!

[
1 −

1

α

]

ni−1

,giving the result. �Comparing with Lemma 2 implies, sine c = 0, that the disloation measure ν− of F−is thus determined up to a multipliative onstant. Sine we have a onjetured formDαναfor the disloation measure ν− of F−, we just have to ompute the quantity κ−(π) for κ−the exhangeable measure on P with frequenies given by the onjetured ν−. Preisely,we haveLemma 6 Let πn be a partition of [n] with k ≥ 2 bloks and blok sizes n1, . . . , nk. Then
κn
−({πn}) := κ−({π ∈ P : π|[n] = πn}) =

DαΓ(k − α)

αk−1Γ(n− 1)

k∏

i=1

[
1 −

1

α

]

ni−1Before proving this we state from (74) in setion 6 of [27℄ (notie that the α there isour 1/α) :



3 STUDY OF F− 19Proposition 5 Let θ > −1/α, and let µθ(ds) be the measure on S
Γ(θ + 1)

Γ(αθ + 1)
E

[
T−θ

1 ;
∆T[0,1]

T1
∈ ds

]
.Then µθ is a probability distribution. Moreover, let πn be a partition of [n] with non-voidblok sizes n1, . . . , nk. Then the probability that the restrition to [n] of the exhangeablepartition of P with frequenies having law µθ is πn is given by

pθ(n1, . . . , nk) =
[αθ + 1]k−1

αk−1[θ + 1]n−1

k∏

i=1

[
1 −

1

α

]

ni−1Proof of Lemma 6. The omputation of the κn
− assoiated with the onjetured dis-loation measure ν− an go through the same lines as in [27℄, using the expliit densitiesfor size-biased piks among the jumps of the subordinator T . However, we use the follow-ing more diret proof. Write νθ = Dα(Γ(αθ + 1)/Γ(θ + 1))µθ. Reall from the above thenotation κs(dπ) for the law of the exhangeable partition of N with ranked asymptotifrequenies given by s. De�ne

κθ(dπ) =

∫

S

νθ(ds)κs(dπ) = DαE
[
T−θ

1 κ∆T[0,1]/T1
(dπ)

]
, (12)and for πn a partition of [n] with blok sizes n1, . . . , nk write κn

θ ({πn}) = κθ({π ∈ P :
π|[n] = πn}) = (Γ(αθ + 1)/Γ(θ + 1))pθ(n1, . . . , nk). Notie that when n, k ≥ 2 and s ∈ S,we have κs({π ∈ P : π|[n] = πn}) ≤ 1− s1. On the other hand, the fat that ν− integrates
s 7→ 1 − s1 is easily generalized to νθ for θ > −1. We dedue that the map θ → κn

θ ({πn})is analyti on {θ ∈ C : Re(θ) > −1}. The same holds for
Dα

Γ(αθ + 1)

Γ(θ + 1)
pθ(n1, . . . , nk) =

DαΓ(αθ + k)

αk−1Γ(θ + n)

k∏

i=1

[
1 −

1

α

]

ni−1

(13)provided k ≥ 2, so the limits as θ ∈ R ↓ −1 of (12) and of (13) oinide. Using a dominatedand monotone onvergene argument to get the θ ↓ −1 limit in (12), we �nally obtain
κn
−({πn}) =

DαΓ(k − α)

αk−1Γ(n− 1)

k∏

i=1

[
1 −

1

α

]

ni−1

,as wanted. �Remark. By analogy with the EPPF (exhangeable partition probability funtion) thatallows to haraterize the law of exhangeable partitions, expressions suh as in Lemma6 ould be alled �exhangeable partition distribution funtions�, as they haraterize
σ-�nite exhangeable measures on the set of partitions of N. The expression in Lemma6 should be interpreted as an EPDF for a generalized (1/α, θ) partition (see [26℄), for
θ = −1. One ertainly ould imagine more general exhangeable partitions as θ goesfurther in the negative axis : this would impose more and more stringent onstraints onthe number of bloks of the partitions.Therefore, we obtain that

κn
− = α(Γ(n− 1/α)/Γ(n− 1))ρ−(n)on the set of non-trivial partitions of [n]. Lemma 2 implies that the disloation measureof F− is equal to the onjetured ν− up to a multipliative onstant. We are going toreover the missing information with the help of the omputation of Φ above.



