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We present a method to control transport in Hamiltonian systems. We provide an algorithm -
based on a perturbation of the original Hamiltonian localized in phase space - to design small control
terms that are able to create isolated barriers of transport without modifying other parts of phase
space. We apply this method of localized control to a forced pendulum model and to a system
describing the motion of charged particles in a model of turbulent electric field.

PACS numbers: 05.45.-a

Transport governed by chaotic motion is a main issue
in nonlinear dynamics. In several contexts, transport in
Hamiltonian systems leads to undesirable effects. For
example, chaos in beams of particle accelerators leads to
a weakening of the beam luminosity. Similar problems
are encountered in free electron lasers. In magnetically
confined fusion plasmas, the so called anomalous trans-
port, which has its microscopic origin in a chaotic trans-
port of charged particles, represents a challenge to the
attainment of high performance in fusion devices. One
way to control transport would be that of reducing or
suppressing chaos. There exist numerous attempts to
cope with this problem of controlling chaos [1]. How-
ever, in many situations, it would be desirable to control
the transport properties without significantly altering the
original setup of the system under investigation nor its
overall chaotic structure.

In this article, we address the problem of control of
transport in Hamiltonian systems. We consider the class
of Hamiltonian systems that can be written in the form
H = H0 + ǫV that is an integrable Hamiltonian H0 (with
action-angle variables) plus a perturbation ǫV . For these
Hamiltonians we provide a method to construct a control
term f of order ǫ2 with a finite support in phase space,
such that the controlled Hamiltonian Hc = H0 + ǫV + f
has isolated invariant tori. For Hamiltonian systems with
two degrees of freedom, these invariant tori act as bar-
riers in phase space. For higher dimensional systems,
the barriers of transport can be formed as a localized
collection of invariant tori. The idea is to slightly and
locally modify the perturbation and create isolated bar-
riers of transport without modifying the dynamics inside
and outside the neighborhood of the barrier. Further-
more, we require that, in order to compute the control

term, only the knowledge of the Hamiltonian inside the
designed support region of control is needed.
The main motivations for a localized control are the fol-
lowing : Very often the control is only conceivable in
some specific regions of phase space (where the Hamil-
tonian can be known and/or an implementation is possi-
ble). Or, there are cases for which it is desirable to stabi-
lize only a given region of phase space without modifying
the chaotic regime outside the controlled region. This
can be used to bound the motion of particles without
changing the phase space on both sides of the barrier.

Our algorithm for a localized control contains three
steps : a global control in the framework of Refs. [2, 3],
a selection of the desired invariant tori to be preserved,
and a localization of the control term.
The global control term f of order ǫ2 we construct is
such that the controlled Hamiltonian given by Hc =
H0 + ǫV + f is integrable or close to integrable, i.e. such
that Hc is canonically conjugate to H0 up to some cor-
rection terms.

Let us fix a Hamiltonian H0. We define the linear op-
erator {H0} by {H0}H = {H0, H}, where {· , ·} is the
Poisson bracket. The operator {H0} is not invertible. We
consider a pseudo-inverse of {H0}, denoted by Γ, satis-
fying

{H0}2 Γ = {H0}. (1)

If the operator Γ exists, it is not unique in general. For
a given Γ, we define the resonant operator R as

R = 1 − {H0}Γ, (2)

We notice that Eq. (1) becomes {H0}R = 0. A conse-
quence is that any element RV is constant under the flow
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of H0.
Let us now assume that H0 is integrable with action-

angle variables (A, ϕ) ∈ R
l × T

l where T
l is the l-

dimensional torus. Moreover, we assume that H0 is lin-
ear in the action variables, so that H0 = ω · A, where
the frequency vector ω is any vector of R

l. The operator
{H0} acts on V =

∑

k∈Zl Vk(A)eik·ϕ, as {H0}V (A, ϕ) =
∑

k
iω · k Vk(A)eik·ϕ. A possible choice of Γ is then

ΓV (A, ϕ) =
∑

k∈Zl

ω·k6=0

Vk(A)

iω · k eik·ϕ.

