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Abstract

We establish upper bounds on the rate of decay of correlations of tower sys-
tems with summable variation of the Jacobian and integrable return time.
That is, we consider situations in which the Jacobian is not Hölder and the
return time is only subexponentially decaying. We obtain a subexponential
bound on the correlations, which is essentially the slowest of the decays of
the variation of the Jacobian and of the return time.

Introduction

In this paper we study the speed of mixing, more precisely the rate of decay
of correlations, of tower systems, a special class of countable Markov systems
which naturally arise in the study of many dynamical systems by the procedure
of induction – see [Y1]. Our goal is to provide a comprehensive statement in
the following sense. There are two sources of loss of exponential speed: large
return times and bad smoothness. By extending cone techniques, we deal simul-
taneously with both difficulties whereas previous works on decay of correlations
[KMS, BFG, Po, Y1] considered only one of these two obstructions. We prove
that, although the analysis becomes more difficult when both obstructions are
present, they nevertheless operate independently: the speed is just the minimum
of the speeds allowed 1) by the defect in smoothness if the statistics of return

AMS classifiction 1991: Primary 58F11
key words: absolutely continuous invariant measures; equilibrium states; decay of correlations;
transfer operator; tower extension.
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times were exponential; 2) by the statistics of return times if we had Hölder
smoothness.

Let us state informally a corollary of our result:

Theorem 0.1 Consider a tower system F with a mixing invariant probability
measure µ̂. Assume that the oscillation of the Jacobian on n-cylinders is bounded
by n−α and the probability of return time n decays like n−β. Then, for sufficiently
smooth observables, the rate of decay of correlations is:

∣

∣

∣

∣

∫

φ · ψ ◦ Fn dµ̂−

∫

φdµ̂

∫

ψ dµ̂

∣

∣

∣

∣

≤ C ·K(φ)‖ψ‖L1 ·
1

nmin(α,β−ε)−1
,

for any ε > 0. K(φ) is some finite number depending only on φ ; ‖ψ‖L1 is the
L1 norm w.r.t. the reference measure.

Remarks.
1. Our result allows returns which are not onto, which is quite convenient for
applications.
2. The fact that the above bound depends on ψ only through its L1-norm is
important for the study of asymptotic laws of return times [C, CGS, Pa].
3. The loss of ε in the exponent is probably due to our method (in the Hölder-
continuous case (α = ∞ so to speak), L.-S. Young [Y1] obtained O(n−β−1)).

An application to non-Hölder maps with an indifferent fixed point.
Fix 0 < γ < 1/2 and α > 1 and consider the interval map f : [0, 1] → [0, 1] defined

by f(x) = 21+γ(x+x1+γ)/(2γ +1) for x < 1/2 and f(x) = 3
2 (x− 1

2 )+
(x− 1

2 )(log 2)α

2| log(x− 1
2 )|α

for x > 1/2. Our result implies a rate of correlation in O(n−min(α,1/γ−ε)+1) for
arbitrarily small ε > 0. Our approach is the first to our knowledge to be able
to treat such maps.

Section 1 contains the precise statement of our results. We briefly recall defini-
tions and properties of Birkhoff’s cones and projective metrics (section 2) and
the construction of the a.c.i.m., establishing regularity of the invariant density
(section 3). We define a sequence of cones Cj of “Lipschitz” functions (w.r.t.
to an ad-hoc metric) in section 4 and then establish that the transfer operator
iterated some kj times sends one cone into the next by a γj-contraction in sec-
tion 5 for some semi-explicit γj < 1. Finally in section 6, we deduce from this

a convergence in the uniform norm at speed
∏j

p=1 γp, with j largest such that
k1 + · · · + kj ≤ n, and make this estimate explicit in the exponential, stretched
exponential and polynomial cases.

Indeed, using the notations of Section 1, one considers the tower defined by ∆0 = [ 1
2
, 1],

the map f0(x) = fR(x)(x) with the return function R(x) = min{n ≥ 1 : fn(x) ≥ 1
2

and

#{k < n : fk(x) ≥ 1
2
} ≥ ε0n} for some small ε0 > 0. Then one can prove that ωn = O(n−α)

and ν(∆n) = O(n−1/γ) and apply our main theorem.



Decay of correlations on towers 3

Acknowledgments: The authors are grateful to program ESF/PRODYN which
has partially supported the International Conference on Dynamical Systems,
Abbey of “La Bussière” where part of this work was carried through.

1 Setting, statement of the results

Let us describe our tower model which follows Young’s [Y1]. A tower is defined
by:

• a basis, which is a probability space (∆0,m0) together with a non-singular
self-map f0;

• a partition ∆0,j , j ∈ N such that f0 : ∆0,j → f0(∆0,j) is one-to-one and
satisfies f0(∆0,j) is a union of some ∆0,k, for some k’s;

• a return time, i.e., a function R : ∆0 → N, constant on each ∆0,j , j ∈ N.

The tower ∆ is then the disjoint union of the floors ∆ℓ, ℓ ∈ N:

∆ℓ = {(x, ℓ) | x ∈ ∆0, R(x) > ℓ}.

It is endowed with the measure ν̂ which is just the restriction of the copy of m0

on each floor. We will denote by ∆ℓ,j , ℓ < R|∆j
0

the copy of ∆0,j inside ∆ℓ:

∆ℓ,j = {(x, ℓ) | x ∈ ∆0,j , R(x) > ℓ}.

The dynamic on the tower, F : ∆ −→ ∆, is defined by

{

F (x, ℓ) = (x, ℓ+ 1) if R(x) > ℓ+ 1
= (f0(x), 0) otherwise.

One can think of F as the unfolding of the underlying induction: in applications,
F will be often conjugate to the original map, which f0 is some (variable) power.