4 SMALL-TIME ASYMPTOTICS 203.4 The missing onstantIn this setion, we ompute the Laplae exponent Φ of the subordinator − log(λ(a(·)))of Set. 3.2, whose value is indiated in (10), diretly from formulas (7) and (1). Let
Φ0(r) =

∫

S

(
1 −

∞∑

n=1

sr+1
n

)
ν−(ds),where ν− is the measure given in Theorem 1. If we an prove that Φ0(r) = Φ(r) for every

r ≥ 0, we will therefore have established that the normalization of ν− is the appropriateone. By (1),
Φ0(r) = DαE

[
T1

(
1 −

∑

0≤x≤1

(
∆Tx

T1

)r+1
)]

= Dα

∫ ∞

0

du u q1(u)E

[
1 −

∑

0≤x≤1

(
∆Tx

u

)r+1 ∣∣∣∣T1 = u

]

= Dα

∫ ∞

0

du u q1(u)E

[
1 −

(
∆∗

1

u

)r]where ∆∗
1 is a size-biased pik from the jumps of Tx, for 0 ≤ x ≤ 1, onditionally on

T1 = u. Using formula (4) and realling that T has Lévy measure cαx−1−1/αdx, we anwrite
Φ0(r) = Dα

∫ ∞

0

du u q1(u)

∫ u

0

dx(1 − (x/u)r)
cαq1(u− x)

ux1/αq1(u)

= Dα

∫ ∞

0

du

∫ 1

0

dy cαu
1−1/αq1(u(1 − y))

1 − yr

y1/α

= Dα

∫ 1

0

dy
cα(1 − yr)

y1/α(1 − y)2−1/α

∫ ∞

0

du u1−1/αq1(u)as obtained by Fubini's theorem, and linear hanges of variables. The integral in du equals
E[T

1−1/α
1 ], whih is Γ(2 − α)/Γ(1/α) by standard results using Laplae transform. Usingthe expressions forDα, cα and the identity α−1Γ(1/α) = Γ(1+1/α), it remains to omputethe quantity

1 − 1
α

Γ
(
1 + 1

α

)
∫ 1

0

dy y−1/α(1 − yr)

(1 − y)2−1/α
.But this is exatly the expression (11) after hanging variables y = e−x, and it is thusequal to rB(r + 1 − 1/α, 1/α)/Γ(1 + 1/α), whih is (10) as wanted, thus ompleting theproof of Theorem 1.4 Small-time asymptotisIn this setion we study the asymptoti behavior of F− for small times. Preisely, let

M(t) =
∑

i≥1 F
−
i (t) denote the total mass of F− at time t. Let (Yx, x ≥ 0) denote an

α-CSBP, started at 0 and onditioned to stay positive. See the following setion for the



4 SMALL-TIME ASYMPTOTICS 21de�nitions. We have the following result, that generalizes and mimis somehow resultsfrom [3, 5, 24℄. However, these results dealt with self-similar fragmentations with positiveindies, and also, the ourrene of the randomization introdued by Y1 below is somehowunusual.Proposition 6 The following onvergene in law holds :
tα/(1−α)(M(t) − F−

1 (t), F−
2 (t), F−

3 (t), . . .)
d
→
t↓0

(TY1 ,∆1,∆2, . . .)where T is the stable 1/α subordinator as above, independent of Y , and ∆1,∆2, . . . arethe jumps of (Tx, 0 ≤ x ≤ Y1) ranked in dereasing order of magnitude.For this we are going to use the following lemma, whih resembles the result of Jeulin in[16℄ relating a saled normalized Brownian exursion and a 3-dimensional Bessel proess.The proof is postponed to the following setion. Reall that (Lt
1, t ≥ 0) stands for theloal time of the height proess up to time 1.Lemma 7 The following onvergene in law holds :Under N (1), (t1/(1−α)Ltx

1 , x ≥ 0)
d
→
t↓0

(Yx, x ≥ 0),and this last limit is independent of the initial proess (Lt
1, t ≥ 0). In partiular, t1/(1−α)Lt

