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Abstract. This work presents an approximation algorithm for schedul-
ing the tasks of a parallel application. These tasks are considered as mal-
leable tasks (MT in short), which means that they can be executed on
several processors. This model receives recently a lot of attention, due
mainly to their practical use for implementing actual parallel applica-
tions. Most of the works developed within this model deal with indepen-
dent MT for which good approximation algorithms have been designed.
This work is devoted to the case where MT are linked by precedence
relations. We present a 4 (1 + €) approximation algorithm (for any fixed
€) for the specific structure of a tree. This preliminary result should open
the way for further investigations concerning arbitrary precedence graphs
of MT.

keywords. parallel computing - scheduling - malleable tasks - precedence
constraints - trees.

1 Introduction

Since the eighties, many works have been developed for parallelizing actual large
scale applications. Parallel implementations are based on algorithmic studies
where scheduling and load-balancing issues are central points to be considered. It
should be noticed that there exists a very large literature addressing the problem
of scheduling efficiently the tasks of a parallel program. It corresponds to find at
what time and on which processor the tasks will be executed. Many works have
been developed including theoretical studies on abstract and idealized models
and practical tools consisting of actual implementations on most existing parallel
and distributed platforms.

Among the various possible approaches, the most commonly used is to con-
sider the tasks of the program at the finest level of granularity and apply some
adequate clustering heuristics for reducing the relative communication overhead
[5]. It is well-known that problems where communications are taken into account
lead generally to harder algorithms than without communications: for large com-
munication delays no constant approximation algorithm is known at this time.



It is of course even more crucial for computational models with a finer commu-
nication representation like LogP [3]. Due to the intractability of the problem,
the impact of the parallelization overhead is usually ignored.

Recently, a new computational model called Malleable tasks (MT) has been
proposed as a promising alternative to standard delay models. MT are compu-
tational units which may be themselves executed in parallel. Communications
are taken into account implicitly by a penalty factor.

The main result of this paper is to propose an approximation algorithm
for scheduling MT in the presence of precedence constraints. Qur approach is
based on a two phase algorithm consisting first in computing, for each task,
the number of processors for its execution (allotment phase) then, scheduling
the corresponding multiprocessor tasks (tasks with fixed number of processors).
This approach applied to graphs structured as trees is one of the first result in the
direction of arbitrary precedence task graphs. Trees are well-known structures
where each node has at most one predecessor (or successor in the case of in-trees).

We first present briefly the model of MT and give some basic properties.
Then, after a brief survey on related works, we present the algorithm and detail
its analysis.

The motivation of the model was well emphasized in some previous works,
so, we will not discuss here the advantages of MT. The reader may refer to [11]
for more details. Informally, the problem of scheduling MT, is to find the number
of processors alloted to each task and when to execute them. Figure 1 represents
a task graph associated to one feasible scheduling. Then we discuss the existing
works related to the problem of scheduling MT.

Q‘ Processors
4 ™ Time

Malleable Task graph Scheduling

Fig. 1. A task graph and gantt chart of an associated scheduling.

Only few results are available for the scheduling MT problem, most of them
concern independent tasks. Jansen and Porkolab prove that the problem with
a fixed number of processors and independent MT admits a polynomial time
approximation scheme [8]. It means that there exists a family of polynomial al-



gorithms (A,) with a performance guarantee is 1 + €. However, this family is not
a fully approximable scheme, and practically, the complexity makes it impossible
to use.

In practice independent MT may be scheduled in two steps: computing first
an allotment (which determines for all tasks the number of processors for their
execution) and then, use some algorithms for scheduling multiprocessor tasks
[15], for example with a 2-dimensional strip-packing algorithm [14].