We assume that the partition R = {∆ℓ,j} generates in the sense that

∞
∨

i=0

F−iR

is the partition into points mod ν̂. For k ∈ N, the elements of the partition

R(k) =

k−1
∨

i=0

F−iR are called cylinders or k-cylinders. We denote by Ck(x) the

element of R(k) which contains x. Let JF be the Jacobian of F with respect to
ν̂ (this Jacobian is well defined because of the non singularity of f0). The modu-
lus of continuity of JF will be controlled by the following, dynamics-dependent
sequence:

ωn = sup
C∈Rn

sup
x,y∈C

log
JF (x)

JF (y)
.
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For x, y ∈ ∆ the separation time s(x, y) is the largest integer n ≥ 0 such that
for all 0 ≤ j ≤ n, F j(x) and F j(y) belong to the same atom of the partition R.
Set

d0(x, y) =
∑

j≥s(x,y)+1

ωj .

Note that the metric d0 is designed so that the family of functions:

log JFn = log

n−1
∏

i=0

JF ◦ F i.

are uniformly Lipschitz w.r.t. it.
Let us summarize our assumptions on the tower.

(A.I) Summability of upper floors.
∑

ℓ∈N

ν̂ ({x ∈ ∆0 | R(x) > ℓ}) = 1.

(A.II) Generating Partition. The partition R generates under F i.e.: the par-
tition

∨∞
n=0 F

−nR is the partition into points. In particular, d0 defines a
metric on ∆.

(A.III) Summable variation. Let JF be the Jacobian of F with respect to ν̂.
We assume that JF satisfies:

∑

n∈N

ωn <∞.

(A.IV) Large image and Markov properties. Each FR∆0,j is a union of some
∆0,p, p ∈ N, (Markov property) and (Large image):

η := inf
j∈N

ν̂(FR(∆0,j)) > 0.

Contrarily to [Y1] we do not assume the Bernoulli property: f0(∆0,j) = ∆0, but
only the weaker Markov property above. The collection of sets f0(∆0,j) defines
a partition B which is less refined than {∆0,j}j∈N, so that it is in particular
countable B = {B1, B2, . . . }. Remark that, by an easy induction, if x, y are
contained in the same element of B, then the pre-images of all orders of x and y
are paired in the following sense.

Given x, y ∈ ∆0, say that x′, y′ ∈ ∆ are paired pre-images if Fnx′ = x,
Fny′ = y and F k(x′) nd F k(y′) belong to the same element of R for all 0 ≤ k < n.
Observe that (A.III) implies that in this situation we have:

∣

∣

∣

∣

JFn(x′)

JFn(y′)
− 1

∣

∣

∣

∣

≤ C · d0(x, y), with C = exp
∑

j≥1

ωj . (1.1)

This is “bounded distortion”.
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Remark In [BM], we proved that multi-dimensional piecewise expanding maps
in higher dimension are (under quite general hypothesis) conjugate to such a
tower map.

Let L(d0) be the space of bounded functions on ∆ that are locally Lipschitz

with respect to the metric d0, i.e., for some K <∞, for all x, y in the same Bj,ℓ,

|ϕ(x) − ϕ(y)| ≤ Kd0(x, y).

K(ϕ) is the smallest number K such that the above inequality is satisfied. Let
‖ϕ‖L(d0) = K(ϕ) + ‖ϕ‖∞ be the norm on L(d0).

To study the ergodic properties of F , we have to decompose it into topologically
mixing components. Observe that R has a natural graph structure: P → Q iff

F (P ) ⊃ Q. Its (restricted) spectral decomposition is P = Pt ∪
⋃

i

⋃pi−1
j=0 R

(i)
j ,

where:

• Pt is the set of transient elements of P , i.e., elements P such that there
exists a path from P going to some Q ∈ P and there is no path from Q
to P (observe that we don’t decompose this part into irreducible subsets).
The elements that are not transient are called recurrent.

• for each i,
⋃pi−1

j=0 R
(i)
j is the set of P ∈ R such that there exist paths from

P to Q and Q to P , for some fixed Q = Q(i) (i.e., these unions are the
irreducible components of R from which no arrows leave).

• if there is an arrow from R
(i)
j to R

(k)
l then k = i and l = j + 1 mod pi.

Finally, ∆
(i)
j is the union of the elements of R

(i)
j . Observe that, up to trivialities,

it is enough to study the dynamics of F pi : ∆
(i)
0 → ∆

(i)
0 for each i. We call this

the spectral reduction.

Our main result is the following theorem.

Theorem 1.1 Let (∆, F, ν̂) be a tower system satisfying (A.I - IV). First, there
exists an invariant probability measure absolutely continuous with respect to ν̂ (a
ν̂-a.c.i.m. for short).
Second, any ν̂-a.c.i.m. µ̂, up to the spectral reduction, is mixing, with the follow-
ing speed estimate: for all ϕ ∈ L(d0) and ψ ∈ L∞(∆),

∣

∣

∣

∣

∣

∣

∫

∆

ϕ ◦ Fn · ψ dµ̂−

∫

∆

ϕdµ̂

∫

∆

ψ dµ̂

∣

∣

∣

∣

∣

∣

≤ C · ‖ψ‖L(d0)‖ϕ‖L1(µ̂) · un for all n ≥ 0

for some C < ∞ and a sequence u = (un)∞n=0 converging to zero which can be
made explicit:
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• if ωn = O(ρn) for some 0 < ρ < 1 and ν̂(∆n) = O(αn) for some 0 < α < 1
then un = κn for some 0 < κ < 1,

• if ωn = O(n−α) for some α > 1 and ν̂(∆n) = O(n−β) for some β > 1 then
un = n−min(α,β−ε)−1 for all ε > 0.

• if ωn = O(e−nα

) and ν̂(∆n) = O(e−nβ

) for some 0 < α, β < 1, then

un = e−nmin(α,β)−ε

for all ε > 0.

2 Birkhoff’s cones and projective metrics

The main tool for the proof of Theorem 1.1 will be the theory of cones and
projective metrics of Garrett Birkhoff [Bi]. P. Ferrero and B. Schmitt [FS] applied
it to estimate the correlation decay for random products of matrices. Recently
this strategy has been used by many authors to obtain exponential decay of
correlations (see for example [Li1]). We are closer to [KMS] and [M] which
have used these techniques in a different way to obtain sub-exponential decay
of correlations. Let us recall definitions and properties of cones and projective
metrics (see [Li1] for a more complete presentation). Let B be a vector space
and let C ⊂ B be a Birkhoff cone, i.e., a cone with the following properties.