1onverges in distribution to Y1 as t ↓ 0.In the sequel let (yt, yt) have the law of (Lt
1,
∫∞

t
dbLb

1) under N (1).Proof of Proposition 6. Following the method of Aldous and Pitman [3℄, we areatually going to prove that for every k,
tα/(1−α)(M(t) − F ∗

1 (t), F ∗
2 (t), F ∗

3 (t), . . . , F ∗
k (t))

d
→
t↓0

(TY1 ,∆
∗
1,∆

∗
2, . . . ,∆

∗
k−1), (14)for every k ≥ 1, where the quantities with the stars are the size-biased quantities asso-iated with the ones of the statement, and this is su�ient. We are going to proeed byindution on k. To start the indution, let g be a ontinuous funtion with ompat sup-port and write, using Lemma 1, Proposition 4, then hanging variables and using salingidentities,

E[g(tα/(1−α)(M(t) − F ∗
1 (t)))] = E

(∫ yt

0

du
cα yt qyt(yt − u)

yt u
1/α qyt(yt)

g(tα/(1−α)(yt − u))

)

= E



∫ tα/(1−α)yt

0

dv
tα/(α−1) cα yt q1

(
v

tα/(1−α)yα
t

)

(yt − tα/(α−1)v)1/α yt q1

(
yt

yα
t

)g(v)


 .By making use of Skorokhod's representation theorem, we may suppose that the on-vergene of (t1/(1−α)yt, t

α/(1−α)yt) to (Y1,∞) is almost-sure. Now the integral inside theexpetation is the integral aording to a probability law, hene it is dominated by thesupremum of |g|, so it su�es to show that the integral onverges a.s. to apply dominated



4 SMALL-TIME ASYMPTOTICS 22onvergene. For almost every ω, there exists ε suh that if t < ε, tα/(1−α)yt(ω) > K where
K is the right-end of the support of g. For suh an ω and t, the integral is thus

∫ K

0

dv g(v)
cαt

α/(α−1)ytq1(v(t
1/(1−α)yt)

−α)

y
1+1/α
t (1 − tα/(α−1)v/yt)

1/αq1(yty
−α
t )

≤ M
tα/(α−1)yt

y
1+1/α
t q1(yty

−α
t )

∫ K

0

dv q1

(
v

tα/(1−α)yα
t

)for some onstantM not depending on t. Now we use the fat from [30℄ that q1 is boundedand
q1(x) =

x→∞
cαx

−1−1/α +O(x−1−2/α).This allows to onlude by dominated onvergene that the integral a.s. goes to
∫ K

0

dv g(v)
q1(v/Y

α
1 )

Y α
1

=

∫ K

0

dv g(v)qY1(v),and by dominated onvergene its expetation onverges to the expetation of the abovelimit, that is E[g(TY1)].To implement the reursive argument, suppose that (14) holds for some k ≥ 1.Let g and h be ontinuous bounded funtions on R+ and Rk
+ respetively. Denote by

(yt, yt,∆1(t),∆2(t) . . .) a sequene with the same law as (Lt
1,
∫∞

t
dsLs

1,∆T
′
[0,Lt

1]
) given

T ′
Lt

1
=
∫∞

t
dsLs

1, where L1 is taken under N (1) and T ′ is a stable 1/α subordinator, takenindependent of L. Last, let ∆∗
1(t),∆

∗
2(t), . . . be the size-biased permutation assoiated with

∆1(t),∆2(t), . . .. By Proposition 4, onditioning and using Lemma 1 we have
E[g(tα/(1−α)F ∗

k+1(t))h(t
α/(1−α)(M(t) − F ∗

1 (t), F ∗
2 (t), . . . , F ∗

k (t)))]

= E

[
h(tα/(1−α)(yt − ∆∗

1(t),∆
∗
2(t), . . . ,∆

∗
k(t)))

×

∫ yt−
∑k

i=1 ∆∗

i (t)

0

du g(tα/(1−α)u)
cα yt qyt

(
yt −

∑k
i=1 ∆∗

i (t) − u
)

u1/α
(
yt −

∑k
i=1 ∆∗

i (t)
)
qyt

(
yt −

∑k
i=1 ∆∗

i (t)
)
]