There is very few works dealing with the problem of scheduling MT with
precedence constraints. Prasanna et al. [13] proposed an algorithm for some
specific structures of precedence task graphs, including trees for the continuous
version of the problem (where an non-integer number of processors may be al-
loted to the MT). Let remark that they assume that the same speed-up function
for all the tasks, which is a stronger restriction for the penalty functions than the
monotonic ones described later. The speed-up is defined as the ratio of the exe-
cution time on one processor over the parallel execution time on any number of
processors. Feldman et al. [4] study the effect of executing multiprocessor tasks
on less processors than required. Their model can be seen as malleable tasks
with a perfect or superlinear speed-up until a given threshold. In this context,
constant approximation factor can be reached even for the case of an arbitrary
task graph.

2 Problem definition

In this work, we consider that the parallel program is represented by a set of
generic MT (computational units that may be themselves parallelized) linked
by some precedence constraints, which are determined by the analysis of the
data flow between the tasks. Determining this graph is usually done by the user,
sometimes with the help of some software tools.

Let G(V, E) be a directed graph where V represents the set of MT of cardi-
nality n and FE is the set of precedence constraints among the tasks. ¢; , denotes
the execution time of task ¢ € V' on ¢ processors.

Definition 1 (Valid schedule). A valid schedule o = (date,,alloty) is a pair
of functions, from V to N x[1,m], respectively, that associated to each taski € V,
a date of execution date, € N (starting time), and a number of processors,
allot, € [1,m], to execute it, such that at most m processors are engaged in the
computation at o time, and all precedence constraints are respected:

VieV, > allot,(j) <m
j€V,dates (i)€[date,(j),dates (§)+1;, attot(s))

and
V(ZaJ) € E : date, (J) > date, (7’) + ti,allot, (i)~



According to the standard notation, the makespan of schedule o is denoted
Wy = max;cy dateqs (J) + tj quiot, (j)- As there is no ambiguity, we will forget the
notation ¢ in all further expressions. In this paper, we consider the following
problem:

Definition 2 (MT Scheduling problem (MTS)). Find a valid schedule o
MINIMIZING W, -

According to the behavior of a parallel program [2], people usually consider
some hypotheses that simplify the analysis. They have been shown to be realistic
while implementing actual parallel applications [1].

Monotonic penalty:

1. The execution time ¢; ; of a malleable task ¢ is a monotonic decreasing func-
tion of the number of processors g executing the task: t; 441 < ;4

2. The work w; y = q t;,4 of a malleable task ¢ is a monotonic increasing function
of q: Wi g+1 Z Wi q-

Practically, the first hypothesis means that adding some processors for ex-
ecuting a MT will decrease its execution time. This is realistic, at least until
a threshold from which there is no more parallelism. It is easy to bound the
number of processors from this moment. The second hypothesis reflects that
the overhead for managing the parallelism usually increases with the number of
processors.

Performance bounds:

For a particular allotment allot, two lower bounds of the makespan w of any
valid schedule ¢ may be easily computed

1. The total work Wouoe = D pit; is the sum of the work of all tasks. For m
processors, in any schedule o, at least one processor compute at least W/m,
namely the average work, thus w > W, /m,

2. The critical path length Cihax is the maximum over all the paths P of G
of > icp tiatior(i)- As any valid schedule must respect the precedence con-
straints, w > Cmaz,o-

The approximation algorithm that we propose in this paper is based on a
two-phases approach. Its principle is given as follows:

Algorithm 1 Two phases MTS algorithm

Compute the allotment of all tasks
Schedule the obtained multiprocessor task graph

In the next section, we will first prove a preliminary result, which establishes
that it is possible to schedule an arbitrary graph of multiprocessor tasks with



a constant performance guarantee under small restrictions on the number of
processors alloted to the tasks. Then, using this result, we will show that in
the case of a tree, it is possible to construct an allotment (assign a number of
processors to each task), such that both criteria of critical path and average
work of the induced graph composed of multiprocessor tasks are bounded by the
makespan of the optimal schedule.