• C is convex,

• C ∩ −C = {0},

• if αn is a sequence of real numbers such that αn → α and x− αny ∈ C for
all n, then x− αy ∈ C. This property is called “integral closure”.

Such a cone is endowed with the pseudo-metric δC on C defined in the following
way (it is pseudo because it is not necessarily finite and it does not separate
points). For x, y ∈ C,

µ(x, y) = inf{β > 0 such that βx− y ∈ C}.

with the convention: µ(x, y) = ∞ if the corresponding set is empty. Let δC(x, y) =
logµ(x, y)µ(y, x). We remark that δC satisfies the triangle inequality: if βx−y ∈
C and β̃y − z ∈ C then ββ̃x − z ∈ C since C is a convex cone, so µ(x, z) ≤
µ(x, y) · µ(y, z) and the triangle inequality follows. Finally, observe that δC is
projective: δ(x, y) = 0 ⇐⇒ x and y are colinear.

The usefulness of this projective metric is that it allows a ‘geometric’ proof of
the contraction through the following result.

Theorem 2.1 [Bi] Let C and C′ be two cones, P a linear operator P : C → C′.
Let Γ denote the diameter of PC in C′:

Γ = sup
f,g∈C

δC′(Pf, Pg) ≤ ∞.
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For any f, g in C, we have:

δC′(Pf, Pg) ≤ tanh

(

Γ

4

)

δC(f, g).

This theorem implies that a linear map between cones never increases distances
and is in fact a contraction as soon as Γ <∞.
The following result allows the translation of contraction w.r.t. cone metric to a
contraction w.r.t. norm. A norm ‖ ‖ on B is adapted to C, if for f and g in
B such that both f + g and f − g belong to C, then ‖g‖ ≤ ‖f‖. ρ : C → R+

is a homogeneous form adapted to C if, i) for any λ > 0 ; ii) f ∈ C,
ρ(λf) = λρ(f) and if f − g ∈ C implies ρ(g) ≤ ρ(f).

Theorem 2.2 [Bi], [Li1]. Let C be a Birkhoff cone, let ‖ ‖ and ρ be adapted to
C. For any f and g in C such that ρ(f) = ρ(g) 6= 0 we have:

‖f − g‖ ≤ (eδ(f,g) − 1)min(‖f‖, ‖g‖).

3 Construction of a ν̂-a.c.i.m.

As usual, the transfer operator acting on bounded functions is defined by:

L0f(x) =
∑

Fy=x

1

JF (y)
f(y).

The measure ν̂ is conformal for L0 in the following sense: for any bounded
function f ,

∫

L0fdν̂ =

∫

fdν̂.

For s ∈ N, the s-cylinders are the non empty sets of the form:
⋂s−1

i=0 F
−iAi with

Ai ∈ R. For k ∈ N and x ∈ ∆, Ck(x) denotes the k-cylinder which contains x.
The following lemmas are technical tools to study Ln

0 .

Lemma 3.1 There exists C < ∞ such that for any ℓ ∈ N and any x ∈ ∆ℓ and
k ∈ N with F kx ∈ ∆0,

C−1ν̂(Ck(x)) ≤
1

JF k(x)
≤ Cν̂(Ck(x)).

Proof :Let x ∈ ∆ℓ such that F k(x) ∈ ∆0. The Markov property and the large
image property (A.IV) imply that ν̂(F kCk(x)) ≥ η > 0. The bounded distortion
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property (1.1) gives:

C−1 ν̂(Ck(x))

ν̂(F kCk(x))
≤

1

JF k(x)
≤ C

ν̂(Ck(x))

ν̂(F kCk(x))

C−1 ν̂(Ck(x))

1
≤

1

JF k(x)
≤ C

ν̂(Ck(x))

η

The Lemma is proved. �

Lemma 3.2 There exists K <∞ such that:

• for all x ∈ ∆, all n ∈ N, Ln
01(x) ≤ K.

• for all x, y in a given Bj,ℓ and all n ∈ N,:

|Ln
01(x) − Ln

01(y)| ≤ Kd0(x, y). (3.1)

Proof : The upper bound Ln
01 ≤ K follows from Lemma 3.1, by writing:

Ln
01(x) =

∑

x′∈F−nx

1

JFn(x′)
≤ C

∑

x′∈F−nx

ν̂(Cn(x′)) ≤ C (3.2)

Let x and y belong to one Bj,ℓ. Their preimages by Fn are paired, i.e., if
Fnx′ = x, there is exactly one y′ ∈ Cn(x′) such that Fny′ = y. So, using (A.IV),
we get:

|Ln
01(x) − Ln

01(y)| =

∣

∣

∣

∣

∣

∣

∑

F nx′=x

JFn(x′)−1 −
∑

F ny′=y

JFn(y′)−1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

F nx′=x

JFn(x′)−1

(

JFn(x′)

JFn(y′)
− 1

)

∣

∣

∣

∣

∣

≤ CLn
01(x)d0(x, y)

≤ KCd0(x, y)

(3.1) is proved. �

Corollary 3.3 F admits a ν̂ a.c.i.m.

Proof : By Lemma 3.2, the sequence 1
n

∑n−1
i=0 Li

01 is relatively compact for
the topology of uniform convergence on compact subsets (this is Arzela-Ascoli
theorem on separable spaces). Each limit point h of this sequence is a non zero
fixed point for L0 (by Lebesgue’s dominated theorem, ν̂(h) = 1), so that µ̂ = hν̂
is a ν̂-a.c.i.m. �
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The system (∆, F, ν̂,R) has a Markov structure in the sense that for each P ∈ R,
F (P ) is a union of atom of R. According to [ADU], we will say that F is
aperiodic if:

∀ P , P ′ ∈ R ∃N ∈ N such that ν̂(F−nP ∩ P ′) > 0 ∀ n ≥ N. (3.3)

The existence of a ν̂-a.c.i.m. implies that the recurrent part is non empty (it
contains the support of µ̂). Up to the spectral reduction, we may and shall

assume that F is aperiodic. We remark that aperiodicity implies that any s-
cylinder has positive ν̂-measure. The following lemma implies that any s-cylinder
also has µ̂ positive measure.