Similarly as above, we show by hanging variables and then using the saling identitiesand the asymptoti behavior of q1 that this onverges to
E


h(TY1 ,∆

∗
1, . . . ,∆

∗
k−1)

∫ TY1
−
∑k

i=1 ∆∗

i

0

du g(u)
cα Y1 qY1

(
TY1 −

∑k−1
i=1 ∆∗

i − v
)

u1/α(TY1 −
∑k−1

i=1 ∆∗
i )qY1

(
TY1 −

∑k−1
i=1 ∆∗

i

)


and by Lemma 1 this is E[h(TY1 ,∆

∗
1, . . . ,∆

∗
k−1)g(∆

∗
k)]. This �nishes the proof. �The same method as that used in this proof an be used to show also that the resaledremaining mass tα/(1−α)(1 −M(t)) onverges in distribution to ∫ 1

0
Yv dv jointly with thevetor of the proposition.



5 SOME RESULTS ON CONTINUOUS-STATE BRANCHING PROCESSES 235 Some results on ontinuous-state branhing proessesIn this setion we develop the material needed to prove Lemma 7. In the ourse, wewill give an analog of Jeulin's theorem [17℄ linking the loal time proess of a Brownianexursion to another time-hanged Brownian exursion. To stay in the line of the presentpaper, we will suppose that the laws we onsider are assoiated to stable proesses, but allof the results (exept the proof of Lemma 7 whih strongly uses saling) an be extendedto more general Lévy proesses and their assoiated CSBP's. To avoid onfusions, we willdenote by (Zt, t ≥ 0) the di�erent CSBP's we will onsider, or to be more preise, we let
(Zt, t ≥ 0) instead of (Xs, s ≥ 0) be the anonial proess on D([0,∞)) when dealing withthe laws Px,P

↑
x, . . . assoiated to CSBP's.De�nition 2 For any x > 0, let Px be the unique law on D([0,∞)) that makes the anon-ial proess (Zt, t ≥ 0) a right-ontinuous Markov proess starting at x with transitionprobabilities haraterized by

E[exp(−λZt+r)|Zt = y] = exp(−yur(λ)),where ur(λ) = (λ1−α + (α− 1)r)1/(1−α) is determined by the equation
∫ λ

ur(λ)

dv

vα
= r.Then Px is alled the law of of the α-CSBP started at x.Remark. For more general branhing mehanisms, the de�nition of ur(λ) is modi�edby replaing vα by ψ(v), where ψ is the Laplae exponent of a spetrally positive Lévyproess with in�nite variation that osillates or drifts to −∞.Reall the setting of setion 2.1, and let Px be law under whih X is the spetrallypositive stable proess with Laplae exponent λα and started at x > 0, that is, the lawof x + X under P . Let Ex be the orresponding expetation. De�ne the time-hange

(τt, t ≥ 0) by
τt = inf

{
u ≥ 0 :

∫ u

0

dv

Xv∧h0

> t

}
,where h0 = inf{s > 0 : Xs = 0} is the �rst hitting time of 0. This de�nition makes senseeither under the law Px, for x > 0, or the σ-�nite exursion measure N (we will see belowthat under N , τ is not the trivial proess idential to 0).Theorem 2 We have the following identities in law : for every x > 0,

(Lt
Tx
, t ≥ 0) under P d

= (Xτt , t ≥ 0) under Px,and both have law Px. Moreover,
(Lt

ζ , t ≥ 0) under N d
= (Xτt , t ≥ 0) under N.



5 SOME RESULTS ON CONTINUOUS-STATE BRANCHING PROCESSES 24The �rst part is already known and is a onjuntion of Lamperti's theorem and theRay-Knight theorem mentioned in Set. 2.2. We will use it to prove the seond part. Firstwe introdue some notations, whih were already used in a heuristi way above.For x > 0 one an de�ne the law P ↑
x of the stable proess started at x and onditionedto stay positive by means of Doob's theory of harmoni h-transforms. It is haraterizedby the property

