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Self-similar fragmentations derived from the stabletree I : splitting at heightsGrégory MiermontDMA, É
ole Normale Supérieure,and LPMA, Université Paris VI.45, rue d'Ulm,75230 Paris Cedex 05∗RésuméThe basi
 obje
t we 
onsider is a 
ertain model of 
ontinuum random tree, 
alledthe stable tree. We 
onstru
t a fragmentation pro
ess (F−(t), t ≥ 0) out of this treeby removing the verti
es lo
ated under height t. Thanks to a self-similarity propertyof the stable tree, we show that the fragmentation pro
ess is also self-similar. Thesemigroup and other features of the fragmentation are given expli
itly. Asymptoti
results are given, as well as a 
ouple of related results on 
ontinuous-state bran
hingpro
esses.Key Words. Self-similar fragmentation, stable tree, stable pro
esses, 
ontinuous-statebran
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1 INTRODUCTION 21 Introdu
tionThe re
ent advan
es in the study of 
oales
en
e and fragmentation pro
esses pointed atthe key role played by tree stru
tures in this topi
, both at the dis
rete and 
ontinuous level[15, 3, 4℄. Our goal here is to push further the investigation, begun in [3, 9℄, of a 
ategoryof fragmentations obtained by 
utting a 
ertain 
lass a 
ontinuum random tree. The treethat was fragmented in the latter arti
les is the Brownian Continuum Random Tree ofAldous, and the fragmentation is related to the so-
alled standard additive 
oales
ent. Thefamily of trees we 
onsider is a natural but te
hni
ally involved �Lévy generalization� ofthe Brownian tree. It has been introdu
ed in Duquesne and Le Gall [14℄, and impli
itly
onsidered in the previous work of Kersting [18℄. Some of these trees, as their Brownian
ompanion, enjoy 
ertain self-similar properties. In the present work the 
ru
ial propertyis that when removing the verti
es of the stable tree lo
ated under a �xed height (ordistan
e to the root), the remaining obje
t is a forest of smaller trees that have thesame law as the original one up to res
aling. This is formalized in Lemma 3 below. Thisway of logging the stable tree indu
es a fragmentation pro
ess whi
h by the propertyexplained above turns out to be a self-similar fragmentation, the theory of su
h pro
essesbeing extensively studied by Bertoin [8, 9, 10℄. The goal of this paper is to des
ribe the
hara
teristi
s and give some properties of this fragmentation pro
ess. We will have to usesto
hasti
 pro
esses and 
ombinatorial approa
hes in the same time ; in parti
ular, we willen
ounter σ-�nite generalizations of the (α, θ)-partitions of [26℄, whi
h are distributionson the set of partitions of N = {1, 2, . . .}, as well as we will need the 
onstru
tion ofthe stable tree out of Lévy pro
esses and its 
onne
tion to 
ontinuous-state bran
hingpro
esses (CSBP) explained in [14℄.In a 
ompanion paper [23℄ we will 
onsider another way of obtaining a self-similarfragmentation by another 
utting devi
e on the stable tree, using the heuristi
 fa
t thatwhen 
utting at random one hub in the the stable tree, the trunk and bran
hes that havebeen separated are s
aled versions of the initial tree. Surprisingly, although this otherdevi
e looks quite di�erent from the �rst (no mass is lost when 
utting a hub, whereasthere is a loss of mass when we throw everything that is lo
ated under the height h), itturns out that the only di�eren
e between these two fragmentations is the speed at whi
hfragments de
ay.To state our main results, let us introdu
e qui
kly the already mentioned tree stru
-tures and fragmentation pro
esses, postponing the details to a further se
tion.Let S = {s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,
∑

i≥1 si ≤ 1}. A ranked self-similarfragmentation pro
ess (F (t), t ≥ 0) with index β ∈ R is a S-valued Markov pro
ess thatis 
ontinuous in probability, su
h that F (0) = (1, 0, 0, . . .) and su
h that 
onditionally on
F (t) = (x1, x2, . . .), F (t+ t′) has the law of the de
reasing arrangement of the sequen
es
xiF

(i)(xβ
i t

′), where the F (i) are independent with the same law as F . That is, after time
t, the di�erent fragments evolve independently with a speed that depends on their size.It has been shown in [9℄ that su
h fragmentations are 
hara
terized by a 3-tuple (β, c, ν),where β is the index, c ≥ 0 is an �erosion� real 
onstant saying that the fragments maymelt 
ontinuously at some rate depending on c, and ν is a σ-�nite measure on S thatattributes mass 0 to (1, 0, . . .) and that integrates s 7→ (1− s1). This measure governs thesudden dislo
ations in the fragmentation pro
ess, and the integrability assumption ensuresthat these dislo
ations do not o

ur too qui
kly, although the fragmentation epo
hs may



1 INTRODUCTION 3form a dense subset of R+ as soon as ν(S) = +∞. When β < 0, a positive fra
tion ofthe mass 
an disappear within a �nite time, even though there is no loss of mass due toerosion nor to sudden dislo
ations. This phenomenon will be 
ru
ial in the fragmentation
F− below.The trees we are 
onsidering are 
ontinuum random trees. Intuitively, they are metri
spa
es with an �in�nitely rami�ed� tree stru
ture, whi
h 
an be 
onsidered as genealogi
alstru
tures 
ombined with two measures : a σ-�nite length measure supported by the �skele-ton� of the tree and a �nite mass measure supported by its leaves, whi
h are everywheredense in the tree. These trees 
an be de�ned in several equivalent ways :� as a weak limit of Galton-Watson trees� through its height pro
ess H , whi
h is a positive 
ontinuous pro
ess on [0, 1]. To apoint u ∈ [0, 1] 
orresponds a vertex of the tree with height (distan
e to the root)equal to Hu, and the mass measure on the tree is represented by Lebesgue's measureon [0, 1]� through its expli
it �marginals�, that is, the laws of subtrees spanned by a randomsample of leaves.We will have to use the se
ond (sto
hasti
 pro
ess) and third (
ombinatorial) points ofview. We know from the works of Duquesne and Le Gall [14℄ and Duquesne [13℄ thatone may de�ne a parti
ular instan
e of tree, 
alled the stable tree with index α (for some
α ∈ (1, 2]). When α = 2, the stable tree is equal to the Brownian CRT of Aldous [2℄. Wewill re
all the rigorous 
onstru
tion of the height pro
ess of the stable tree in Se
t. 2.2,but let us state our results now. Fix α ∈ (1, 2) and let (Hs, 0 ≤ s ≤ 1) be the heightpro
ess of the stable tree with index α.The fragmentation pro
ess, that we 
all F−, is de�ned as follows. For ea
h t ≥ 0, let
I−(t) be the open subset of (0, 1) de�ned by

I−(t) = {s ∈ (0, 1) : Hs > t}.With our intuitive interpretation of the height pro
ess, I−(t) is the set of verti
es of thetree with height > t. We denote by F−(t) the de
reasing sequen
e of the lengths of the
onne
ted 
omponents of I−(t). Hen
e, F−(t) is the sequen
e of the masses of the tree
omponents obtained by 
utting the stable tree below height t. Noti
e that F− is a dire
tgeneralization of the fragmentation F in [9, Se
tion 4℄. The boundedness of H impliesthat F−(t) = (0, 0, . . .) as soon as t ≥ max0≤s≤1Hs.Proposition 1 The pro
ess F− is a ranked self-similar fragmentation with index 1/α−
1 ∈ (−1/2, 0) and erosion 
oe�
ient 0.Noti
e that, as mentioned before, F− loses some mass, and eventually disappears
ompletely in �nite time even though the erosion is 0. This is due, of 
ourse, to the fa
tthat the self-similarity index is negative.Our main result is a des
ription of the dislo
ation measure ν−(ds) of F−. Let usintrodu
e some notation. For α ∈ (1, 2), let (Tx, x ≥ 0) be a stable subordinator withLapla
e exponent λ1/α, that is, Tx is the sum of the magnitudes of the atoms of a Poissonpoint pro
ess on (0,∞) with intensity cαxdr/r1+1/α, where cα = (αΓ(1 − 1/α))−1. Wedenote by ∆Tx = Tx − Tx− the jump at level x and by ∆T[0,x] the sequen
e of the jumps



2 PRELIMINARIES 4of T before time x, and ranked in de
reasing order. De�ne the measure να on S by
να(ds) = E

[
T1 ;

∆T[0,1]

T1

∈ ds

] (1)where the last expression means that for any positive measurable fun
tion G, the quantity
να(G) is equal to E[T1 G(T−1

1 ∆T[0,1])].Theorem 1 The dislo
ation measure of F− is ν− = Dανα, where
Dα =

α(α− 1)Γ
(
1 − 1

α

)

Γ(2 − α)
=
α2Γ

(
2 − 1

α

)

Γ(2 − α)
.Some 
omments about this. First, the dislo
ation measure 
harges only the sequen
es

s for whi
h∑i≥1 si = 1, that is, no mass 
an be lost within a sudden dislo
ation. Se
ond,we re
ognize an expression 
lose to [27℄, of a Poisson-Diri
hlet type distribution. However,it has to be noti
ed that this 
orresponds to a forbidden parametrization θ = −1, andindeed, the measure that we obtain is in�nite sin
e E[T1] = ∞. This measure integrates
1− s1 though, just as it has to. Indeed, E[T1 −∆1] is �nite if ∆1 denotes the largest jumpof T before time 1. To see this, noti
e that ∆1 ≥ ∆∗

1 where ∆∗
1 is a size-biased pi
k fromthe jumps of T before time 1, and it follows from Lemma 1 in Se
t. 2.1 below and s
alingarguments that T − ∆∗

1 has �nite expe
tation.The rest of the paper is organized as follows. In Se
t. 2 we �rst re
all some fa
ts aboutLévy pro
esses, ex
ursions, and 
onditioned subordinators. Then we give the rigorousdes
ription of the stable tree, and state some properties of the height pro
ess that wewill need. Last we re
all some fa
ts about self-similar fragmentations. We then obtainthe 
hara
teristi
s of F− in Se
t. 3 and derive its semigroup. We insist on the fa
t thatknowing expli
itly the semigroup of a fragmentation pro
ess is in general a very 
om-pli
ated problem, see [24℄ for somehow surprising negative results in this vein. However,most of the fragmentation pro
esses that have been extensively studied in re
ent years[3, 7, 22, 9℄ do have known, and sometimes strange-looking semigroups involving 
ondi-tioned Poisson 
louds. And as a matter of fa
t, the fragmentation F+ 
onsidered in the
ompanion paper [23℄ has also an expli
it semigroup. We end the study of F− by givingasymptoti
 results for small times in Se
t. 4. These results need some properties of 
on-ditioned 
ontinuous-time bran
hing pro
esses, whi
h are in the vein of Jeulin's results forthe res
aled Brownian ex
ursion and its lo
al times. We prove these properties in Se
t.5, where we give the rigorous de�nition of some pro
esses that are used heuristi
ally inSe
t. 3 to 
onje
ture the form of the dislo
ation measure.2 Preliminaries2.1 Stable pro
esses, ex
ursions, 
onditioned inverse subordina-torThroughout the paper, we let (Xs, s ≥ 0) be the 
anoni
al pro
ess in the Skorokhodspa
e D([0,∞)) of 
àdlàg paths on [0,∞). Re
all that a Lévy pro
ess is a real-valued
àdlàg pro
ess with independent and stationary in
rements. We �x α ∈ (1, 2). Let P be