Lemma 3.4 If F is aperiodic then h(x) > 0 for all x ∈ ∆. Moreover,
inf µ̂[F k(Ck(x))] > 0 where the inf is taken on all k ∈ N and x such that F kx ∈
∆0.

Proof : Theorems 2.5 and 3.2 in [ADU] imply that if F is aperiodic then Ln
01 → h

uniformly on compact sets. LetK be given by Lemma 3.2. We have for j = 1, . . . ,
any ℓ, n ∈ N, x, y ∈ Bℓ,j, their paired preimages will be denoted by x′ and y′,

Ln
01(x) =

∑

F nx′=x

JFn(x′)−1 =
∑

F ny′=y

JFn(y′)−1 JF
n(y′)

JFn(x′)

≤ (Cd0(x, y) + 1)
∑

F ny′=y

JFn(y′)−1 ≤ KLn
01(y) using (1.1).(3.4)

Taking the limit when n goes to infinity implies: for x, y ∈ Bℓ,j,

h(x) ≤ Kh(y). (3.5)

So, for all (j, ℓ), either h ≡ 0 on Bℓ,j or h > 0 on Bℓ,j. But h|Bj,ℓ
≡ 0 implies

that ν̂(Bj,ℓ) = 0, a contradiction to the aperiodicity. This concludes the proof of
the first part of the lemma.

To prove the second part, let us remark first that ν̂[F kCk(x)] ≥ η > 0 for
all k and x such that F kx ∈ ∆0. Also, the Markov property implies that there
exists finitely many integers i1, . . . , ip such that each F kCk(x) contains at least
one ∆0,ij , j = 1, . . . , p. This implies the announced result using that h > 0. �

Let us note that Lemma 3.4 implies that µ̂(P ) > 0 for any cylinder P . The
following lemma is a direct consequence of mixing.

Lemma 3.5 There exists positive numbers A and B such that for any f , g ∈
L2(ν̂), with µ̂(f) > 0, µ̂(g) > 0, there exists n0 such that for n ≥ n0,

A ≤
µ̂(f ◦ Fn · g)

µ̂(f)µ̂(g)
≤ B.
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We shall now construct a sequence of cones Cj and a sequence of integers kj

such that Lkj maps Cj−1 into Cj with uniformly bounded diameter, where L is
the normalized transfer operator defined as follows: Lf = 1

hL0(fh). Because of
Lemma 3.4, L is well defined. Moreover it satisfies: L1 = 1. The Jacobian of Fn

with respect to µ̂ is:
JFn · h ◦ Fn

h

Let x and y belong to the same Bℓ,j, x
′ and y′ be their paired preimages by Fn.

Following eqs. (3.4 - 3.5), we get, for some C′ > C:

(1 − C′d0(x
′, y′)) ≤ h(x′)

h(y′) ≤ (1 + C′d0(x
′, y′)),

(1 − C′d0(x, y)) ≤ h◦F n(x′)
h◦F n(y′) ≤ (1 + C′d0(x, y)).

We deduce that the Jacobian of Fn with respect to µ̂ satisfies a bounded distor-
tion inequality like (1.1) with an appropriate constant that we will continue to
denote by C. From now on, we abuse notations and JF will be the Jacobian of
F with respect to the invariant measure µ̂. We remark that the proof of Lemma
3.1 and Lemma 3.4 give for some C > 0:

C−1µ̂(Ck(x)) ≤
1

JF k(x)
≤ Cµ̂(Ck(x)). (3.6)

4 The cones

4.1 Auxiliary definitions

In what follows µ̂ is a mixing a.c.i.m. on ∆.

We need first some auxiliary definitions. We set for convenience D = 5.
Let (vn)n∈N be such that:

∑

n≥1

vn · ν̂(∆n) <∞ and vn → ∞.

We also assume that vn, and for each k ∈ N, vn/vn+k are non-decreasing functions
of n. We define µ̂v := v · µ̂ where we have introduced the function v =

∑

ℓ≥0 vℓ ·
1∆ℓ

. Let R0(p) =
∑

k>p ωk(g). We pick an integer s so large that

R0(s) ≤ 10−5.

Let P∞ =
⋃

i≥t
ℓ≥0

∆ℓ,i ∪
⋃

ℓ≥t
i≥0

∆ℓ,i with the parameter t chosen so large that:

µ̂v(P∞)

η
≤ 10−5,



Decay of correlations on towers 11

where η = infj ν̂(F
R(∆0,j)) > 0.

Let Q1 be the finite collection of s-cylinders covering ∆\P∞. Let Q be the finite
partition of ∆ defined as Q1 ∪ {P∞}. Let k0 be such that for all k ≥ k0, for all
P,Q ∈ Q:

7

8
≤
µ̂(F−kP ∩Q)

µ̂(P )µ̂(Q)
≤

9

8

7

8
≤
µ̂v(F−kP ∩Q)

µ̂(P )µ̂v(Q)
≤

9

8

Such a k0 exists as (F, µ̂) is mixing, Q is finite and the function v is in L1(µ̂).

4.2 Definition of the distances dj

We set dj(x, y) = Rj(s(x, y)) where the functions Rj(·) are defined inductively in
the following way. Recall that R0(·) and k0 have been defined above. Assuming
that Rj−1(·) is defined we set:

kj = min{k ≥ k0 : Rj−1(s+ k) ≤ D−1R0(s)}

and
Rj(p) = D[R0(p) +Rj−1(p+ kj)].

We observe that, Q1 being a collection of s-cylinders, its dj-diameter is bounded
by Rj(s) = D[R0(p)+Rj−1(p+kℓ)] ≤ (D+1)R0(s), a number independent of j.
We introduce the auxiliary values q(j) = k1 + · · · + kj .

4.3 Definition of the cones

As stated in the introduction, we are going to prove Theorem 1.1 by cone tech-
niques. Let us explain a bit how to construct the cones and how sub exponential
decay of correlations may be obtained.