E↑
x[F (Xs, 0 ≤ s ≤ K)] = Ex

[
XK

x
F (Xs, 0 ≤ s ≤ K), K < T0

]for any positive measurable funtional F . Here T0 denotes as above the �rst hitting timeof 0 by X. It an be shown (see e.g. [12℄) that P ↑
x has a weak limit as x → 0, whih weall P ↑, the law of the stable proess onditioned to stay positive.Similarly, we de�ne the CSBP onditioned to stay positive aording to [20℄, by letting

Px be the law of the CSBP started at x > 0, then setting
E
↑
x[F (Zt, 0 ≤ t ≤ K)] = Ex

[
ZK

x
F (Zs, 0 ≤ s ≤ K)

]
.We want to show that a x ↓ 0 limit also exists in this ase. This is made possible by theinterpretation of [20℄ of the law P↑

x in terms of a CSBP with immigration. To be onise,we haveLemma 8 For x > 0, the law P↑
x is the law of the α-CSBP with immigration funtion

αλα−1 and started at x. That is, under P↑
x, (Zt, t ≥ 0) is a Markov proess starting at xand with transition probabilities

E
↑
x[exp(−λZt+r)|Zt = y] = exp

(
−yur(λ) −

∫ r

0

αuv(λ)α−1dv

)
.As a onsequene, the laws P↑

x onverge weakly as x ↓ 0 to a law P
↑
0 = P↑, whih isthe law of a Markov proess with same transition probabilities and whose entrane law isgiven by the above formula, taking t = y = x = 0. It is also easy that the law P↑ is thatof a Feller proess aording to the de�nition for ur(λ).It is shown in [20℄ that Lamperti's orrespondene is still valid between onditionedproesses started at x > 0 : the proess (Xτt , t ≥ 0) under the law P ↑

x has law P↑
x. To bemore aurate, the exat statement is that if the proess (Zt, t ≥ 0) has law P↑

x, then theproess (ZCs , s ≥ 0) has law P ↑
x where

Cs = inf

{
u ≥ 0 :

∫ u

0

dvZv > s

}
,but this is the seond part of Lamperti's transformation, whih is easily inverted (see alsothe omment at the end of the setion). We generalize this toLemma 9 The proess (Xτt , t ≥ 0) under the law P ↑ has law P↑.Part of this lemma is that τt > 0 for every t.



5 SOME RESULTS ON CONTINUOUS-STATE BRANCHING PROCESSES 25Proof. For �xed η > 0, let
τ η
t = inf

{
u :

∫ u∨η

η

dv

Xv

> t

}
.This is well de�ned under P ↑ sine Xt > 0 for all t > 0 a.s. under this law. Then sine∫ u∨η

η
dv/Xv =

∫ u−η

0
dv/Xη+v, we have that

τ η
t = η + inf

{
u ≥ 0 :

∫ u

0

dv

Xη+v
> t

}
.That is, τ η − η equals the time-hange τ de�ned above, but assoiated to the proess

(Xη+t, t ≥ 0) (notie that h0 plays no role here sine we are dealing with proesses thatare stritly positive on(0,∞)). Under P ↑, this proess is independent of (Xs, 0 ≤ s ≤ η)onditionally on Xη and has law P ↑
Xη
. Hene, by Lamperti's identity, onditionally on

(Xs, 0 ≤ s ≤ η) under P ↑, the proess (Xτη
t
, t ≥ 0) has law P

↑
Xη
. Hene, for any ontinuousbounded funtional G on the paths de�ned on [0, K] for some K > 0,

E↑[G(Xτη
t
, 0 ≤ t ≤ K)] = E↑[E↑

Xη
[G(Zt, 0 ≤ t ≤ K)]].Now, it is not di�ult to see that τ η dereases to the limit τ uniformly on ompat sets.Thus, using the right-ontinuity of X on the one hand, and the Feller property on theother (in fat, less than the Feller property is needed here), we obtain by letting η ↓ 0 inthe above identity

E↑[G(Xτt , 0 ≤ t ≤ K)] = E
↑[G(Zt, 0 ≤ t ≤ K)],whih is the desired identity. In partiular, τ annot be identially 0. �Remark. Notie that the fat that the time-hange τt is still well-de�ned under the law