2 PRELIMINARIES 5the law that makes X a stable Lévy pro
ess with no negative jumps and Lapla
e exponent
E[exp(−λXs)] = exp(λα) for s, λ ≥ 0, where E is the expe
tation asso
iated with P . Su
ha pro
ess has in�nite variation and satis�es E[X1] = 0. When there is no ambiguity, wemay sometimes speak of X as being itself the Lévy pro
ess with law P . Writing this inthe form of the Lévy-Khint
hine formula, we have :

E[exp(−λXs)] = exp

(
s

∫ ∞

0

Cαdx

x1+α
(e−λx − 1 + λx)

)
, s, λ ≥ 0, (2)where Cα = α(α − 1)/Γ(2 − α). In parti
ular, the Lévy measure of X under P is

Cαx
−1−αdx1{x>0}. An important property of X is then the s
aling property : under P ,

(
1

λ1/α
Xλs, s ≥ 0

)
d
= (Xs, s ≥ 0) for all λ > 0.It is known [30℄ that under P , Xs has a density (ps(x), x ∈ R) for every s > 0, su
h that

ps(x) is jointly 
ontinuous in x and s.Ex
ursions Let X be the in�mum pro
ess of X, de�ned for s ≥ 0 by
Xs = inf{Xu, 0 ≤ u ≤ s}.By It�'s ex
ursion theory for Markov pro
esses, the ex
ursions away from 0 of the pro
ess

X−X under P are distributed a

ording to a Poisson point pro
ess that 
an be des
ribedby the It� ex
ursion measure, whi
h we 
all N . We now either 
onsider the pro
ess Xunder the law P that makes it a Lévy pro
ess starting at 0, or under the σ-�nite measure
N under whi
h the sample paths are ex
ursions with �nite lifetime ζ (sin
e E[X1] = 0).Let N (v) be a regular version of the probability law N(·|ζ = v), whi
h is weakly 
ontinuousin v. That is, for any positive 
ontinuous fun
tional G,

N(G) =

∫

(0,∞)

N(ζ ∈ dv)N (v)(G)and limN (w)(G) = N (v)(G) as w → v. Su
h a version 
an be obtained by s
aling : for any�xed η > 0, the pro
ess
(
(v/ζ)1/αXζs/v, 0 ≤ s ≤ v

) under N(·|ζ > η) =
N(·, ζ > η)

N(ζ > η)is N (v). See [12℄ for this and other interesting ways to obtain pro
esses with law N (v) bypath transformations. In parti
ular, one has the s
aling property at the level of 
onditionedex
ursions : under N (v), (v−1/αXvs, 0 ≤ s ≤ 1
) has law N (1).First-passage subordinator Let T be the right-
ontinuous inverse of the in
reasingpro
ess −X , that is,

Tx = inf{s ≥ 0 : Xs < −x}.Then it is known that under P , T is a subordinator, that is, an in
reasing Lévy pro
ess.A

ording to [6, Theorem VII.1.1℄, its Lapla
e exponent φ is the inverse fun
tion of the



2 PRELIMINARIES 6restri
tion of the Lapla
e exponent of X to R+. Thus φ(λ) = λ1/α, and T is a stablesubordinator with index 1/α, as de�ned above. The Lévy-Khint
hine formula gives,
E[exp(−λTx)] = exp(−xλ1/α) = exp

(
x

∫ ∞

0

cαdy

y1+1/α
(1 − e−λy)

) for λ, x ≥ 0.where cα has been de�ned in the introdu
tion. Re
all our assumption that X has amarginal density at time s under P , 
alled ps(·). Then under P , the inverse subordinator
T has also bi
ontinuous densities, given e.g. by [6, Corollary VII.1.3℄ :

qx(s) =
P (Tx ∈ ds)

ds
=
x

s
ps(x). (3)This equation 
an be derived from the ballot theorem of Taká
s [31℄.Let us now dis
uss the 
onditioned forms of distributions of the sequen
e ∆T[0,x]. Aneasy way to obtain ni
e regular versions for these 
onditional laws is developed in [25, 27℄,and uses the notion of size-biased fragment. Pre
isely, the range of any subordinator,with drift 0 say (whi
h we will assume in the sequel), between times 0 and x, indu
esa partition of [0, Tx] into subintervals with sum Tx. Consider a sequen
e (Ui, i ≥ 1) ofindependent uniform (0, 1) variables, independent of T , and let ∆∗

1(x),∆
∗
2(x), . . . be thesequen
e of the lengths of these intervals in the order in whi
h they are dis
overed by the

Ui's. That is, ∆∗
1(x) is the length of the interval in whi
h TxU1 falls, ∆∗

2(x) is the lengthof the �rst interval di�erent from the one 
ontaining TxU1 in whi
h TxUi falls, and so on.Then Palm measure results for Poisson 
louds give the following result (spe
ialized to the
ase of stable subordinators).Lemma 1 The joint law under P of (∆∗
1(x), Tx) is

P (∆∗
1(x) ∈ dy, Tx ∈ ds) =

cαxqx(s− y)

sy1/α
dyds, (4)and more generally for j ≥ 1,

P
(
∆∗

j(x) ∈ dy
∣∣Tx = s0,∆

∗
1(x) = s1, . . . ,∆

∗
j−1(x) = sj−1

)
=
cαxqx(s− y)

sy1/αqx(s)
dy,where s = s0 − s1 − . . .− sj−1.This gives a ni
e regular 
onditional version for (∆∗

i (x), i ≥ 1) given Tx, and thusindu
es a 
onditional version for ∆T[0,x] given Tx, by ranking, where ∆T[0,x] is the sequen
eof jumps of T before x, ranked in de
reasing order of magnitude.2.2 The stable treeWe now introdu
e the models of trees we will 
onsider. This se
tion is mainly inspiredby [14, 13℄. With the notations of se
tion 2.1, for u ≥ 0, let R(u) be the time-reversedpro
ess of X at time u :
R(u)

s = Xu −X(u−s)− , 0 ≤ s ≤ u.



2 PRELIMINARIES 7It is standard that this pro
ess has the same law as X killed at time u under P . Let also
R

(u)

s = sup
0≤v≤s

R(u)
v , 0 ≤ s ≤ ube its supremum pro
ess. We let Hu be the lo
al time at 0 of the pro
ess R(u) re�e
tedunder its supremum R

(u) up to time u. The normalization 
an be 
hosen so that
Hu = lim

ε↓0

1

ε

∫ u

0

1
{R

(u)
s −R

(u)
s ≤ε}

dsIt is known by [14, Theorem 1.4.3℄ that H admits a 
ontinuous version, with whi
h weshall work in the sequel. It has to be noti
ed that H is not a Markov pro
ess (the onlyex
eption in the theory of Lévy trees is the Brownian tree obtained when P is the law ofBrownian motion with drift, whi
h has been ex
luded in our dis
ussion). As a matter offa
t, it 
an be 
he
ked that H admits lo
al minima that are attained an in�nite numberof times as soon as X has jumps, a property that sounds strange by 
ontrast with mostof the usually studied sto
hasti
 pro
esses. To see this, 
onsider a jump time t of X, andlet t1, t2 > t so that inft≤u≤ti Xu = Xti and Xt− < Xti < Xt, i ∈ {1, 2}. Then it is easy tosee that Ht = Ht1 = Ht2 and that one may in fa
t �nd an in�nite number of distin
t ti'ssatisfying the properties of t1, t2. On the other hand, it is not di�
ult to see that Ht is alo
al minimum of H .It is shown in [14℄ that the de�nition of H still makes sense under the σ-�nite measure
N rather than the probability law P . The pro
ess H is then de�ned only on [0, ζ ], andwe 
all it the ex
ursion of the height pro
ess. One 
an de�ne without di�
ulty, using thes
aling property, the height pro
ess under the laws N (v) : this is simply the law of

((
v

ζ

)1−1/α

Hζt/v, 0 ≤ t ≤ v

) under N(·, ζ > η)Call it the law of the ex
ursion of the height pro
ess with duration v. The following s
alingproperty is the key for the self-similarity of F− : for every x > 0,
(v1/α−1Hsv, 0 ≤ s ≤ 1) under N (v) d

= (Hs, 0 ≤ s ≤ 1) under N (1). (5)This property is inherited from the s
aling property of X, and it is easily obtained e.g.by the above de�nition of H as an approximation.An important tool for studying the height pro
ess is its lo
al time pro
ess, or widthpro
ess, whi
h we will denote by (Lt
s, t ≥ 0, s ≥ 0). It 
an be obtained a.s. for every �xed

s, t by
Lt

s = lim
ε↓0

1

ε

∫ s

0

1{t<Hu≤t+ε}du.

Lt
s is then the density of the o

upation measure of H at level t and time s. For t = 0, onehas that (L0

s, s ≥ 0) is the inverse of the subordinator T , whi
h is a reminis
ent of the fa
tthat the ex
ursions of the height pro
ess are in one-to-one 
orresponden
e with ex
ursionsof X with the same lengths. A

ording to the Ray-Knight theorem [14, Theorem 1.4.1℄,for every x > 0, the pro
ess (Lt
Tx
, t ≥ 0) is a 
ontinuous-time bran
hing pro
ess with



2 PRELIMINARIES 8bran
hing me
hanism λα, in short α-CSBP. We will re
all basi
 and less basi
 featuresabout this pro
esses in Se
t. 5, where in parti
ular an interpretation for the law of thepro
ess (Lt
1, t ≥ 0) under N (1) will be given. For now we just note that for every x thepro
ess (Lt
Tx
, t ≥ 0) is a pro
ess with no negative jumps, and a jump of this pro
ess attime t 
orresponds pre
isely to one of the in�nitely often attained lo
al in�ma of theheight pro
ess. With the forth
oming interpretation of the tree en
oded within ex
ursionsof the height pro
ess, this means that there is a bran
hpoint with in�nite degree at level

t. It is again possible to de�ne the lo
al time pro
ess under the ex
ursion measure N , andby s
aling it is also possible to de�ne the lo
al time pro
ess under N (v).Let us now motivate the term of �height pro
ess� for H . Under the σ-�nite �law� N ,we de�ne a tree stru
ture following [2, 21℄.First we introdu
e some extra vo
abulary. Let T be the set of �nite rooted plane trees,that is, for any T ∈ T, ea
h set of 
hildren of a vertex v ∈ T is ordered as �rst, se
ond,..., last 
hild. Let T
∗ ⊂ T be those rooted plane trees for whi
h the out-degree (number of
hildren) of verti
es is never 1. Let Tn and T