We start by recalling the classical way of using cones (see [FS] and [Li1] for
details). To get exponential decay of correlations, it is sufficient to find a cone
C and an integer k such that Lk maps C into itself and the diameter Γ of LkC
into C is finite. If the fixed point h of L belongs to C then Theorem 2.1 gives,
for any integer j:

δC(Lkjf, h) ≤ γj−1Γ where γ = tanh
Γ

4
< 1.

Hence Theorem 2.2 gives that for f ∈ C, ‖Lpf − hm(f)‖ goes to zero exponen-
tially fast for ‖ ‖ an adapted norm, provided f 7→ m(f) is adapted. Then one
has to extend this result from the cone to a Banach space.
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The starting point of the construction of cones is usually a Lasota-Yorke in-
equality (it will be done in section 5.2). If the metric d0 is not of exponential
type (i.e., d0(x, y) ≤ βs(x,y) with 0 < β < 1), then we cannot obtain a Lasota-
Yorke inequality. This is why we have to introduce the sequence of metric dj

and a sequence of cones. Roughly speaking, for any integer j, we will consider
a cone Cj of functions f that are locally Lipschitz for the metric dj and the
Lipschitz constant of which is controlled (see condition 2. below). Thanks to
the definition of the metric dj and to the Lasota-Yorke inequality, if f belongs
to Cj then Lkjf will be locally Lipschitz with respect to the metric dj+1 and we
will control its Lipschitz constant. This will imply that Lkj maps Cj into Cj+1

with finite diameter Γ. Then, using Theorems 2.1 and 2.2, we get that for f in
C0, L

k1+···+kjf goes to m(f)h at rate γj (with γ = tanhΓ
4 ) in any adapted norm,

provided that h belongs to all the cones Cj and that f 7→ m(f) is adapted. This
is the philosophy of the construction.
A source of difficulty is the following. To ensure that a cone C satisfies properties
of section 2 and more specifically the condition C ∩ −C = {0}, some positivity
for the functions in the cone is needed. On the other hand, if C ⊂ {f ≥ 0} =: C+

then for any f , g in C, θC(f, g) ≥ θC+(f, g) (use Theorem 2.1 with P = Id) and

θC+(f, g) =
sup f

inf f
·
sup g

inf g
.

Since the functions of the cones are only locally Lipschitz, we will have a good
control on sup f

inf f on each floor ∆ℓ but not on the whole space ∆. Observe that
because of the definition of L, we cannot hope to control globally Lipschitz con-
stant (just try to compute |Lf(x)−Lf(y)| for x ∈ ∆0 and y ∈ ∆ℓ, ℓ > 0) and we
have to restrict ourselves to locally Lipschitz functions. This problem is solved
by considering the finite partition Q of ∆ which is decomposed into finitely many
s-cylinders (the “compact” part) and the complementary of the union of these
s-cylinders (the “non compact” part). Then we require the positivity of some
kind of conditional expectation of f with respect to this finite partition (see con-

dition 1. below). This together with the control of the local Lipschitz constant
leads to a good control of f on the atoms of the compact part. Then, we requir!
e ! ! another kind of control on the non compact part (see conditions 3 and

4 below).

The cone Cj(a, b, c) is the set of all real functions f on ∆ satisfying the following
conditions:

1. a ·Eµ̂(f) ≤ Eµ̂(f |Q) ≤ 6b ·Eµ̂(f).

2. for all x, y ∈ ∆ with B(x) = B(y),

|f(x) − f(y)| ≤ 12b · Eµ̂(f) · dj(x, y).
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3. for all ℓ ≤ q(j),
sup

P∞∩∆ℓ

|f | ≤ 90c · vℓ ·Eµ̂(f).

4. for all ℓ > q(j),
sup

P∞∩∆ℓ

|f | ≤ 90c · vq(j) ·Eµ̂(f).

5 Contraction of the cones

The purpose of this section is to prove the following proposition.

Proposition 5.1 We have

LkjCj(0, 1, 1) ⊂ Cj+1

(

4

5
,
1

5
,max

(

1

5
,
vq(j)

vq(j+1)

))

and Lkj : Cj(0, 1, 1) → Cj+1(0, 1, 1) admits, w.r.t. cone metrics, a contraction
coefficient less than:

max

(

1

5
,
vq(j)

vq(j+1)

)

=: γj .

Let us prove that if LkjCj(0, 1, 1) ⊂ Cj+1

(

4
5 ,

1
5 ,max

(

1
5 ,

vq(j)

vq(j+1)

))

then we have

the announced estimation on the contraction rate.
This will follow if we prove that for all f, g ∈ Cj+1(4/5, 1/5,max(1/5, vq(j)/vq(j+1)))
with the normalization Eµ̂(f) = Eµ̂(g) = 1 we have:

αf − g ∈ Cj+1(0, 1, 1)

for

α = max

(

1 +D−1

1 −D−1
,
1 + vq(j)/vq(j+1)

1 − vq(j)/vq(j+1)

)

. (5.1)

Indeed, in that case, we have that the diameter Γj of LkjCj(0, 1, 1) into
Cj+1(0, 1, 1) is less than

2 logmax

(

1 +D−1

1 −D−1
,
1 + vq(j)/vq(j+1)

1 − vq(j)/vq(j+1)

)

.

and then

tanh
Γj

4
≤ max

(

1

D
,
vq(j)

vq(j+1)

)

= max

(

1

5
,
vq(j)

vq(j+1)

)

.

The upper bound in the cone condition (1) for αf − g is, for all P ∈ Q,

α ≥
6Eµ̂(g) − Eµ̂(g|P )

6Eµ̂(f) − Eµ̂(f |P )
.
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The right hand side is bounded by:

6 − 0

6 − 6
5

=
5

4
≤ 6/4.

The lower bound in this condition is, for all P ∈ Q,

α ≥
Eµ̂(g|P )

Eµ̂(f |P )
.

The right hand side is upper bounded by:

6/5 · Eµ̂(g)

4/5 ·Eµ̂(f)
=

6

4
.

Thus, both bounds in condition (1) are implied by eq. (5.1).