P ↑ an be double-heked by a law of the iterated logarithm for the law P ↑. See also theend of the setion.Motivated by the de�nition in Pitman-Yor [28℄ for the exursion measure away from
0 of ontinuous di�usions for whih 0 is an exit point (and initially by It�'s desription ofthe Brownian exursion measure linking the three-dimensional Bessel proess semigroupto the entrane law of Brownian exursions), we now state the followingProposition 7 The proess (Lt

ζ , t ≥ 0) under the measure N is governed by the exursionmeasure of the CSBP with harateristi λα. That is, its entrane law N(Lt
ζ ∈ dy) for

t > 0 is equal to y−1
P
↑(Zt ∈ dy) for y > 0 (and it puts mass ∞ on {0}), and given

(Lu
ζ , 0 ≤ u ≤ t), the proess (Lt+t′

ζ , t′ ≥ 0) has law PLt
ζ
.The use of the height proess and its loal time under N , and hene of an �exursionmeasure� assoiated to the genealogy of CSBP's, snakes and superproesses, is a verynatural tool, however it does not seem that the above proposition, whih states thatthis notion of �exursion measure� is the most natural one, has been heked somewhere.However, as notied in [28℄, sine the point 0 is not an entrane point for the initialCSBP, one annot de�ne a reentering di�usion by stiking the atoms of a Poisson measurewith intensity given by this exursion measure, beause the durations are almost neversummable.



5 SOME RESULTS ON CONTINUOUS-STATE BRANCHING PROCESSES 26Proof. The law P↑(Zt ∈ dy) is the weak limit of P↑
x(Zt ∈ dy) = x−1yP(Zt ∈ dy) as x→ 0.Sine by the properties of the CSBP mentioned in setion 2.2, we have Ex[exp(−λZt)] =

exp(−xut(λ)), we obtain
∫ ∞

0

P↑
x(Zt ∈ dy)

y
(1 − e−λy) =

∫ ∞

0

Px(Zt ∈ dy)

x
(1 − e−λy) =

1 − e−xut(λ)

x
.This onverges to ut(λ) as x → 0, and thanks to the proof of [14, Theorem 1.4.1℄, thisequals N(1 − exp(−λLt

ζ)). This gives the identity of the entrane laws. For the Markovproperty we use exursion theory and Ray-Knight's theorem. Let 0 < t1 < . . . < tn < t,then Markov's property for (Lt
T1
, t ≥ 0) entails that for every λ1, . . . , λn, λ ≥ 0,

E[exp(−
n∑

i=1

λiL
ti
T1

− λLt
T1

)] = E[exp(−
n−1∑

i=1

λiL
ti
T1

− (λn + ut−tn(λ))Ltn
T1

)].On the other hand, we may write Lt
T1

=
∑

0<s≤1(L
t
Ts
−Lt

Ts−) so that the Laplae exponentidentity for Poisson point proesses applied to both sides of the above displayed expressiongives after taking logarithms :
N

(
1 − exp

(
−

n∑

i=1

λiL
ti
ζ − λLt

ζ

))
= N

(
1 − exp

(
−

n−1∑

i=1

λiL
ti
ζ − (λn + ut−tn(λ))Ltn

ζ

))
,so that a substration gives

N

(
exp

(
−

n∑

i=1

λiL
ti
ζ

)
(1 − exp(−λLt

ζ))

)

= N

(
exp

(
−

n∑

i=1

λiL
ti
ζ

)
(1 − exp(−ut−tn(λ)Ltn

ζ ))

)

= N

(
exp

(
−

n∑

i=1

λiL
ti
ζ

)
ELtn

ζ
[1 − exp(−λZt−tn)]

)
.Hene the Markov property. �Proof of Theorem 2. It just remains to prove the seond statement. For this we let

η > 0 and we de�ne as above the time hange τ η
t . Using the Markov property under themeasure N , we again have that under N , (Xη+s, s ≥ 0) is independent of (Xs, 0 ≤ s ≤ η)onditionally on Xη and has the law P h0

Xη
of the stable proess started at Xη and killedat time h0. Hene, by Lamperti's identity, under N and onditionally on (Xs, 0 ≤ s ≤ η),the proess (Xτη

t
, t ≥ 0) has law PXη . Thus if η < t1 < . . . < tn < t and if g1, . . . , gn, g arepositive ontinuous funtions with ompat support that does not ontain 0, then

N

(
n∏

i=1

gi(Xτη
ti
) g(Xτη

t
)

)
=

∫ ∞

0

N(Xη ∈ dx)Ex

[
n∏

i=1

gi(Zti−η) g(Zt−η)

]

=

∫ ∞

0

N(Xη ∈ dx)Ex

[
n∏

i=1

gi(Zti−η) EZtn−η [g(Zt−tn)]

]
.