∗
n be the 
orresponding sets of trees that haveexa
tly n leaves (verti
es with out-degree 0). A marked tree ϑ is a pair (T , {hv, v ∈ T })where T ∈ T and hv ≥ 0 for every vertex v of T (whi
h we denote by v ∈ T ). The tree

T is 
alled the skeleton of ϑ, and the hv's are the marks. These marks indu
e a distan
etree, given by dϑ(v, v
′) =

∑
w∈[[v,v′]] hw if v, v′ ∈ ϑ are two verti
es of the marked tree,where [[v, v′]] is the set of verti
es of the path from v to v′ in the skeleton. The distan
eof a vertex to the root will be 
alled its height. Let T∗

n be the set of marked trees with nleaves and no out-degree equal to 1.Let (Ui, i ≥ 1) be independent random variables with uniform law on (0, 1) and in-dependent of the ex
ursion H of the height pro
ess. One may de�ne a random markedtree ϑ(U1, . . . , Uk) = ϑk ∈ T∗
k, as follows. For u, v ∈ [0, ζ ] let m(u, v) = infs∈[u,v]Hs.Roughly, the key fa
t about ϑk is that the height of the i-th leaf to the root is HU(i)

,where (U(i), 1 ≤ i ≤ k) are the order statisti
s of (Ui, 1 ≤ i ≤ k), and the an
estor ofthe i-th and j-th leaves has height m(ζU(i), ζU(j)) for every i, j. This allows to build re-
ursively a tree by �rst putting the mark hroot = inf1≤i<j≤km(Ui, Uj) on a root vertex.Let croot be the number of ex
ursions of H above level hroot in whi
h at least one ζUifalls. Atta
h croot verti
es to the root, and let the i-th of these verti
es be the root of thetree embedded in the i-th of these ex
ursions above level hroot. Go on until the ex
ursionsseparate the variables Ui. By 
onstru
tion ϑk ∈ T∗
k. Adding a (k + 1)-th variable Uk+1 tothe �rst k just adds a new bran
h to the tree in a 
onsistent way as k varies.As noted above, we may as well de�ne the trees (ϑk, k ≥ 0) under the law N (1) bymeans of s
aling.De�nition 1 The family of marked trees (ϑk, k ≥ 1) asso
iated with the height pro
essunder the law N (1) is 
alled the stable tree.Remark. The previous de�nition is not the only way to 
hara
terize the same obje
t.After all, we 
ould have 
alled the height pro
ess H under N (1) itself the stable tree.Alternatively, one easily sees that the marked tree ϑk 
an be interpreted as a subset of l1,ea
h new bran
h going in a dire
tion orthogonal to the pre
eding bran
hes, in a 
onsistentway as k varies. Then it makes sense to take the 
ompletion of ∪k≥1ϑk, whi
h we 
ouldalso 
all the stable tree. The distan
e on the tree then 
orresponds to the metri
 de�nedunder N (1) by

d(u, v) = Hu +Hv − 2m(u, v), u, v ∈ [0, 1].



2 PRELIMINARIES 9With this way of looking at things, the leaves of the tree are un
ountable and everywheredense in the tree, and the empiri
al distribution on the leaves of ϑk 
onverges weakly toa probability measure on the stable tree, 
alled the mass measure. Then it turns out that
ϑk is equal in law to the subtree of the stable tree that is spanned by the root and kindependent leaves distributed a

ording to the mass measure. Hen
e, the mass measureis represented by Lebesgue measure on [0, 1] in the 
oding of the stable tree through itsheight pro
ess. This is 
oherent with the de�nition of F−(t) as the �masses of the tree
omponents lo
ated above height t�. The equivalen
e between these possible de�nitions isdis
ussed in [2℄.The key property for obtaining the dislo
ation measure of F− is the following des
rip-tion of the law of the skeleton of ϑn, and the mark of the root of ϑ1. For T ∈ T let NTbe the set of non-leaf verti
es of T and for v ∈ NT let cv(T ) be the number of 
hildrenof v. From the more 
omplete des
ription of the marked trees in [14, Theorem 3.3.3℄, were
all thatProposition 2 The probability that the skeleton of ϑn is T ∈ T

∗
k is

n!

(α− 1)(2α− 1) . . . ((n− 1)α− 1)

∏

v∈NT

|(α− 1)(α− 2) . . . (α− cv(T ) + 1)|

cv(T )!
.Moreover, the law of the mark of the root in ϑ1 is

N (1)(HU1 ∈ dh) = αΓ

(
1 −

1

α

)
χαh(1)dh,where χx(s) is the density of the stable 1− 1/α subordinator (with Lapla
e exponent equalto λ1−1/α) at time x.2.3 Some results on self-similar fragmentationsIn this se
tion we are going to re
all some basi
 fa
ts about the theory of self-similarfragmentations, and also introdu
e some useful ways to re
over the 
hara
teristi
s of thesefragmentations. We will suppose that the fragmentations we 
onsider are not trivial, thatis, they are not equal to their initial state for every time. It will be useful to 
onsider notonly S-valued (or ranked) fragmentations, but also fragmentations with values in the setof open subsets of (0, 1) and in the set of partitions of N = {1, 2, . . .}, respe
tively 
alledinterval and partition-valued fragmentations. As established in [9, 5℄, there is a one-to-onemapping between the laws of the three kinds of fragmentation when they satisfy a self-similarity property that is similar to that of the ranked fragmentations. That is, ea
h ofthem is 
hara
terized by the same 3-tuple (β, c, ν) introdu
ed above. To be 
ompletelya

urate, we should stress that there a
tually exist several versions of interval partitionsthat give the same ranked or partition-valued fragmentation, but all these versions havethe same 
hara
teristi
s (β, c, ν). Let us make the terms pre
ise.Let P be the set of unordered partitions of N. An ex
hangeable partition Π is a P-valued random variable whose restri
tion Πn to [n] = {1, . . . , n} has an invariant lawunder the a
tion of the permutations of [n]. By Kingman's representation theorem [19, 1℄,



2 PRELIMINARIES 10the blo
ks of ex
hangeable partitions of N admit almost-sure asymptoti
 frequen
ies, thatis, if Π = {B1, B2, . . .} where the Bi's are listed by order of their least element, then
Λ(Bi) = lim

n→∞

|Bi ∩ [n]|

nexists a.s. for every i ≥ 0. Denoting by Λ(Π) the ranked sequen
e of these asymptoti
frequen
ies, Λ(Π) is then a S-valued random variable, whose law 
hara
terizes that of Π.A self-similar partition-valued fragmentation (Π(t), t ≥ 0) with index β is a P-valued
àdlàg pro
ess that is 
ontinuous in probability, ex
hangeable, meaning that for everypermutation σ of N, (σΠ(t), t ≥ 0) and (Π(t), t ≥ 0) have the same law, and su
h thatgiven Π(t) = {B1, B2, . . .}, the variable Π(t+ t′) has the law of the partition with blo
ks
Π(i)(Λ(Bi)

βt′) ◦ Bi where the Π(i) are independent 
opies of Π. Here , the operation ◦ isthe natural �fragmentation� operation of a set by a partition : if Π = {B1, B2, . . .} and
C ⊂ N, then Π ◦ C is the partition of C with blo
ks Bi ∩ C.A self-similar interval partition (I(t), t ≥ 0) with index β is a pro
ess with values in theopen subsets of (0, 1) whi
h is right-
ontinuous and 
ontinuous in probability for the usualHausdor� metri
, with the property that given I(t) = ∪i≥1Ii say, where the Ii are thedisjoint 
onne
ted 
omponents of I(t), the set I(t+ t′) has the law of ∪i≥1gi(I

(i)(t′|Ii|β)),where |Ii| is the length of Ii, gi is the a�ne transformation that maps (0, 1) to Ii and
onserves orientation and the I(i) are independent 
opies of I.Consider an interval self-similar fragmentation (I(t), t ≥ 0), with 
hara
teristi
 3-tuple
(β, 0, ν) (the 
ase when c > 0 would be similar, but we do not need it in the sequel). Let
Ui, i ≥ 1 be independent uniform random variables on (0, 1). These indu
e a partition-valued fragmentation (Π(t), t ≥ 0) by saying that i Π(a)

∼ j i� Ui and Uj are in the same
onne
ted 
omponent of I(t). It is known [9℄ that Π is a self-similar fragmentation withvalues in the set of partitions of N and 
hara
teristi
s (β, 0, ν). For n ≥ 2 let P∗
n be the setof partitions of N whose restri
tion to [n] is non-trivial, i.e. di�erent from {[n]}. Then thereis some random time tn > 0 su
h that the restri
tion of Π(t) to [n] jumps from the trivialstate {[n]} to some non-trivial state at time tn. Let ρ(n) be the law of the restri
tion of

Π(tn) to [n]. The next Lemma states that the knowledge of the family (ρ(n), n ≥ 2) almostdetermines the dislo
ation measure ν of the fragmentation. Pre
isely, we introdu
e from[8℄ the notion of 
hara
teristi
 measure of the fragmentation. This measure, denoted by
κ, is a σ-�nite measure supported by the non-trivial partitions of N, whi
h is determinedby the dislo
ation measure of the fragmentation. Pre
isely, this measure may be writtenas

κ(dπ) =

∫

S

ν(ds)κs(dπ),where κs is the law of the ex
hangeable partition of N with ranked asymptoti
 frequen
iesgiven by s. Conversely, this measure 
hara
terizes the dislo
ation measure ν (simply bytaking the asymptoti
 frequen
ies of the typi
al partition under κ).Lemma 2 The restri
tion of κ to the non-trivial partitions of [n], for n ≥ 2, equals
q(n)ρ(n), for some sequen
e (q(n), n ≥ 2) of stri
tly positive numbers. As a 
onsequen
e,the dislo
ation measure of the fragmentation I is 
hara
terized by the sequen
e of laws
(ρ(n), n ≥ 2), up to a multipli
ative 
onstant.