The cone condition (2) is, for all x, y ∈ ∆ with B(x) = B(y)

α ≥
12Eµ̂(g) + |g(x) − g(y)|

12Eµ̂(f) − |f(x) − f(y)|

The right hand side is bounded by:

1 +D−1

1 −D−1
= 6/4.

Thus, condition (2) is implied by eq. (5.1).

The cone condition (3) is implied by eq. (5.1) as can be seen by practically
identical computations.

The cone condition (4) is satisfied iff, for all x ∈ P∞ ∩ ∆ℓ, ℓ > q(j + 1),

α ≥
90vq(j+1)Eµ̂(g) + |g(x)|

90vq(j+1)Eµ̂(f) − |f(x)|
.

But the right hand side is bounded by:

1 + (vq(j)/vq(j+1))

1 − (vq(j)/vq(j+1))
.

Thus, condition (4) is implied by eq. (5.1) and this concludes the proof that the
claim implies the stated contraction coefficient.

5.1 Contraction of the first condition

f is an arbitrary function in Cj(0, 1, 1) for the remainder of section 5.
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Let P ∈ Q. We first prove the lower bound:

Eµ̂(Lkjf |P ) =
1

µ̂(P )

∫

P

Lkjf dµ̂ =
1

µ̂(P )

∫

∆

1P · Lkjf dµ̂

=
1

µ̂(P )

∫

∆

1P ◦ F kj · f dµ̂ =
1

µ̂(P )

∫

F−kj P

f dµ̂

≥
∑

P ′∈Q1

1

µ̂(P )

∫

F−kj P∩P ′

f dµ̂+
1

µ̂(P )

∫

F−kj P∩P∞

f dµ̂

≥
∑

P ′∈Q1

µ̂(F−kjP ∩ P ′)µ̂(P ′)

µ̂(P )µ̂(P ′)

{

Eµ̂(f |P ′) − 12(D+ 1)R0(s)Eµ̂(f)

}

−
∑

ℓ≥0

µ̂(F−kjP ∩ P∞ ∩ ∆ℓ)

µ̂(P )
· 90vmin(ℓ,q(j))Eµ̂(f),

using diamdj (Q1) ≤ (D + 1)R0(s), conditions (2)-(4). We continue (obviously:
vℓ ≥ vmin(ℓ,q(j))):

Eµ̂(Lkjf |P ) ≥
∑

P ′∈Q1

µ̂(F−kjP ∩ P ′)

µ̂(P )µ̂(P ′)
µ̂(P ′)

{

Eµ̂(f |P ′) − 12(D+ 1)R0(s)Eµ̂(f)

}

−
µ̂v(F

−kjP ∩ P∞)

µ̂(P )µ̂v(P∞)
µ̂v(P∞) · 90Eµ̂(f)

≥
∑

P ′∈Q1

7

8
µ̂(P ′)Eµ̂(f |P ′) −

∑

P ′∈Q1

7

8
µ̂(P ′) · 12(D+ 1)R0(s)Eµ̂(f)

−
9

8
µ̂v(P∞) · 90Eµ̂(f)

≥
7

8

{

Eµ̂(f) −

∫

P∞

f dµ̂

}

− 12
9

8
(D + 1)R0(s)Eµ̂(f)

− 90
9

8
µ̂v(P∞)Eµ̂(f).

Observe that:
∫

P∞

f dµ̂ =

∫

P∞

f

v
dµ̂v ≤

∑

ℓ≥0

µ̂v(P∞ ∩ ∆ℓ) · 90
vmin(ℓ,q(j))

vℓ
Eµ̂(f)

≤ 90µ̂v(P∞)Eµ̂(f).

Hence,

Eµ̂(Lkjf |P ) ≥

{

7

8
− 90

(

9

8
+

7

8

)

µ̂v(P∞) − 12
9

8
(D + 1)R0(s)

}

Eµ̂(f)

≥
4

5
Eµ̂(f).
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Similarly, we get the upper bound,

Eµ̂(Lkjf |P ) ≤

{

9

8
+ 90

(

9

8
+

7

8

)

µ̂v(P∞) + 12
9

8
(D + 1)R0(s)

}

Eµ̂(f)

≤ 6D−1Eµ̂(f).

5.2 Contraction of the second condition

Let x, y ∈ ∆ℓ with B(x) = B(y). First assume that ℓ ≥ kj . Setting
x− = (x, ℓ− kj), y

− = (y, ℓ− kj) ∈ ∆ (with a slight abuse of notation), we have

|Lkjf(x) − Lkjf(y)| = |f(x−) − f(y−)| ≤ 12dj(x
−, y−)Eµ̂(f)

= 12Rj(s(x, y) + kj) ≤ 12D−1dj+1(x, y).

Now assume that ℓ < kj . We have |Lkjf(x) − Lkjf(y)| = |Lrf(x0) − Lrf(y0)|
with r = kj − ℓ and x0 = (x, 0), y0 = (y, 0) (with the same abuse). Hence it is
enough to bound |Lrf(x) − Lrf(y)| for r ≤ kj and x, y ∈ ∆0 with B(x) = B(y).
As B(x) = B(y), the pre-images by F r of x and y can be paired (i.e., to each
pre-image x′ of x corresponds a pre-image y′ of y defined by the same inverse
branch). Thus,

|Lrf(x) − Lrf(y)| ≤
∑

x′∈F−rx

∣

∣

∣

f(x′)
JF r(x′) −

f(y′)
JF r(y′)

∣

∣

∣

≤
∑

x′∈F−rx
1

JF r(x′) |f(x′) − f(y′)| +

+
∑

x′∈F−rx |f(y′)| 1
JF r(x′)

∣

∣

∣

JF r(x′)
JF r(y′) − 1

∣

∣

∣

≤ 12Rj(r + s(x, y))Eµ̂(f)

+Cd0(x, y)

(

∑

x′∈P∞

x′∈F−rx

|f(y′)|
JF r(x′) +

∑

x′ /∈P∞

x′∈F−rx

|f(y′)|
JF r(x′)

)

recall L1 = 1 and C is defined in (A.III). We have

∑

x′∈P∞

x′∈F−rx

≤
∑

ℓ≥0

∑

x′∈P∞∩∆ℓ
x′∈F−rx

90vmin(ℓ,q(j))
1

JF r(x′)
Eµ̂(f)

≤ 180
K

η
µ̂v(P∞)Eµ̂(f)

where K is given by the bounded distortion and η by the large image property
(we have used that

∫

F rCr(x′)
(JF r)−1 dµ̂ = µ̂(Cr(x

′)) ≥ η/K(JF r(x′))−1).