5 SOME RESULTS ON CONTINUOUS-STATE BRANCHING PROCESSES 27As for the CSBP, the entrane law N(Xη ∈ dx) equals x−1P ↑(Xη ∈ dx) for x > 0. So wereast the last expression as
∫ ∞

0

P ↑(Xη ∈ dx)Ex

[∏n
i=1 gi(Zti−η)

x
EZtn−η [g(Zt−tn)]

]

=

∫ ∞

0

P ↑(Xη ∈ dx)E↑
x

[∏n
i=1 gi(Zti−η)

Ztn−η
EZtn−η [g(Zt−tn)]

]
.Now we let η ↓ 0, using the right ontinuity and the Feller property of the CSBP, toobtain

N

(
n∏

i=1

gi(Xτti
) g(Xτt)

)
= E

↑

[∏n
i=1 gi(Zti)

Ztn

EZtn
[g(Zt−tn)]

]
.Hene, thanks to Proposition 7 we obtain that under N the proess (Xτt , t ≥ 0) has thesame entrane law and Markov property as (Lt

ζ , t ≥ 0), hene the same law. �Proof of Lemma 7. LetG be a ontinuous bounded funtional on the paths with lifetime
K. We want to show that N (1)[G(t1/(1−α)Ltx

1 , 0 ≤ x ≤ K)] goes to E↑[G(Xτx , 0 ≤ x ≤ K)].By Theorem 2, the proess (Lx
v , x ≥ 0) under N (v) is equal to the proess (Xτx , x ≥ 0)under the law N (v) for almost every v, and we an take v = 1 by the usual salingargument. By [12℄, the law N (1) an be obtained as the bridge with length 1 of the stableproess onditioned to stay positive, and there exists a positive measurable harmonifuntion h suh that for every funtional J and every r < 1,

N (1)[J(Xs, 0 ≤ s ≤ r)] = E↑[h(Xr)J(Xs, 0 ≤ s ≤ r)].We now use essentially the same proof as in [11, Lemma 6℄. Let ε > 0. Sine τtx ∧ ε is astopping time for the natural �ltration of X,
N (1)[G(t1/(1−α)Xτtx∧ε, 0 ≤ x ≤ K)]

= E↑[h(Xε)G(t1/(1−α)Xτtx∧ε, 0 ≤ x ≤ K)]

= E↑[E↑[h(Xε)|XτtK∧ε]G(t1/(1−α)Xτtx∧ε, 0 ≤ x ≤ K)].Sine τtK → 0 a.s. as t ↓ 0, we obtain the same limit if we remove the ε in the left-hand side, hene giving limN (1)[G(t1/(1−α)Ltx
1 , 0 ≤ x ≤ K)] by Theorem 2. Using thebakwards martingale onvergene theorem we obtain that the onditional expetationon the right-hand side onverges to E↑[h(Xε)] = 1. So

lim
t↓0

N (1)[G(t1/(1−α)Ltx
1 , 0 ≤ x ≤ K)] = lim

t↓0
E↑[G(t1/(1−α)Xτtx , 0 ≤ x ≤ K)]and the last expression is onstant, equal to E↑[G(Xτx , 0 ≤ x ≤ K)] by saling, hene theresult by Lamperti's transform. The independene with the initial proess is a re�nementof the argument above, using the Markov property at the time τtK ∧ ε. �One �nal omment. It may look quite strange in the proofs above that the a prioriill-de�ned time τt under the laws P ↑ or N somehow has to be non-degenerate by theproofs we used, even though no argument on the path behavior near 0 has been givenfor these laws. As a matter of fat, things are maybe learer when onsidering also the
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∫ u

0

dv Zv > s

}
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0

dv

Xv

=

∫ u

0

dv

ZCv

=

∫ Cu

0

Zwdw

Zw
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