3 The approximation result

3.1 Scheduling problem

We present an analysis for scheduling multiprocessor tasks. Let G = (V, E) be
the directed graph representing tasks together with their precedence constraints.
Recall that a multiprocessor task requires a fixed number of processors for its
execution. p; and t; denote respectively the number of processors and the exe-
cution time of task ¢ using this number of processors. w™ denotes the length of
the critical path in graph G and W is the work of the tasks in V' (equal to the
sum of the works of the tasks W =Y pit;).

Let us now study the behavior of a list scheduling algorithm in regard to
the maximum number of processors § = max;cy p; needed to execute a multi-
processor task. This algorithm, whose principle is presented below, is a direct
adaptation to the well-known list algorithm of Graham for sequential tasks [6].
Its objective is to compute for each task 7 its execution date date(i). Ready
denotes the set of tasks whose all predecessors have been scheduled.

The earliest execution date(i) is the smallest date such that all the prede-
cessors of ¢ have already been executed (and thus i is in Ready) and at least p;
processors are available.

Algorithm 2 List scheduling for multiprocessor tasks.
Compute the set of ready tasks Ready
while Ready # 0 do
for all ¢ € Ready do
Compute the earliest date of execution date(i) of task 3.
end for
Schedule any of the tasks in Ready with the minimal date().
Update Ready.
end while

Proposition 1. The makespan wy of a schedule obtained by algorithm 2 is

bounded by: W.

Proof: The result is a generalization of the well-known bound of Graham [6].
The interval [0,wy] is partitioned into two sets of time slots, namely, It and
I~. They correspond respectively to the times where strictly more than m — ¢



processors are occupied and at least & processors are not occupied. Note that at
least one processor is occupied at any time. In the following, |I| will denote the
duration of (non-continuous) period 1.

The total work performed during periods IT and I~ are greater than (m —
d + 1)|I*] and |I~|, respectively. Thus,

W >(m—38+1)IT|+|I7]

To obtain the result, the idea is to bound the term |I~|. Let us prove that
|[I7] < w™. Intuitively there are at each time at least § free processors and thus
there is no conflict between processors in 1.

More formally, we build a path in the transitive closure of graph G. Starting
from the end of the schedule, we consider a multiprocessor task x; that finishes
its execution at time wy, and build recursively a task sequence in G.

This is illustrated on figure 2. There exists a precedence relation between
zo and z;, otherwise 21 could have been started at the beginning of the second
I~ slot. For the construction of z3 from x5, the dark grey tasks represent inde-
pendent tasks that are executed during the date 7. They are candidates to be
predecessors of x; and x», otherwise x5 could have been started in the first I~
slot.
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Fig. 2. A multiprocessor task schedule obtained by a list algorithm and the construc-
tion of a partial task sequence



Suppose that the partial task sequence (z;, Z;—1, ..., 1) is built and I~\[date(z;),wr)]
is not empty, we add x;;1 as one of the tasks that are executed at time 7; =
max (I~
\[date(z;),wr]). There exists at least one such task which is a predecessor of z;
(otherwise, task z; should have been scheduled before by the list algorithm). We
repeat the process until I~ \[date(z;),wr] becomes empty. This defines a task
sequence C' = (zy,---,21), and then an oriented path of G, such that at each
t € I~ there is a task of C' that is being executed. Thus, we have:

[I7| < w*™.

By reporting this value into the previous expression, we obtain easily:

_ W+ (m—6w™
=t + || — 7
w = [T+ 7] < m—9J+1
Corollary 1. The performance guarantee of any list algorithm for scheduling
. " (2m6) . .
multiprocessor tasks is: = — i where 0 is the mazimum number of processors

used for executing the tasks.

Let us remark that this guarantee corresponds to the Graham’s bound 2 —
1/m for sequential tasks where § = 1. This bound is large when § = m, however,
if all the tasks use only half of the available processors (that is when § = m/2),
the guarantee is bounded by 3.

3.2 Allotment problem

In this section, we focus on the problem of finding a good allotment. The main
idea is to determine an allotment such that the maximum between both opposite
criteria of length of critical path and average work is minimized. First, we will
present more formally the problem of the allotment, and we will show how to
derive an approximation algorithm for the MTS problem. We will show later
that for trees it is possible to find a fully polynomial approximation scheme.