We also have
∑

x′ /∈P∞
x′∈F−rx

≤

{

Eµ̂(f |Q)(x′) + 12Rj(s)Eµ̂(f)

}

≤ (12Rj(s) + 1)Eµ̂(f).
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Hence,

|Lkjf(x) − Lkjf(y)| ≤
{

12Rj(kj − ℓ+ s(x0, y0)) + d0(x
0, y0)MC(12Rj(s)

+1 + 180
K

η
µ̂v(P∞))

}

Eµ̂(f)

≤ 12 {Rj(kj + s(x, y)) +R0(s(x, y))(MCRj(s) + 1/12

+15
K

η
µ̂v(P∞))

}

Eµ̂(f)

Now, CRj(s) + 15(K/η)µ̂v(P∞) < 1/2 so that

|Lkjf(x) − Lkjf(y)| ≤ 12D−1Rj+1(s(x, y))Eµ̂(f) = 12D−1dj+1(x, y)Eµ̂(f).

5.3 Contraction of the third condition

Let x ∈ ∆ℓ ∩ P∞. First assume 0 ≤ ℓ ≤ kj . As for the second condition it is
enough to consider Lrf(x) with 0 ≤ r ≤ kj and x ∈ ∆0. We have

|Lrf(x)| ≤
∑

x′∈F−rx

1

JF r(x′)
|f(x′)|

≤
∑

x′∈F−rx
x′ /∈P∞

1

JF r(x′)
(12Rj(s)Eµ̂(f) + 6Eµ̂(f))

+
∑

ℓ≥0

∑

x′∈F−rx
x′∈P∞∩∆ℓ

1

JF r(x′)
90vmin(ℓ,q(j))Eµ̂(f)

≤ (2Rj(s) + 6)Eµ̂(f) +
∑

ℓ≥0

∑

x′∈F−rx
x′∈P∞∩∆ℓ

K

η
µ̂(Cr(x

′)) · 90vmin(ℓ,q(j))Eµ̂(f)

≤ (12Rj(s) + 6)Eµ̂(f) +
∑

ℓ≥0

∑

x′∈F−rx
x′∈P∞∩∆ℓ

K

η
µ̂v(Cr(x

′)) · 90vmin(ℓ,q(j))Eµ̂(f)

≤

(

(12Rj(s) + 6) + 90
K

η
µ̂v(P∞)

)

Eµ̂(f)

≤ 90D−1Eµ̂(f)

Now assume kj ≤ ℓ ≤ q(j + 1) = q(j) + kj and let x− = (x, ℓ− kj). We have:

|Lkjf(x)| = |f(x−)| ≤ 90vℓ−kjEµ̂(f)

≤ 90
vℓ−kj

vℓ
vℓEµ̂(f)

≤ 90
vq(j)

vq(j+1)
vℓEµ̂(f).
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using that ℓ 7→ vℓ/vℓ+k is increasing for any k.
We get the claimed contraction by max(1/5,

vq(j)

vq(j+1)
).

5.4 Contraction of the fourth condition

Finally we take x ∈ P∞ ∩ ∆ℓ with ℓ > q(j + 1). We have

|Lkjf(x)| = |f(x−)| ≤ 90vq(j)Eµ̂(f)

≤ 90
vq(j)

vq(j+1)
vq(j+1)Eµ̂(f).

and this gives the contraction by
vq(j)

vq(j+1)
.

6 Conclusion

To conclude the proof of Theorem 1.1, we need to derive from the projective
metric bound obtained above, bounds on the correlations. The following lemma
is standard when using Birkhoff’s cones (see [KMS] page 687, [M] Lemmas 3.9-
3.10). Let ||| |||j be the norm on bounded functions defined by:

|||f |||j = max



max(90vq(j), 12DR0(s) + 6)

∣

∣

∣

∣

∣

∣

∫

∆

fdµ̂

∣

∣

∣

∣

∣

∣

,

sup
P∈Q

µ̂(P )−1

∣

∣

∣

∣

∣

∣

∫

P

fdµ̂

∣

∣

∣

∣

∣

∣

, ‖f‖∞



 .

Lemma 6.1 The norms ||| |||j and the homogeneous form f 7→ µ̂(f) are adapted
to the cones Cj(0, 1, 1)
For any f ∈ L(d0), there exists R(f) > 0 such that f + R(f)1 ∈ C0(0, 1, 1) and
R(f) ≤ C‖f‖L(d0).

Sketch of proof : It is clear that the homogeneous form f 7→ µ̂(f) is adapted.
To prove that ||| |||j is also adapted, let us consider f and g such that f + g and
f − g are in Cj(0, 1, 1). The first condition in the definition of the cone gives:

∀ P ∈ Q,

∣

∣

∣

∣

∣

∣

1

µ̂(P )

∫

P

gdµ̂

∣

∣

∣

∣

∣

∣

≤
1

µ̂(P )

∫

P

fdµ̂,

and
∣

∣

∣

∣

∫

∆

gdµ̂

∣

∣

∣

∣

≤

∫

∆

fdµ̂.
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The last three conditions give

‖g‖∞ ≤ max[90vq(j), 12DR0(s) + 6]

∫

∆

fdµ̂.