3 STUDY OF F− 11Otherwise said, and using the 
orresponden
e between self-similar fragmentations withsame dislo
ation measure and di�erent indi
es established by Bertoin [9℄ by introdu
ingthe appropriate time-
hanges, if we have two interval-valued self-similar fragmentations
I and I ′ with the same index and no erosion, and with the same asso
iated probabilities
ρ(n) and ρ′(n), n ≥ 1, then there exists K > 0 su
h that (I(Kt), t ≥ 0) has the samedislo
ation measure as I ′.Proof. Suppose β = 0, then the result is almost immediate by the results of [8℄ onhomogeneous fragmentation pro
esses. In this 
ase q(n) is the inverse of the expe
tedjump time of Π in P∗

n, and the restri
tion of the measure q(n + 1)ρ(n + 1) to the set ofnon-trivial partitions of [n] is q(n)ρ(n), for every n ≥ 1. Hen
e, it is easy to see that theknowledge on ρ(n) determines uniquely the sequen
e (q(n), n ≥ 1), up to a multipli
ativepositive 
onstant : one simply has q(n)/q(n + 1) = ρ(n + 1)(π|[n] : π ∈ P∗
n), where π|[n]denotes the restri
tion of π to [n]. It remains to noti
e that the sequen
e of restri
tions

(q(n)ρ(n), n ≥ 2) 
hara
terizes κ.When β 6= 0, we obtain the same results by noti
ing that the law ρ(n) still equals thelaw of the restri
tion to [n] of the ex
hangeable partition with limiting frequen
ies havingthe �law� ν and restri
ted to P∗
n, up to a multipli
ative 
onstant. Indeed, let I∗(t) be thesubinterval of I(t) 
ontaining U1 at time t, and re
all [9℄ that if

a(t) = inf

{
u ≥ 0 :

∫ u

0

|I∗(v)|βdv > t

}
,then (|I∗(a(t))|, t ≥ 0) evolves as the fragment 
ontaining U1 in an interval fragmentationwith 
hara
teristi
s (0, 0, ν). Now, before time tn, the fragment 
ontaining U1 is the sameas that 
ontaining all the (Ui, 1 ≤ i ≤ n). Hen
e, a(tn) is the �rst time when Π′ jumps in

P∗
n for some homogeneous partition-valued fragmentation pro
ess Π′ with 
hara
teristi
s

(0, 0, ν), and the law of Π′(a(tn)) restri
ted to [n] is ρ(n). Hen
e the result. �We also 
ite the following result [24, Proposition 3℄ whi
h allows to re
over the dis-lo
ation measure of a self-similar fragmentation with positive index out of its semigroup.We will not use this proposition in a proof, but it is useful to keep it in mind to 
onje
turethe form of the dislo
ation measure of F−, as it will be done below.Proposition 3 Let (F (t), t ≥ 0) be a ranked self-similar fragmentation with 
hara
teris-ti
s (β, 0, ν), β ≥ 0. Then for every 
ontinuous bounded fun
tion G on S whi
h is null onan open neighborhood of (1, 0, . . .), one has
1

t
E[G(F (t))] →

t↓0
ν(G).3 Study of F−We now spe
i�
ally turn to the study of F− de�ned in the introdu
tion. Althoughsome of the results below may be easily generalized to a broader �Lévy 
ontext�, wewill suppose in this se
tion that X is a stable pro
ess with index α ∈ (1, 2), with �rst-passage subordinator T . The index α will be dropped from the notation by 
ontrastwith the introdu
tion. The referen
es to height pro
esses, ex
ursion measures and soon, will always be with respe
t to this pro
ess, unless otherwise spe
i�ed. Also, for the



3 STUDY OF F− 12needs of the proofs below, we de�ne the pro
ess (F−(t), t ≥ 0) not only under the law
N (1) used to de�ne the stable tree, but also for all the ex
ursion measures N (v) and N .Under N (v), let F−(t) be the de
reasing sequen
e of lengths of the 
onstan
y intervals of
I−(t) = {s ∈ (0, v) : Hs > t} (v is repla
ed by ζ under N). To avoid 
onfusions, we willalways mention in Se
t. 3.1 the measure we are working with, but this formalism will beabandoned in the following se
tions where no more use of N (v) is made with v 6= 1.The study 
ontains four steps. First we prove that self-similarity property for F−and make its semigroup expli
it. Heuristi
 arguments based on generators of 
onditionedCSBP's allow us to 
onje
ture the rough shape of the dislo
ation measure . Then we provethat the erosion 
oe�
ient is 0 by studying the evolution of a tagged fragment. We arethen able to apply Lemma 2, giving us the dislo
ation measure up to a 
onstant, andwe �nally re
over the 
onstant by re-obtaining the results needed in the se
ond step byanother 
omputation.3.1 Self-similarity and semigroupThe self-similarity and the des
ription of the semigroup rely strongly on the followingresult, whi
h is a variant of [14, Proposition 1.3.1℄. For t, s ≥ 0 let

γt
s = inf{u ≥ 0 :

∫ u

0

1{Hv>t}dv > s}and
γ̃t

s = inf{u ≥ 0 :

∫ u

0

1{Hv≤t}dv > s}.Denote by Ht the sigma-�eld generated by the pro
ess (Hγ̃t
s
, s ≥ 0) and the P -negligiblesets. Let also (H t

s, s ≥ 0) be the pro
ess (Hγt
s
−t, s ≥ 0). Then under P , H t is independentof Ht, and its law is the same as that of H under P .As a �rst 
onsequen
e, we obtain that the ex
ursions of H above level t, that is,the ex
ursions of H t above level 0, are, 
onditionally on their durations, independentex
ursions of H . This simple result allows us to state the Markov property and self-similarity of F−. In the following statement, it has to be understood that we work underthe probability N (1) and that the pro
ess H that is 
onsidered is the same that is used to
onstru
t F−.Lemma 3 Conditionally on F−(t) = (x1, x2, . . .), the ex
ursions of H above level t, thatis, of H t away from 0, are independent ex
ursions with respe
tive laws N (x1), N (x2), . . ..As a 
onsequen
e, the pro
ess F− is a self-similar fragmentation pro
ess with index

1/α− 1.Proof. By the previous 
onsiderations on H t, we have that under P , given that thelengths of interval 
omponents of the set {s ∈ [0, T1] : Hs > t} ranked in de
reasing orderare equal to (x1, x2, . . .), the ex
ursions of the killed pro
ess (H(t), 0 ≤ t ≤ T1) abovelevel t are independent ex
ursions of H with durations x1, x2, . . .. The �rst part of thestatement follows by 
onsidering the �rst ex
ursion of H (or of X) that has durationgreater than some v > 0, whi
h gives the result under the measure N(·, ζ > v), hen
e for
N , hen
e for N (v) for almost all v, and then for v = 1 by 
ontinuity of the measures N (v).



3 STUDY OF F− 13Thus, 
onditionally on F−(t) = (x1, x2, . . .), the pro
ess (F−(t+t′), t ≥ 0) has the samelaw as the random sequen
e obtained by taking independent ex
ursions H (x1), H(x2), . . .with durations x1, x2, . . . of the height pro
ess, and then arranging in de
reasing order thelengths of 
onstan
y intervals of the sets
{s ∈ [0, xi] : H(xi)

s > t′}.It thus follows from the s
aling property (5) of the ex
ursions of H that 
onditionally on
F−(t) = (x1, x2, . . .), the pro
ess (F−(t + t′), t′ ≥ 0) has the same law as the de
reasingrearrangement of the pro
esses (xiF

−
(i)(x

1/α−1
i t′), t′ ≥ 0), where the F−

(i)'s are independent
opies of F−. The fa
t that F− is a Markov pro
ess that is 
ontinuous in probability easilyfollows, as does the self-similar fragmentation property with the index 1/α− 1. �We now turn our attention to the semigroup of F−.Proposition 4 For every t ≥ 0 one has
N (1)(F−(t) ∈ ds) =

∫

R+×[0,1]

N (1)

(
Lt

1 ∈ dℓ,

∫ ∞

t

db Lb
1 ∈ dz

)
P
(
∆T[0,ℓ] ∈ ds |Tℓ = z

)
,(6)with the 
onvention that the law P (∆T[0,0] ∈ ds|T0 = z) is the Dira
 mass at the sequen
e

(z, 0, 0 . . .) for every z ≥ 0.Proof. It su�
es to prove the result for some �xed t > 0. Let ω(t) = inf{s ≥ 0 : Hs > t},
dω(t) = inf{s ≥ ω(t) : Xs = Xs} and gω(t) = sup{s ≤ ω(t) : Xs = Xs}. Call F−(t) theranked sequen
e of the lengths of the interval 
omponents of the set {s ∈ [ω(t), dω(t)] :
Hs > t}. Noti
e that under the law N (1), F− would be F−, but we will �rst de�ne F−under P . By the de�nition of H , ω(t) and dω(t) are stopping times with respe
t to thenatural �ltration generated by X. In fa
t, it also holds that ω(t) is a terminal time, thatis,

ω(t) = s+ inf{u ≥ 0 : Hs+u > t} on {ω(t) > s}.Moreover, 0 < ω(t) <∞ P -a.s., be
ause of the 
ontinuity ofH and the fa
t that ex
ursionsof H have a positive probability to hit level t (whi
h follows e.g. by s
aling). Re
all thenotations at the beginning of the se
tion, and denote by At and Ãt the right-
ontinuousinverses of γt and γ̃t. Then the lo
al time Lt
dω(t)

is the lo
al time at level 0 and time At
dω(t)of the pro
ess H t. This is also equal to the lo
al time of (Hγ̃t

s
, s ≥ 0) at level t and time

Ãt
dω(t)

. This last time is Ht-measurable, as it is the �rst time the pro
ess (Hγ̃t
s
, s ≥ 0)hits ba
k 0 after �rst hitting t. Hen
e Lt

dω(t)
is Ht-measurable, hen
e independent of

H t. Let T t be the inverse lo
al time of H t at level 0, whi
h is σ(H t)-measurable, hen
eindependent ofHt, and has same law as T sin
eH t has same law asH under P . Noti
e that
F−(t) equals the sequen
e ∆T t

[0,Lt
dω(t)

], and that the σ(H t)-measurable random variable
∫∞

t
db Lb

dω(t)
= T t(Lt

dω(t)
). Thus, 
onditionally on Lt

dω(t)
= ℓ and ∫∞

t
db Lb

dω(t)
= z, F−(t)has law P (∆T[0,ℓ] ∈ ds|Tℓ = z). Hen
e

P (F−(t) ∈ ds) =

∫

R+×R+

P

(
Lt

dω(t)
∈ dℓ ,

∫ ∞

t

db Lb
dω(t)

∈ dz

)
P (∆T[0,ℓ] ∈ ds|Tℓ = z),



3 STUDY OF F− 14and also, sin
e dω(t) − gω(t) =
∫∞

0
db (Lb

dω(t)
− Lb

gω(t)
) and sin
e ∫ t

0
db (Lb

dω(t)
− Lb

gω(t)
) isindependent of σ(H t), the result also holds 
onditionally on dω(t) − gω(t), namely

P (F−(t) ∈ ds|dω(t) − gω(t))

=

∫

R+×R+

P

(
Lt

dω(t)
∈ dℓ ,

∫ ∞

t

db Lb
dω(t)

∈ dz

∣∣∣∣dω(t) − gω(t)

)
P (∆T[0,ℓ] ∈ ds|Tℓ = z).Now noti
e that the ex
ursion of H straddling time ω(t) is the �rst ex
ursion of H thatattains level t, and apply [29, Proposition XII.3.5℄ to obtain that

P (F−(t) ∈ ds|dω(t) − gω(t) = v) = N (v)(ζ > ω(t))−1N (v)(F−
1 (t) ∈ ds, v > ω(t)),and similarly

P

(
Lt

dω(t)
∈ dℓ ,

∫ ∞

t

db Lb
dω(t)

∈ dz

∣∣∣∣dω(t) − gω(t) = v

)

= N (v)(ζ > ω(t))−1N (v)

(
Lt

v ∈ dℓ ,

∫ ∞

t

db Lb
v ∈ dz , v > ω(t)