Let us consider an allotment function allot. In the following, the length of
critical path of the corresponding multiprocessor task graph is denoted wgj,,
and it is defined as the maximum over all the paths P of the oriented weighted
G of ) ,cptiauori)- This notation is used because the length of the critical
path is also the makespan of the schedule on an infinite number of processors.
Waitot = D_icy allot(i)t; aiior(s) denotes the total work. Now let consider the
following problem:

Definition 3 (allotment problem). Find an allotment function allot : V —
[1,m] such that max(wg,,, Waitot/m) is minimized.

The following property holds.

Property 1. The optimal value of the allotment problem is smaller than the
optimal makespan w* of the MTS problem: maz (w4« s Waitot= /m) < w* where
allot* is the optimal solution of the allotment problem



The proof is straightforward: for any allotment function Allot of an optimal
schedule including the optimal solution of the allotment problem, we have, by
definitions, maz(wg,,;, Waiiot /m) < w*.

We will now show how to obtain an approximation algorithm for MTS from
an approximation algorithm for the allotment problem.

Proposition 2. Given a k-approzimation algorithm for the allotment problem,
we can construct a 4k-approzimation algorithm for the MTS problem.

Proof. The main idea is to use the result of proposition 1 that gives an approx-
imation for the multiprocessor scheduling problem. Let allot be the allotment
found by the k-approximation algorithm. We construct allot’ such that all tasks
in allot' never use more than § processors, where ¢ is a given number in [1,m].
More formally, for any task 4, allot' (i) = allot(i) if allot(i) < 6 and allot'(i) = &
otherwise. The makespan provided by Algorithm 2 for scheduling G with the
fixed allotment allot' is according to Proposition 1 bounded by:

Wattor + (m - 5)wg?lot’
m—0+1 )

Wallot! S

. . . 0o . . m, 0o
Using the monotonic assumption described in section 2, we get wgj ;v < Fwij

and Waporr < Waiiet- Since according to Property 1 we have wSj, , < kw* and
Waitot/m < kw*, we finally obtain:

2
Wallot' km

w* T~ dm—-486+1)

This ratio is minimal for § = m/2 + 1, and in this case we have: Zellet’ <

4k B
wr/mp < 4k

4 Application to trees

Finally, it remains to determine how to find an approximation scheme for solving
the allotment problem for the case of trees. For this purpose, we will use a k-dual
approximation method introduced by Shmoys et Hochbaum [7]. Let us give an
integer A\, we consider the following problem:

Definition 4 (Constrained allotment problem). Find an allotment func-
tion allot such that the length of the critical path WS, is smaller than X and
the average work Wayor /m is as small as possible.

In the next section, we will show that this problem can be solved optimally
using dynamic programming for the case of trees, and deduce a polynomial-time
algorithm that computes an allotment function allot., for a given € > 0, whose
work is smaller than the work of an optimal allotment and whose critical path
length do not exceed A(1 + €). This can be seen as an optimal solution of the



same problem using more resources: a widely used technique in on-line algorithm
[9,12]. We call this algorithm a (1 + €)-optimal algorithm. Firstly, we will show
that if we can find a k-optimal algorithm for the constrained allotment problem,
then we can find a k(1 + €)-approximation for the allotment problem.

Proposition 3. Given a k-optimal algorithm for solving the constrained allot-
ment problem, we can construct a k(1 + €)-approzimation algorithm for the al-
lotment problem.