We notice that this choice of Γ commutes with {H0}.
The operator R is the projector on the resonant part

of the perturbation:

RV =
∑

ω·k=0

Vk(A)eik·ϕ. (3)

¿From the operators Γ and R, we construct a con-
trol term for the perturbed Hamiltonian H0 + V , i.e.
we construct f such that the controlled Hamiltonian
Hc = H0 + V + f is canonically conjugate to H0 + RV .
This conjugation is given by the following equation

e{ΓV }(H0 + V + f) = H0 + RV, (4)

where

f =

∞
∑

n=1

(−1)n

(n + 1)!
{ΓV }n(nR + 1)V. (5)

As a consequence, if V is of order ǫ, the largest term in
the expansion of f is of order ǫ2. We notice that H0 and
RV are two conserved quantities for the flow defined by
H0 +RV (even if H0 +RV does depend on the angles in
general). Therefore, for Hamiltonian systems with two
degrees of freedom, H0 + RV as well as the controlled
Hamiltonian Hc are integrable. For higher dimensional
systems, if ω is non-resonant, i.e. ∀ k ∈ Z

l\{0}, ω·k 6= 0,
Hc is also integrable since it is canonically conjugate to
H0 + RV which only depends on the actions.

Therefore the control term given by Eq. (5) is able to
recreate invariant tori, the ones of H0+RV . Truncations
of this control term are also able to recreate invariant
tori [2]. Of course, the closer to integrability the more
invariant tori are created. After the computation of the
control term, the second step is to select a given region
of phase space where the localized control acts. This
region has to contain an invariant torus created by the
previous control and also a small neighborhood of it.
The invariant torus to be created can be selected by
its frequency using Frequency Map Analysis [4]. The
third step is to multiply the control term by a smooth
window around the selected region where the control
has to be applied : The locally controlled Hamiltonian is
Hc = H0 + V + χf, where χ is a characteristic function
of a neighborhood P of the selected invariant torus i.e.

FIG. 1: Poincaré surface of section of Hamiltonian (6) with
ε = 0.034 (enlargement in the inset).

χ(x) = 1 for x ∈ P , χ(x) 6= 0 in a small neighborhood of
P in order to have a smooth function, and χ(x) = 0 oth-
erwise. The phase space of the controlled Hamiltonian
Hc is very similar to the phase space of the uncontrolled
Hamiltonian (since the control term acts only locally)
with the addition of the selected invariant torus.
The justification for the localized control follows from
the KAM theorem : The controlled Hamiltonian can be
written as Hc = H0 +V +f +(χ−1)f . Since H0 +V +f
has the selected invariant torus (by construction), also
the controlled Hamiltonian Hc has this invariant torus
provided that the hypothesis of the KAM theorem are
satisfied, namely that the perturbation (χ − 1)f is
sufficiently small and smooth in the neighborhood of the
invariant torus.

The first application of the localized control is on the
following forced pendulum model [5]

H(p, x, t) =
1

2
p2 + ε [cosx + cos(x − t)] . (6)

for ε = 0.034. We notice that for ε ≥ 0.02759 there are
no longer any invariant rotational (KAM) tori [6].

For the construction of the control term, we choose
H0 = E + ωp and V =

√
ε
[

p2/2 + cosx + cos(x − t)
]

af-
ter a translation of the momentum p by ω, and a rescal-
ing (zoom in phase space) by a quantity

√
ε. The control

term of Hamiltonian (6) becomes

f2(x, t) = −ε2

2

(

cosx

ω
+

cos(x − t)

ω − 1

)2

, (7)

around a region near p ≈ ω. In the numerical imple-
mentation, we use ω = (3 −

√
5)/2. We notice that the

perturbation has a norm (defined as the maximum of its
amplitude) of 6.8 × 10−2 whereas the control term has
a norm of 2.7 × 10−3 for ε = 0.034. The control term
is small (about 4%) compared to the perturbation. We
notice that it is still possible to reduce the amplitude of
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FIG. 2: Poincaré surface of section of Hamiltonian (6) with
the approximate control term (8) with ε = 0.034 (enlargement
in the inset) using the same initial conditions and same time
of integration as in Fig. 1.

the control (by a factor larger than 2) and still get an
invariant torus of the desired frequency.