)
,for almost every v. This is generalized for every v by 
ontinuity of the familyN (v). Finally,noti
e that F−(t) = F−(t) under N and the N (v)'s and that we may remove the indi
atorof v > ω(t) sin
e a.s. under N (v), Lt

v = 0 if and only if maxH ≤ t, to obtain
N (v)(F−(t) ∈ ds) = N (v)

(
Lt

v ∈ dℓ,

∫ ∞

t

db Lb
v ∈ dz

)
P (∆T[0,ℓ] ∈ ds|Tℓ = z).Taking v = 1 entails the 
laim. �As a 
onsequen
e of this result we may 
onje
ture the shape of the dislo
ation measureof F−. The next subse
tions will give essentially the rigorous proof of this 
onje
ture, but�nding ν− dire
tly from the forth
oming 
omputations would 
ertainly have been tri
kywithout any former intuition. Roughly, suppose that the statement of Proposition 3 re-mains true for negative self-similarity indi
es (whi
h is probably true, but we will not needit anyway). Then take G a bounded 
ontinuous fun
tion that is null on a neighborhoodof (1, 0, . . .) and write

N (1)(G(F−(t))) =

∫

R+×[0,1]

N (1)

(
Lt

1 ∈ dx,

∫ ∞

t

db Lb
1 ∈ dz

)
E[G(∆T[0,x])|Tx = z].Call J(x, z) the expe
tation in the integral on the right hand side. Dividing by t andletting t ↓ 0 should yield the generator of the R2

+-valued pro
ess ((Lt
1,
∫∞

t
dbLb

1), t ≥ 0),evaluated at the fun
tion J and at the starting point (0, 1). Now, we interpret (see Se
t. 5for de�nitions) the pro
ess (Lt
1, t ≥ 0) under N (1) as the α-CSBP 
onditioned both to startat 0 and stay positive, and to have a total progeny equal to 1. It is thus heuristi
ally aDoob h-transform of the initial CSBP with harmoni
 fun
tion h(x) = x, and 
onditionedto 
ome ba
k near 0 when its integral 
omes near 1. Now as a 
onsequen
e of Lamperti'stime-
hange between CSBP's and Lévy pro
esses, the generator of the CSBP started at

x is xL(x, dy) where L is the generator of the stable Lévy pro
ess with index α :
Lf(x) =

∫ ∞

0

Cαdy

yα+1
(f(x+ y) − f(x) − yf ′(x)),



3 STUDY OF F− 15where f stands for a generi
 fun
tion in the S
hwartz spa
e. This, together with well-known properties for generators of h-transforms allows to 
onje
ture that the generator
L′ of the CSBP 
onditioned to stay positive and started at 0 is given by

L′f(0) =

∫ ∞

0

Cαdy

yα
(f(y)− f(0)),for a 
ertain 
lass of ni
e fun
tions f . On the other hand, 
onditioning to 
ome ba
k to

0 when the integral attains 1 should introdu
e the term qy(1) (re
all its de�nition (3))in the integral with a 
ertain 
oe�
ient, sin
e the total progeny of a CSBP started at yis equal in law to Ty, as a 
onsequen
e of Ray-Knight's theorem. To be more a

urate,the CSBP starting at y and 
onditioned to stay positive should be in [ε, ε+ dε] when itsintegral equals 1 with probability 
lose to εy−1qy(1)dε. Indeed, by the 
onditioned formof Lamperti's theorem of [20℄ and to be re
alled below, this is the same as the probabilitythat the Lévy pro
ess started at y and 
onditioned to stay positive is in [ε, ε+dε] at time
1. Then,

Py(X1 ∈ dε|T0 > 1) = εy−1Py(X1 ∈ dε, T0 > 1) ∼
ε↓0

εy−1qy(1 − ε)dε.This, thanks to Lemma 3, allows to 
onje
ture the form of the dislo
ation measure as
ν−(G) = C

∫ ∞

0

dy qy(1)

yα+1
E[G(∆T[0,y])|Ty = 1]for some C > 0, that 
an be shown to be equal to αDα with some extra 
are, but we donot need it at this point. It is then easy to redu
e this to the form of Theorem 1 : byusing the s
aling identities and 
hanging variables u = y−α, we have that

∫ ∞

0

dy qy(1)

yα+1
E[G(∆T[0,y])|Ty = 1] =

∫ ∞

0

dy q1(y
−α)

y2α−1
E[G(yα∆T[0,1])|y

αT1 = 1]

=

∫ ∞

0

α−1du u q1(u)E[G(u−1∆T[0,1])|T1 = u]

= α−1E[T1G(T−1
1 ∆T[0,1])],as wanted.This very rough program of proof 
ould probably be �upgraded� to a real rigorousproof, but the te
hni
al di�
ulties on generators of pro
esses would undoubtedly make itquite involved. We are going to use a path that uses more the stru
ture of the stable tree.3.2 Erosion and �rst properties of the dislo
ation measureFrom this se
tion on, F− is ex
lusively de�ned under N (1), so that we may use the ni
ernotations P (F−(t) ∈ ds) or E[G(F−(t))] instead of N (1)(F−(t) ∈ ds) or N (1)(G(F−(t)))if there is no ambiguity.Lemma 4 The erosion 
oe�
ient c of F− is 0, and the dislo
ation measure ν−(ds)
harges only {s ∈ S :

∑+∞
i=1 si = 1}.



3 STUDY OF F− 16Proof. We will follow the analysis of Bertoin [9℄, using the law of the time at whi
ha tagged fragment vanishes. Let U be uniform on (0, 1) and independent of the heightpro
ess of the stable tree. Re
all the de�nition of F−(t) out of the open set I−(t) and let
λ(t) = |I∗(t)| be the size of the interval I∗−(t) of I−(t) that 
ontains U . As in Se
t. 2.3, ifwe de�ne

a(t) = inf

{
u ≥ 0 :

∫ u

0

λ(v)1/α−1dv > t

}
, t ≥ 0,then (− log(λ(a(t))), t ≥ 0) is a subordinator with Lapla
e exponent

Φ(r) = c(r + 1) +

∫

S

(
1 −

+∞∑

n=1

sr+1
n

)
ν−(ds). (7)Moreover, if ξ = HU is the lifetime of the tagged fragment, then

E[ξk] =
k!

∏k
i=1 Φ

(
i
(
1 − 1

α

)) . (8)For the 
omputation we are going to use Proposition 2. Re
all that χs(u) is 
hara
terizedby its Lapla
e transform
∫ +∞

0

e−µuχs(u)du = exp(−sµ1−1/α). (9)We may now 
ompute the moments of ξ. We have
E[ξk] =

∫ +∞

0

hkαΓ

(
1 −

1

α

)
χαh(1)dh =

Γ
(
1 − 1

α

)

αk

∫ +∞

0

skχs(1)ds.To 
ompute this we use (9) and Fubini's theorem to get
∫ +∞

0

due−µu

∫ +∞

0

dsχs(u)s
k =

∫ +∞

0

sk exp(−sµ1−1/α)ds =
k!

µ(k+1)(1−1/α)
,and then the last term above is equal to

k!

Γ
(
(k + 1)

(
1 − 1

α

))
∫ +∞

0

du e−µuu(k+1)(1−1/α)−1.Inverting Lapla
e transforms and taking u = 1 thus give
∫ +∞

0

skχs(1)ds =
k!

Γ
(
(k + 1)

(
1 − 1

α

)) ,hen
e we �nally get
E[ξk] =

k!Γ
(
1 − 1

α

)

αkΓ
(
(k + 1)

(
1 − 1

α

)) .Using (8) we now obtain that
Φ

(
k

(
1 −

1

α

))
= α

Γ
(
(k + 1)

(
1 − 1

α

))

Γ
(
k
(
1 − 1

α

)) , k = 1, 2, . . .



3 STUDY OF F− 17Thus, for r of the form k(1 − 1/α),
Φ(r) = α

Γ
(
r + 1 − 1

α

)

Γ(r)
=

r

Γ
(
1 + 1

α

)B
(
r + 1 −

1

α
,
1

α

)
. (10)It is not di�
ult, using the integral representation of the fun
tion B, then 
hangingvariables and integrating by parts, to write this in Lévy-Khint
hine form, that is,

r

Γ
(
1 + 1

α

)B
(
r + 1 −

1

α
,
1

α

)
=

∫ ∞

0

dx

(
1 − 1

α

)
ex

Γ
(
1 + 1

α

)
(ex − 1)2−1/α

(
1 − e−xr

)
, (11)and it follows that (10) remains true for every r ≥ 0, hen
e generalizing Equation (12) in[9℄ in the Brownian 
ase. It also gives the formula

L(dx) =

(
1 − 1

α

)
exdx

Γ
(
1 + 1

α

)
(ex − 1)2−1/αfor the Lévy measure L(dx) of Φ, hen
e generalizing Equation (11) in [9℄.To 
on
lude, we just noti
e that Φ(0) = 0, whi
h by (7) gives both c = 0 and∫

S
ν−(ds)(1 −

∑∞
i=1 si) = 0, implying the result. �3.3 Dislo
ation measureThe dislo
ation measure of F− will now be obtained by expli
itly 
omputing the lawof the �rst fragmentation of the fragments marked by n independent uniform variables

U1, . . . , Un on (0, 1), as explained in Se
t. 2.3. This is going to be a purely 
ombinatorial
omputation based on the �rst formula of Proposition 2. What we want to 
ompute isthe law of the partition of n indu
ed by the partition I−(tn) and the variables U1, . . . , Unat the time tn when they are �rst separated. In terms of the stable tree des
ribed inse
tion 2.2, the probability ρ−(n)({πn}) that the partition indu
ed by I−(tn) equals somenon-trivial partition πn of [n] with blo
ks A1, . . . , Ak having sizes n1, . . . , nk with sum n(n, k ≥ 2) is simply the probability that the skeleton of the marked tree ϑn is su
h thatthe root has out-degree k, and the k trees that are rooted at the 
hildren of the root have
n1, n2, . . . , nk leaves, times n1! . . . nk!/n!, whi
h is the probability that the labels of theseleaves, inherited from the sample (Ui, 1 ≤ i ≤ n), indu
e the right partition. Let T

∗
n1,...,nkbe the set of trees of T

∗
n that have this last property. For x ≥ 0 and n ≥ 0 we denote by

[x]n the quantity ∏n−1
i=0 (x+ i) = Γ(x+ n)/Γ(x).Lemma 5 Let πn be a partition of [n] with k ≥ 2 blo
ks having sizes n1, n2, . . . , nk. Then
ρ−(n)({πn}) =

DαΓ(k − α)

αkΓ
(
n− 1

α

)
k∏

i=1

[
1 −

1

α

]

ni−1

.Proof. Re
all that we want to 
ompute the probability that the skeleton of the markedtree ϑn has a root with k 
hildren, and the fringe subtrees spanned by these 
hildren are
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∗
ni

for 1 ≤ i ≤ k. The fa
t that the �rst displayed quantity in Proposition 2de�nes a probability on T
∗
n implies

∑

T ∈T∗
n

∏

v∈NT

|(α− 1)(α− 2) . . . (α− cv(T ) + 1)|

cv(T )!
=

(α− 1)(2α− 1) . . . ((n− 1)α− 1)

n!