Proof: Consider an optimal solution of the allotment problem denoted by
allot*. Let * be the maximum between the length of critical path and the av-
erage work for this allocation: n* = max(wS5, s+, Waiior= /m). Let consider the
monotonic behavior of the penalty, we have: w!'/m < n* < w!, where w! is
the execution time of the graph on a single processor (3, ti1). Given a real
number € > 0, consider a partition of the interval [w!/m,w!] into [(m —1)/€] in-
tervals of size % Considering that we solve the constrained allotment problem
with k-optimal algorithm, at the beginning of one of the interval A. Let allot be
the solution found by this algorithm, and allot be the optimal solution. By def-
inition, we now have w3y, < kA and Woyor/m < Wepmn /m. If Wogor/m < A,
then obviously n* < kX. If Wayee/m > A, then Womw /m > X thus 7% > A.
Finally, using a dichotomic search on A, we can find in log, ((m —1)/e+ 1) steps
an interval [n,n + %6] and an allotment function allot (which corresponds to
the allotment function found by the k-optimal algorithm choosing A =7 + “’%f)
such that n < 17* < k(+ ). w3, < 1+ %E, and Wauor/m < k(n + £45),
thus w5, /n* < 14 € and Wayer/m/n* < k(1 + €). Thus, allot is a k(1 + €)-
approximation for the allotment problem.

4.1 Dynamic Programming

In this section, we detail how the constrained allotment problem can be solved
using a dynamic programming algorithm for the case of trees. Let us consider
an in-tree G = (V, E) with n nodes labeled according to any partial order of
the precedences. We denote by prec(i) the set of immediate predecessors of task
i. W(i,t) is computed as the minimum work required for executing the 4 first
tasks with a length of critical path lower than ¢. W (i,t) is set to +oo if it is
not possible to execute the ¢ first tasks with a critical path lower than ¢. The
algorithm is given in figure 4.1. The tasks are sorted in respect to the precedence
constraints.

The solution of this problem is W(n, A). It is computed in time nm\. How-
ever, as A is potentially very large, the result is not fully satisfactory.

4.2 Approximation for the constrained allotment problem

Now, we are looking for a (14 ¢€)-optimal algorithm for the constrained allotment
problem. Let us consider the similar problem after rounding the execution time:



Algorithm 3 Dynamic Programming algorithm for the constrained allotment
problem for trees
W(0,t) = 0 for all t > 0 and +oo otherwise.
for all ¢t € [1, \] do
for all € [1,7n] do
W (i, t) = ming=1..mWiq + Y
end for

W(.]vt - ti,q)

jEprec(i)

end for

fi.q = |tiq/c] and X = X/c where c is a constant greater than 1 that will be
fixed later. Consider that allot is the optimal solution (obtained by the dynamic
programming algorithm) of this rounded problem and allot the optimal solution
of the original problem. It is obvious that W/l\t < Woise - We denote by Paths
the set of all the paths of the graph G. We bound now the length of critical path

of allot by bounding the quantity of work neglected by the rounding.

o ~
w3 = max E t. — . <nc+c max t —  <nct+wS—
allot PcPaths ~ i,allot(i) — PcPaths ~ i allot(z) — allot”
i€ i€

[N

Thus, we get w/ll\t < n c+ A If we choose ¢ = <2, we obtain: w/”\t <
(e}

A(1 +€). Thus such a rounding process leads to a (1 + €)-optimal algorlthm for
the constrained allotment problem whose computation time is in O(2 )

On one hand, considering Proposition 3, we can conclude that for the special
case of trees the allotment problem admits a fully polynomial time approximation
scheme whose running time is in O(log(%)@).

On the other hand, from Proposition 2, if we know how to solve the allotment
problem with a guarantee of k, then we know that it is possible to solve MTS
with a guarantee of 4k. Finally, we deduce that there exists a solution of the
MTS problem with a guarantee 4(1 + ¢).

5 Conclusion

In this paper, we have studied the problem of scheduling malleable tasks in the
presence of precedence constraints. We designed an algorithm with a guarantee

4 (1+¢) in time O (log (m) z m) for trees.

This algorithm could be used for implementing some actual problems whose
computations are organized as trees like Sparse Cholesky Factorization [10]. The
approximation ratio was established for the worst case and we expect a much
better average behaviour. These preliminary theoretical results could open the
way for the designers to obtain good approximation algorithms for arbitrary
precedence graphs of malleable tasks.
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