Hence, we have |||g|||j ≤ |||f |||j .
To prove the second point of the lemma, we may assume that f ≥ 0. To have
that f +R(f)1 ∈ C0(0, 1, 1), it suffices that:

• ∀P ∈ Q, R(f) ≥
1

µ̂(P )

∫

∆
Pfdµ̂−6

∫

∆
fdµ̂

5 , so that condition 1. is satisfied,

• R(f) ≥ L(f)
12 , so that condition 2. is satisfied,

• R(f) ≥ sup f
90vq(0)−1 , so that conditions 3 and 4 are satisfied,

so we may choose R(f) ≤ const||f ||L(d0). �

Let us conclude the proof of Theorem 1.1.
Let f ∈ C0(0, 1, 1), By Proposition 5.1, for any ℓ, Lk1+···+kℓf and Lk1+···+kℓ1 = 1

belong to Cℓ (we remark that 1 ∈ C0(0, 1, 1)). Applying ℓ − 1 times Theorem
2.1, we get:

δCℓ
(Lk1+···+kℓf,1) ≤

ℓ
∏

j=2

γj · δ1(L
k1f,1) ≤

ℓ
∏

j=2

γj · Γ1,

where γj = is given by Proposition 5.1. Since the norm ||| |||j is adapted to the
cones Cj(0, 1, 1) and is greater than the uniform norm, Theorem 2.2 gives for f
in C0(a, b, c) with µ̂(f) = 1,

‖Lk1+···kℓf − 1‖∞ ≤ const

ℓ
∏

j=2

γj .

For n ∈ N, let ℓ(n) be defined by:

n = k1 + · · · kℓ(n) + r with r < kℓ(n)+1,

we have

‖Lnf − 1‖∞ ≤ ‖Lr1‖∞ ‖Lk1+···+kℓf − 1‖∞ ≤ const





ℓ(n)
∏

j=2

γj



 .

For any function f ∈ L(d0), applying the above inequality to f+R(f)1
µ̂(f)+R(f) gives

‖Lnf − µ̂(f)‖∞ ≤ const ·





ℓ(n)
∏

j=2

γj



 ‖f‖L(d0).
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The decay of correlations follows: for f ∈ L and g ∈ L1(µ̂),

∣

∣

∣

∣

∣

∣

∫

∆

g ◦ Fn · fdµ̂−

∫

∆

fdµ̂

∫

∆

gdµ̂

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫

∆

g[Ln(f) − µ̂(f)]dµ̂

∣

∣

∣

∣

∣

∣

≤ const ·





ℓ(n)
∏

j=2

γj



 ‖f‖L(d0)‖g‖1.

Set
∏ℓ(n)

j=2 γj = un.

We now prove that un has the announced behavior for exponential, stretched
exponential or polynomial sequences ωn and ν̂(∆n).

Estimating un

To estimate the rate of mixing un, we have to analyze the asymptotic behavior
of the sequences kj and γj . Recall that:

kℓ+1 = inf{k ≥ k0 : Rℓ(s+ k) ≤
R0(s)

D
}

and observe that an easy induction gives:

Rℓ(n) = DℓR0(k1 + · · · + kℓ + n) +
ℓ

∑

i=1

Dℓ+1−iR0(ki+1 + · · · + kℓ + n). (6.1)

Recall R0(m) =
∑

k>m ωk.

From these remarks we get the following results.

• If there exists 0 < ρ < 1 such that ωn = O(ρn) then R0(n) = O(ρn)
and one can take kj = p provided p is such that ρp < 1

D(D+1) , i.e. p >

− log[D(D + 1)]

ρ
. Assume also that ν̂(∆n) = O(αn) for some 0 < α < 1.

Then one may choose vn = α′−n
provided 0 < α < α′ < 1. We have:

γj = max
(

1
D , α

′p
)

=: κ < 1 and un = κ
n
p .

• If there exists α > 1 such that ωn = O(n−α) then R0(n) = O(n−α+1) and

Rℓ(s+kℓ+1) = O
(

R0(s+ kℓ+1) ·D
ℓ
)

= O

(

Dℓ

kα−1
ℓ+1

)

so, if kℓ+1 ∼ constD
ℓ+1
α−1 ,

it satisfies Rℓ(s+ kℓ+1) ≤
1

DR0(s)
. So ℓ(n) ∼ (α− 1) log n

log D + const. Assume

also that ν̂(∆n) = O(n−β) for some β > 1. Then one may choose vn = nγ

provided 0 < γ < β − 1. We have: γj = max
(

1
D , D

− γ
α−1

)

.
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If β ≤ α then we can choose γ < β − 1 ≤ α− 1 and then γj = D− γ
α−1 and

un = O(n−γ).
If α < β then we can choose β − 1 > γ > α − 1 and then γj = 1

D and
un = O(n−α+1).
Finally, we get that un = O(n−min[α−1,β−1−ε]), for all ε > 0.

• If ωn = O(e−nα

) and ν̂(∆n) = O(e−nβ

) for some 0 < α, β < 1, set kℓ :=

ℓ
1
α−1. We obtain q(ℓ) = k1 + · · ·+ kℓ ∼ ℓ

1
α so ℓ(n) ∼ nα. An easy estimate

gives that R0(m) ≤ e−mα−ε

for ε > 0 and all large m. Now, by eq. (6.1),

Rℓ(s+ kℓ+1) ≤ (ℓ+ 1)DℓR0(kℓ+1) ≤ (ℓ+ 1)Dℓe−ℓ(α−ε)( 1
α

−1)

→ 0 as ℓ→ ∞.

Hence, Rℓ(s + kℓ+1) ≤ R0(s)/D is satisfied and the choice of kℓ is correct
for all large ℓ. Let us compute:

γℓ = max

{

1

D
,
q(ℓ+ 1)2

q(ℓ)2
exp

(

ℓ
β
α − (ℓ+ 1)

β
α

)

}

= max

{

1

D
,

(

1 +
1

ℓ

)
2
α

exp

(

−ℓ
β
α ·

β

α

1

ℓ
+ . . .

)

}

.

If β > α, then the second term of the above maximum goes to zero and
therefore γℓ = 1

D for large ℓ. We compute the contraction coefficient at
time n:

un = D−ℓ(n) = D−Cnα

= e−C′nα

≤ e−nα−ε

.

If β < α, then the second term of the above maximum goes to one and
therefore sets the value of γℓ for large ℓ. We compute:

un =

ℓ(n)
∏

j=1

e−j
β
α ≤ e−ℓ(n)

β
α = e−Cnβ

≤ e−nβ−ε

.

If α = β, then we change, for instance, α to α′ > β, arbitrarily close, and
apply the previous case.
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