=
αn−1

n!

[
1 −

1

α

]

n−1

.Now we 
ompute
ρ−(n)({πn}) =

∑

T ∈T∗
n1,...,nk

n!n1! . . . nk!

αn−1
[
1 − 1

α

]
n−1

n!

∏

v∈NT

|(α− 1)(α− 2) . . . (α− cv(T ) + 1)|

cv(T )!

=
n1! . . . nk!|(α− 1)(α− 2) . . . (α− k + 1)|

αn−1k!
[
1 − 1

α

]
n−1

×
∑

T ∈T∗
n1,...,nk

∏

v∈NT \{root}

|(α− 1)(α− 2) . . . (α− cv(T ) + 1)|

cv(T )!

=
(α− 1)Γ(k − α)Γ

(
1 − 1

α

)

k!αn−1Γ(2 − α)Γ
(
n− 1

α

)

× k!n1! . . . nk!
k∏

i=1

∑

T ∈T∗
ni

∏

v∈NT

|(α− 1)(α− 2) . . . (α− cv(T ) + 1)|

cv(T )!
,where the last equality stems from the de�nition of T

∗
n1,...,nk

, and where the fa
tor k!appears be
ause the k fringe subtrees spanned by the sons of the root may appear in anyorder. By the �rst formula of the proof this now redu
es to
ρ−(n)({πn}) =

DαΓ(k − α)
∏k

i=1 ni!

αnΓ
(
n− 1

α

)
k∏

i=1

αni−1

ni!

[
1 −

1

α

]

ni−1

,giving the result. �Comparing with Lemma 2 implies, sin
e c = 0, that the dislo
ation measure ν− of F−is thus determined up to a multipli
ative 
onstant. Sin
e we have a 
onje
tured formDαναfor the dislo
ation measure ν− of F−, we just have to 
ompute the quantity κ−(π) for κ−the ex
hangeable measure on P with frequen
ies given by the 
onje
tured ν−. Pre
isely,we haveLemma 6 Let πn be a partition of [n] with k ≥ 2 blo
ks and blo
k sizes n1, . . . , nk. Then
κn
−({πn}) := κ−({π ∈ P : π|[n] = πn}) =

DαΓ(k − α)

αk−1Γ(n− 1)

k∏

i=1

[
1 −

1

α

]

ni−1Before proving this we state from (74) in se
tion 6 of [27℄ (noti
e that the α there isour 1/α) :



3 STUDY OF F− 19Proposition 5 Let θ > −1/α, and let µθ(ds) be the measure on S
Γ(θ + 1)

Γ(αθ + 1)
E

[
T−θ

1 ;
∆T[0,1]

T1
∈ ds

]
.Then µθ is a probability distribution. Moreover, let πn be a partition of [n] with non-voidblo
k sizes n1, . . . , nk. Then the probability that the restri
tion to [n] of the ex
hangeablepartition of P with frequen
ies having law µθ is πn is given by

pθ(n1, . . . , nk) =
[αθ + 1]k−1

αk−1[θ + 1]n−1

k∏

i=1

[
1 −

1

α

]

ni−1Proof of Lemma 6. The 
omputation of the κn
− asso
iated with the 
onje
tured dis-lo
ation measure ν− 
an go through the same lines as in [27℄, using the expli
it densitiesfor size-biased pi
ks among the jumps of the subordinator T . However, we use the follow-ing more dire
t proof. Write νθ = Dα(Γ(αθ + 1)/Γ(θ + 1))µθ. Re
all from the above thenotation κs(dπ) for the law of the ex
hangeable partition of N with ranked asymptoti
frequen
ies given by s. De�ne

κθ(dπ) =

∫

S

νθ(ds)κs(dπ) = DαE
[
T−θ

1 κ∆T[0,1]/T1
(dπ)

]
, (12)and for πn a partition of [n] with blo
k sizes n1, . . . , nk write κn

θ ({πn}) = κθ({π ∈ P :
π|[n] = πn}) = (Γ(αθ + 1)/Γ(θ + 1))pθ(n1, . . . , nk). Noti
e that when n, k ≥ 2 and s ∈ S,we have κs({π ∈ P : π|[n] = πn}) ≤ 1− s1. On the other hand, the fa
t that ν− integrates
s 7→ 1 − s1 is easily generalized to νθ for θ > −1. We dedu
e that the map θ → κn

θ ({πn})is analyti
 on {θ ∈ C : Re(θ) > −1}. The same holds for
Dα

Γ(αθ + 1)

Γ(θ + 1)
pθ(n1, . . . , nk) =

DαΓ(αθ + k)

αk−1Γ(θ + n)

k∏

i=1

[
1 −

1

α

]

ni−1

(13)provided k ≥ 2, so the limits as θ ∈ R ↓ −1 of (12) and of (13) 
oin
ide. Using a dominatedand monotone 
onvergen
e argument to get the θ ↓ −1 limit in (12), we �nally obtain
κn
−({πn}) =

DαΓ(k − α)

αk−1Γ(n− 1)

k∏

i=1

[
1 −

1

α

]

ni−1

,as wanted. �Remark. By analogy with the EPPF (ex
hangeable partition probability fun
tion) thatallows to 
hara
terize the law of ex
hangeable partitions, expressions su
h as in Lemma6 
ould be 
alled �ex
hangeable partition distribution fun
tions�, as they 
hara
terize
σ-�nite ex
hangeable measures on the set of partitions of N. The expression in Lemma6 should be interpreted as an EPDF for a generalized (1/α, θ) partition (see [26℄), for
θ = −1. One 
ertainly 
ould imagine more general ex
hangeable partitions as θ goesfurther in the negative axis : this would impose more and more stringent 
onstraints onthe number of blo
ks of the partitions.Therefore, we obtain that

κn
− = α(Γ(n− 1/α)/Γ(n− 1))ρ−(n)on the set of non-trivial partitions of [n]. Lemma 2 implies that the dislo
ation measureof F− is equal to the 
onje
tured ν− up to a multipli
ative 
onstant. We are going tore
over the missing information with the help of the 
omputation of Φ above.
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onstantIn this se
tion, we 
ompute the Lapla
e exponent Φ of the subordinator − log(λ(a(·)))of Se
t. 3.2, whose value is indi
ated in (10), dire
tly from formulas (7) and (1). Let
Φ0(r) =

∫

S

(
1 −

∞∑

n=1

sr+1
n

)
ν−(ds),where ν− is the measure given in Theorem 1. If we 
an prove that Φ0(r) = Φ(r) for every

r ≥ 0, we will therefore have established that the normalization of ν− is the appropriateone. By (1),
Φ0(r) = DαE

[
T1

(
1 −

∑

0≤x≤1

(
∆Tx

T1

)r+1
)]

= Dα

∫ ∞

0

du u q1(u)E

[
1 −

∑

0≤x≤1

(
∆Tx

u

)r+1 ∣∣∣∣T1 = u

]

= Dα

∫ ∞

0

du u q1(u)E

[
1 −

(
∆∗

1

u

)r]where ∆∗
1 is a size-biased pi
k from the jumps of Tx, for 0 ≤ x ≤ 1, 
onditionally on

T1 = u. Using formula (4) and re
alling that T has Lévy measure cαx−1−1/αdx, we 
anwrite
Φ0(r) = Dα

∫ ∞

0

du u q1(u)

∫ u

0

dx(1 − (x/u)r)
cαq1(u− x)

ux1/αq1(u)

= Dα

∫ ∞

0

du

∫ 1

0

dy cαu
1−1/αq1(u(1 − y))

1 − yr

y1/α

= Dα

∫ 1

0

dy
cα(1 − yr)

y1/α(1 − y)2−1/α

∫ ∞

0

du u1−1/αq1(u)as obtained by Fubini's theorem, and linear 
hanges of variables. The integral in du equals
E[T

1−1/α
1 ], whi
h is Γ(2 − α)/Γ(1/α) by standard results using Lapla
e transform. Usingthe expressions forDα, cα and the identity α−1Γ(1/α) = Γ(1+1/α), it remains to 
omputethe quantity

1 − 1
α

Γ
(
1 + 1

α

)
∫ 1

0

dy y−1/α(1 − yr)

(1 − y)2−1/α
.But this is exa
tly the expression (11) after 
hanging variables y = e−x, and it is thusequal to rB(r + 1 − 1/α, 1/α)/Γ(1 + 1/α), whi
h is (10) as wanted, thus 
ompleting theproof of Theorem 1.4 Small-time asymptoti
sIn this se
tion we study the asymptoti
 behavior of F− for small times. Pre
isely, let

M(t) =
∑

i≥1 F
−
i (t) denote the total mass of F− at time t. Let (Yx, x ≥ 0) denote an

α-CSBP, started at 0 and 
onditioned to stay positive. See the following se
tion for the



4 SMALL-TIME ASYMPTOTICS 21de�nitions. We have the following result, that generalizes and mimi
s somehow resultsfrom [3, 5, 24℄. However, these results dealt with self-similar fragmentations with positiveindi
es, and also, the o

urren
e of the randomization introdu
ed by Y1 below is somehowunusual.Proposition 6 The following 
onvergen
e in law holds :
tα/(1−α)(M(t) − F−

1 (t), F−
2 (t), F−

3 (t), . . .)
d
→
t↓0

(TY1 ,∆1,∆2, . . .)where T is the stable 1/α subordinator as above, independent of Y , and ∆1,∆2, . . . arethe jumps of (Tx, 0 ≤ x ≤ Y1) ranked in de
reasing order of magnitude.For this we are going to use the following lemma, whi
h resembles the result of Jeulin in[16℄ relating a s
aled normalized Brownian ex
ursion and a 3-dimensional Bessel pro
ess.The proof is postponed to the following se
tion. Re
all that (Lt
1, t ≥ 0) stands for thelo
al time of the height pro
ess up to time 1.Lemma 7 The following 
onvergen
e in law holds :Under N (1), (t1/(1−α)Ltx

1 , x ≥ 0)
d
→
t↓0

(Yx, x ≥ 0),and this last limit is independent of the initial pro
ess (Lt
1, t ≥ 0). In parti
ular, t1/(1−α)Lt

1
onverges in distribution to Y1 as t ↓ 0.In the sequel let (yt, yt) have the law of (Lt
1,
∫∞

t
dbLb

1) under N (1).Proof of Proposition 6. Following the method of Aldous and Pitman [3℄, we area
tually going to prove that for every k,
tα/(1−α)(M(t) − F ∗

1 (t), F ∗
2 (t), F ∗

3 (t), . . . , F ∗
k (t))

d
→
t↓0

(TY1 ,∆
∗
1,∆

∗
2, . . . ,∆

∗
k−1), (14)for every k ≥ 1, where the quantities with the stars are the size-biased quantities asso-
iated with the ones of the statement, and this is su�
ient. We are going to pro
eed byindu
tion on k. To start the indu
tion, let g be a 
ontinuous fun
tion with 
ompa
t sup-port and write, using Lemma 1, Proposition 4, then 
hanging variables and using s
alingidentities,

E[g(tα/(1−α)(M(t) − F ∗
1 (t)))] = E

(∫ yt

0

du
cα yt qyt(yt − u)

yt u
1/α qyt(yt)

g(tα/(1−α)(yt − u))

)

= E



∫ tα/(1−α)yt

0

dv
tα/(α−1) cα yt q1

(
v

tα/(1−α)yα
t

)

(yt − tα/(α−1)v)1/α yt q1

(
yt

yα
t

)g(v)


 .By making use of Skorokhod's representation theorem, we may suppose that the 
on-vergen
e of (t1/(1−α)yt, t

α/(1−α)yt) to (Y1,∞) is almost-sure. Now the integral inside theexpe
tation is the integral a

ording to a probability law, hen
e it is dominated by thesupremum of |g|, so it su�
es to show that the integral 
onverges a.s. to apply dominated
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onvergen
e. For almost every ω, there exists ε su
h that if t < ε, tα/(1−α)yt(ω) > K where
K is the right-end of the support of g. For su
h an ω and t, the integral is thus

∫ K

0

dv g(v)
cαt

α/(α−1)ytq1(v(t
1/(1−α)yt)

−α)

y
1+1/α
t (1 − tα/(α−1)v/yt)

1/αq1(yty
−α
t )

≤ M
tα/(α−1)yt

y
1+1/α
t q1(yty

−α
t )

∫ K

0

dv q1

(
v

tα/(1−α)yα
t

)for some 
onstantM not depending on t. Now we use the fa
t from [30℄ that q1 is boundedand
q1(x) =

x→∞
cαx

−1−1/α +O(x−1−2/α).This allows to 
on
lude by dominated 
onvergen
e that the integral a.s. goes to
∫ K

0

dv g(v)
q1(v/Y

α
1 )

Y α
1

=

∫ K

0

dv g(v)qY1(v),and by dominated 
onvergen
e its expe
tation 
onverges to the expe
tation of the abovelimit, that is E[g(TY1)].To implement the re
ursive argument, suppose that (14) holds for some k ≥ 1.Let g and h be 
ontinuous bounded fun
tions on R+ and Rk
+ respe
tively. Denote by

(yt, yt,∆1(t),∆2(t) . . .) a sequen
e with the same law as (Lt
1,
∫∞

t
dsLs

1,∆T
′
[0,Lt

1]
) given

T ′
Lt

1
=
∫∞

t
dsLs

1, where L1 is taken under N (1) and T ′ is a stable 1/α subordinator, takenindependent of L. Last, let ∆∗
1(t),∆

∗
2(t), . . . be the size-biased permutation asso
iated with

∆1(t),∆2(t), . . .. By Proposition 4, 
onditioning and using Lemma 1 we have
E[g(tα/(1−α)F ∗

k+1(t))h(t
α/(1−α)(M(t) − F ∗

1 (t), F ∗
2 (t), . . . , F ∗

k (t)))]

= E

[
h(tα/(1−α)(yt − ∆∗

1(t),∆
∗
2(t), . . . ,∆

∗
k(t)))

×

∫ yt−
∑k

i=1 ∆∗

i (t)

0

du g(tα/(1−α)u)
cα yt qyt

(
yt −

∑k
i=1 ∆∗

i (t) − u
)

u1/α
(
yt −

∑k
i=1 ∆∗

i (t)
)
qyt

(
yt −

∑k
i=1 ∆∗

i (t)
)
]

Similarly as above, we show by 
hanging variables and then using the s
aling identitiesand the asymptoti
 behavior of q1 that this 
onverges to
E


h(TY1 ,∆

∗
1, . . . ,∆

∗
k−1)

∫ TY1
−
∑k

i=1 ∆∗

i

0

du g(u)
cα Y1 qY1

(
TY1 −

∑k−1
i=1 ∆∗

i − v
)

u1/α(TY1 −
∑k−1

i=1 ∆∗
i )qY1

(
TY1 −

∑k−1
i=1 ∆∗

i

)


and by Lemma 1 this is E[h(TY1 ,∆

∗
1, . . . ,∆

∗
k−1)g(∆

∗
k)]. This �nishes the proof. �The same method as that used in this proof 
an be used to show also that the res
aledremaining mass tα/(1−α)(1 −M(t)) 
onverges in distribution to ∫ 1

0
Yv dv jointly with theve
tor of the proposition.



5 SOME RESULTS ON CONTINUOUS-STATE BRANCHING PROCESSES 235 Some results on 
ontinuous-state bran
hing pro
essesIn this se
tion we develop the material needed to prove Lemma 7. In the 
ourse, wewill give an analog of Jeulin's theorem [17℄ linking the lo
al time pro
ess of a Brownianex
ursion to another time-
hanged Brownian ex
ursion. To stay in the line of the presentpaper, we will suppose that the laws we 
onsider are asso
iated to stable pro
esses, but allof the results (ex
ept the proof of Lemma 7 whi
h strongly uses s
aling) 
an be extendedto more general Lévy pro
esses and their asso
iated CSBP's. To avoid 
onfusions, we willdenote by (Zt, t ≥ 0) the di�erent CSBP's we will 
onsider, or to be more pre
ise, we let
(Zt, t ≥ 0) instead of (Xs, s ≥ 0) be the 
anoni
al pro
ess on D([0,∞)) when dealing withthe laws Px,P

↑
x, . . . asso
iated to CSBP's.De�nition 2 For any x > 0, let Px be the unique law on D([0,∞)) that makes the 
anon-i
al pro
ess (Zt, t ≥ 0) a right-
ontinuous Markov pro
ess starting at x with transitionprobabilities 
hara
terized by

E[exp(−λZt+r)|Zt = y] = exp(−yur(λ)),where ur(λ) = (λ1−α + (α− 1)r)1/(1−α) is determined by the equation
∫ λ

ur(λ)

dv

vα
= r.Then Px is 
alled the law of of the α-CSBP started at x.Remark. For more general bran
hing me
hanisms, the de�nition of ur(λ) is modi�edby repla
ing vα by ψ(v), where ψ is the Lapla
e exponent of a spe
trally positive Lévypro
ess with in�nite variation that os
illates or drifts to −∞.Re
all the setting of se
tion 2.1, and let Px be law under whi
h X is the spe
trallypositive stable pro
ess with Lapla
e exponent λα and started at x > 0, that is, the lawof x + X under P . Let Ex be the 
orresponding expe
tation. De�ne the time-
hange

(τt, t ≥ 0) by
τt = inf

{
u ≥ 0 :

∫ u

0

dv

Xv∧h0

> t

}
,where h0 = inf{s > 0 : Xs = 0} is the �rst hitting time of 0. This de�nition makes senseeither under the law Px, for x > 0, or the σ-�nite ex
ursion measure N (we will see belowthat under N , τ is not the trivial pro
ess identi
al to 0).Theorem 2 We have the following identities in law : for every x > 0,

(Lt
Tx
, t ≥ 0) under P d

= (Xτt , t ≥ 0) under Px,and both have law Px. Moreover,
(Lt

ζ , t ≥ 0) under N d
= (Xτt , t ≥ 0) under N.



5 SOME RESULTS ON CONTINUOUS-STATE BRANCHING PROCESSES 24The �rst part is already known and is a 
onjun
tion of Lamperti's theorem and theRay-Knight theorem mentioned in Se
t. 2.2. We will use it to prove the se
ond part. Firstwe introdu
e some notations, whi
h were already used in a heuristi
 way above.For x > 0 one 
an de�ne the law P ↑
x of the stable pro
ess started at x and 
onditionedto stay positive by means of Doob's theory of harmoni
 h-transforms. It is 
hara
terizedby the property

E↑
x[F (Xs, 0 ≤ s ≤ K)] = Ex

[
XK

x
F (Xs, 0 ≤ s ≤ K), K < T0

]for any positive measurable fun
tional F . Here T0 denotes as above the �rst hitting timeof 0 by X. It 
an be shown (see e.g. [12℄) that P ↑
x has a weak limit as x → 0, whi
h we
all P ↑, the law of the stable pro
ess 
onditioned to stay positive.Similarly, we de�ne the CSBP 
onditioned to stay positive a

ording to [20℄, by letting

Px be the law of the CSBP started at x > 0, then setting
E
↑
x[F (Zt, 0 ≤ t ≤ K)] = Ex

[
ZK

x
F (Zs, 0 ≤ s ≤ K)

]
.We want to show that a x ↓ 0 limit also exists in this 
ase. This is made possible by theinterpretation of [20℄ of the law P↑

x in terms of a CSBP with immigration. To be 
on
ise,we haveLemma 8 For x > 0, the law P↑
x is the law of the α-CSBP with immigration fun
tion

αλα−1 and started at x. That is, under P↑
x, (Zt, t ≥ 0) is a Markov pro
ess starting at xand with transition probabilities

E
↑
x[exp(−λZt+r)|Zt = y] = exp

(
−yur(λ) −

∫ r

0

αuv(λ)α−1dv

)
.As a 
onsequen
e, the laws P↑

x 
onverge weakly as x ↓ 0 to a law P
↑
0 = P↑, whi
h isthe law of a Markov pro
ess with same transition probabilities and whose entran
e law isgiven by the above formula, taking t = y = x = 0. It is also easy that the law P↑ is thatof a Feller pro
ess a

ording to the de�nition for ur(λ).It is shown in [20℄ that Lamperti's 
orresponden
e is still valid between 
onditionedpro
esses started at x > 0 : the pro
ess (Xτt , t ≥ 0) under the law P ↑

x has law P↑
x. To bemore a

urate, the exa
t statement is that if the pro
ess (Zt, t ≥ 0) has law P↑

x, then thepro
ess (ZCs , s ≥ 0) has law P ↑
x where

Cs = inf

{
u ≥ 0 :

∫ u

0

dvZv > s

}
,but this is the se
ond part of Lamperti's transformation, whi
h is easily inverted (see alsothe 
omment at the end of the se
tion). We generalize this toLemma 9 The pro
ess (Xτt , t ≥ 0) under the law P ↑ has law P↑.Part of this lemma is that τt > 0 for every t.



5 SOME RESULTS ON CONTINUOUS-STATE BRANCHING PROCESSES 25Proof. For �xed η > 0, let
τ η
t = inf

{
u :

∫ u∨η

η

dv

Xv

> t

}
.This is well de�ned under P ↑ sin
e Xt > 0 for all t > 0 a.s. under this law. Then sin
e∫ u∨η

η
dv/Xv =

∫ u−η

0
dv/Xη+v, we have that

τ η
t = η + inf

{
u ≥ 0 :

∫ u

0

dv

Xη+v
> t

}
.That is, τ η − η equals the time-
hange τ de�ned above, but asso
iated to the pro
ess

(Xη+t, t ≥ 0) (noti
e that h0 plays no role here sin
e we are dealing with pro
esses thatare stri
tly positive on(0,∞)). Under P ↑, this pro
ess is independent of (Xs, 0 ≤ s ≤ η)
onditionally on Xη and has law P ↑
Xη
. Hen
e, by Lamperti's identity, 
onditionally on

(Xs, 0 ≤ s ≤ η) under P ↑, the pro
ess (Xτη
t
, t ≥ 0) has law P

↑
Xη
. Hen
e, for any 
ontinuousbounded fun
tional G on the paths de�ned on [0, K] for some K > 0,

E↑[G(Xτη
t
, 0 ≤ t ≤ K)] = E↑[E↑

Xη
[G(Zt, 0 ≤ t ≤ K)]].Now, it is not di�
ult to see that τ η de
reases to the limit τ uniformly on 
ompa
t sets.Thus, using the right-
ontinuity of X on the one hand, and the Feller property on theother (in fa
t, less than the Feller property is needed here), we obtain by letting η ↓ 0 inthe above identity

E↑[G(Xτt , 0 ≤ t ≤ K)] = E
↑[G(Zt, 0 ≤ t ≤ K)],whi
h is the desired identity. In parti
ular, τ 
annot be identi
ally 0. �Remark. Noti
e that the fa
t that the time-
hange τt is still well-de�ned under the law

P ↑ 
an be double-
he
ked by a law of the iterated logarithm for the law P ↑. See also theend of the se
tion.Motivated by the de�nition in Pitman-Yor [28℄ for the ex
ursion measure away from
0 of 
ontinuous di�usions for whi
h 0 is an exit point (and initially by It�'s des
ription ofthe Brownian ex
ursion measure linking the three-dimensional Bessel pro
ess semigroupto the entran
e law of Brownian ex
ursions), we now state the followingProposition 7 The pro
ess (Lt

ζ , t ≥ 0) under the measure N is governed by the ex
ursionmeasure of the CSBP with 
hara
teristi
 λα. That is, its entran
e law N(Lt
ζ ∈ dy) for

t > 0 is equal to y−1
P
↑(Zt ∈ dy) for y > 0 (and it puts mass ∞ on {0}), and given

(Lu
ζ , 0 ≤ u ≤ t), the pro
ess (Lt+t′

ζ , t′ ≥ 0) has law PLt
ζ
.The use of the height pro
ess and its lo
al time under N , and hen
e of an �ex
ursionmeasure� asso
iated to the genealogy of CSBP's, snakes and superpro
esses, is a verynatural tool, however it does not seem that the above proposition, whi
h states thatthis notion of �ex
ursion measure� is the most natural one, has been 
he
ked somewhere.However, as noti
ed in [28℄, sin
e the point 0 is not an entran
e point for the initialCSBP, one 
annot de�ne a reentering di�usion by sti
king the atoms of a Poisson measurewith intensity given by this ex
ursion measure, be
ause the durations are almost neversummable.



5 SOME RESULTS ON CONTINUOUS-STATE BRANCHING PROCESSES 26Proof. The law P↑(Zt ∈ dy) is the weak limit of P↑
x(Zt ∈ dy) = x−1yP(Zt ∈ dy) as x→ 0.Sin
e by the properties of the CSBP mentioned in se
tion 2.2, we have Ex[exp(−λZt)] =

exp(−xut(λ)), we obtain
∫ ∞

0

P↑
x(Zt ∈ dy)

y
(1 − e−λy) =

∫ ∞

0

Px(Zt ∈ dy)

x
(1 − e−λy) =

1 − e−xut(λ)

x
.This 
onverges to ut(λ) as x → 0, and thanks to the proof of [14, Theorem 1.4.1℄, thisequals N(1 − exp(−λLt

ζ)). This gives the identity of the entran
e laws. For the Markovproperty we use ex
ursion theory and Ray-Knight's theorem. Let 0 < t1 < . . . < tn < t,then Markov's property for (Lt
T1
, t ≥ 0) entails that for every λ1, . . . , λn, λ ≥ 0,

E[exp(−
n∑

i=1

λiL
ti
T1

− λLt
T1

)] = E[exp(−
n−1∑

i=1

λiL
ti
T1

− (λn + ut−tn(λ))Ltn
T1

)].On the other hand, we may write Lt
T1

=
∑

0<s≤1(L
t
Ts
−Lt

Ts−) so that the Lapla
e exponentidentity for Poisson point pro
esses applied to both sides of the above displayed expressiongives after taking logarithms :
N

(
1 − exp

(
−

n∑

i=1

λiL
ti
ζ − λLt

ζ

))
= N

(
1 − exp

(
−

n−1∑

i=1

λiL
ti
ζ − (λn + ut−tn(λ))Ltn

ζ

))
,so that a substra
tion gives

N

(
exp

(
−

n∑

i=1

λiL
ti
ζ

)
(1 − exp(−λLt

ζ))

)

= N

(
exp

(
−

n∑

i=1

λiL
ti
ζ

)
(1 − exp(−ut−tn(λ)Ltn

ζ ))

)

= N

(
exp

(
−

n∑

i=1

λiL
ti
ζ

)
ELtn

ζ
[1 − exp(−λZt−tn)]

)
.Hen
e the Markov property. �Proof of Theorem 2. It just remains to prove the se
ond statement. For this we let

η > 0 and we de�ne as above the time 
hange τ η
t . Using the Markov property under themeasure N , we again have that under N , (Xη+s, s ≥ 0) is independent of (Xs, 0 ≤ s ≤ η)
onditionally on Xη and has the law P h0

Xη
of the stable pro
ess started at Xη and killedat time h0. Hen
e, by Lamperti's identity, under N and 
onditionally on (Xs, 0 ≤ s ≤ η),the pro
ess (Xτη

t
, t ≥ 0) has law PXη . Thus if η < t1 < . . . < tn < t and if g1, . . . , gn, g arepositive 
ontinuous fun
tions with 
ompa
t support that does not 
ontain 0, then

N

(
n∏

i=1

gi(Xτη
ti
) g(Xτη

t
)

)
=

∫ ∞

0

N(Xη ∈ dx)Ex

[
n∏

i=1

gi(Zti−η) g(Zt−η)

]

=

∫ ∞

0

N(Xη ∈ dx)Ex

[
n∏

i=1

gi(Zti−η) EZtn−η [g(Zt−tn)]

]
.



5 SOME RESULTS ON CONTINUOUS-STATE BRANCHING PROCESSES 27As for the CSBP, the entran
e law N(Xη ∈ dx) equals x−1P ↑(Xη ∈ dx) for x > 0. So were
ast the last expression as
∫ ∞

0

P ↑(Xη ∈ dx)Ex

[∏n
i=1 gi(Zti−η)

x
EZtn−η [g(Zt−tn)]

]

=

∫ ∞

0

P ↑(Xη ∈ dx)E↑
x

[∏n
i=1 gi(Zti−η)

Ztn−η
EZtn−η [g(Zt−tn)]

]
.Now we let η ↓ 0, using the right 
ontinuity and the Feller property of the CSBP, toobtain

N

(
n∏

i=1

gi(Xτti
) g(Xτt)

)
= E

↑

[∏n
i=1 gi(Zti)

Ztn

EZtn
[g(Zt−tn)]

]
.Hen
e, thanks to Proposition 7 we obtain that under N the pro
ess (Xτt , t ≥ 0) has thesame entran
e law and Markov property as (Lt

ζ , t ≥ 0), hen
e the same law. �Proof of Lemma 7. LetG be a 
ontinuous bounded fun
tional on the paths with lifetime
K. We want to show that N (1)[G(t1/(1−α)Ltx

1 , 0 ≤ x ≤ K)] goes to E↑[G(Xτx , 0 ≤ x ≤ K)].By Theorem 2, the pro
ess (Lx
v , x ≥ 0) under N (v) is equal to the pro
ess (Xτx , x ≥ 0)under the law N (v) for almost every v, and we 
an take v = 1 by the usual s
alingargument. By [12℄, the law N (1) 
an be obtained as the bridge with length 1 of the stablepro
ess 
onditioned to stay positive, and there exists a positive measurable harmoni
fun
tion h su
h that for every fun
tional J and every r < 1,

N (1)[J(Xs, 0 ≤ s ≤ r)] = E↑[h(Xr)J(Xs, 0 ≤ s ≤ r)].We now use essentially the same proof as in [11, Lemma 6℄. Let ε > 0. Sin
e τtx ∧ ε is astopping time for the natural �ltration of X,
N (1)[G(t1/(1−α)Xτtx∧ε, 0 ≤ x ≤ K)]

= E↑[h(Xε)G(t1/(1−α)Xτtx∧ε, 0 ≤ x ≤ K)]

= E↑[E↑[h(Xε)|XτtK∧ε]G(t1/(1−α)Xτtx∧ε, 0 ≤ x ≤ K)].Sin
e τtK → 0 a.s. as t ↓ 0, we obtain the same limit if we remove the ε in the left-hand side, hen
e giving limN (1)[G(t1/(1−α)Ltx
1 , 0 ≤ x ≤ K)] by Theorem 2. Using theba
kwards martingale 
onvergen
e theorem we obtain that the 
onditional expe
tationon the right-hand side 
onverges to E↑[h(Xε)] = 1. So

lim
t↓0

N (1)[G(t1/(1−α)Ltx
1 , 0 ≤ x ≤ K)] = lim

t↓0
E↑[G(t1/(1−α)Xτtx , 0 ≤ x ≤ K)]and the last expression is 
onstant, equal to E↑[G(Xτx , 0 ≤ x ≤ K)] by s
aling, hen
e theresult by Lamperti's transform. The independen
e with the initial pro
ess is a re�nementof the argument above, using the Markov property at the time τtK ∧ ε. �One �nal 
omment. It may look quite strange in the proofs above that the a prioriill-de�ned time τt under the laws P ↑ or N somehow has to be non-degenerate by theproofs we used, even though no argument on the path behavior near 0 has been givenfor these laws. As a matter of fa
t, things are maybe 
learer when 
onsidering also the



RÉFÉRENCES 28inverse Lamperti transform. As above, for some pro
ess Z that is stri
tly positive on aset of the form (0, K), K > 0, we let
Cs = inf

{
u ≥ 0 :

∫ u

0

dv Zv > s

}
.De�ne the pro
ess X by Xs = ZCs. Then we 
laim that the map s 7→ 1/Xs is integrableon a neighborhood of 0 and that Xτt = Zt. Indeed, by a 
hange of variables w = Cv, onehas : ∫ u

0

dv

Xv

=

∫ u

0

dv

ZCv

=

∫ Cu

0

Zwdw

Zw

= Cu <∞,as long as u < C−1(∞) = inf{s : Xs = 0}, whi
h is stri
tly positive by the hypothesismade on Z. This kind of arguments also shows that as soon as we have one side ofLamperti's theorem, i.e. Xs = ZCs or Zt = Xτt , with non-degenerate C or τ , then theother side is true. In parti
ular, Theorem 2 and Lemma 9 
ould be restated with theinverse statement giving the Lévy pro
ess by time-
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