The phase space of Hamiltonian (6) with the approx-
imate control term (7) for ε = 0.034 shows that a lot of
invariant tori are created with the addition of the control
term [7]. Using the renormalization-group transforma-
tion [6], we have checked the existence of the invariant
torus with frequency ω for the Hamiltonian H + f2 with
ε ≤ 0.06965.
The next step is to localize f2 given by Eq. (7) around
a chosen invariant torus created by f2 : We assume that
the controlled Hamiltonian H +f2 has an invariant torus
with the frequency ω. We locate this invariant torus us-
ing Frequency Map Analysis [4]. Once the invariant torus
has been located, we construct an approximation of the
invariant torus for the Hamiltonian H + f2 of the form
p = p0(x, t). Then we consider the following localized
control term :

f
(L)
2 = f2(p, x, t)χ(p − p0(x, t)), (8)

where χ is a smooth function with finite support around
zero. More precisely, we have chosen χ(p) = 1 for
|p| ≤ α, χ(p) = 0 for |p| ≥ β and a polynomial for
|p| ∈ [α, β] for which χ is a C3 even function. The
function p0 and the parameters α, β are determined
numerically (α = 5 × 10−3 and β = 1.5α). The measure
of the support of χ is about 1% of the measure of the
support of the global control. The phase space of the
controlled Hamiltonian appears to be very similar to
the one of the uncontrolled Hamiltonian (see Fig. 2).
We notice that there is in addition an isolated invariant
torus which is the one where the control term has been
localized, i.e. its frequency is equal to (3 −

√
5)/2.

The second example comes from plasma physics. It
aims at modeling chaotic E×B drift motion. In the guid-

ing center approximation, the equations of motion of a
charged particle in presence of a strong toroidal magnetic
field and of a nonstationary electric field are :

d

dt

(

x

y

)

=
c

B2
E(x, y, t) × B =

c

B

(−∂yV (x, y, t)

∂xV (x, y, t)

)

,

where V is the electric potential, E = −∇V , and B =
Bez. The spatial coordinates x and y where (x, y) ∈ R

2

play the role of the canonically conjugate variables and
the electric potential V (x, y, t) is the Hamiltonian of the
problem. A model that reproduces the experimentally
observed spectrum [8] has been proposed in Ref. [9]. We
consider the following explicit form of the electric poten-
tial

V (x, y, t) =
ε

2π

N
∑

m,n=1

n2+m2≤N2

1

(n2 + m2)3/2
×

sin [2π(nx + my − t) + ϕnm] , (9)

where the phases ϕnm are chosen at random in order to
model a turbulent electric potential. The control term
has been computed in Ref. [2] from H0 = E [i.e. a local-
ized control using ω = (1, 0)] where E is the conjugate
action to the angle t mod 2π :

f2(x, y) =
ε2

8π

∑

n1,m1
n2,m2

n1m2 − n2m1

(n2
1 + m2

1)
3/2(n2

2 + m2
2)

3/2

× sin
[

2π
[

(n1 − n2)x + (m1 − m2)y
]

+ ϕn1m1
− ϕn2m2

]

.

(10)

In Ref. [2], we showed that this global control term is able
to strongly reduce the chaotic diffusion of test particles
provided that ε ≤ 1, i.e. the trajectories of the controlled
Hamiltonian V +f2 diffuse much less than the ones of the
Hamiltonian V .
We now localize the control term in a particular region
of the phase space. We choose this region to be a circu-
lar annulus of radius r0 around a center (x0, y0) in order
to determine an area of confinement where the control
can be applied on the circular border of an experimen-
tal apparatus. We consider the distance from a point
(x, y) to the border of the apparatus (circle of radius r0)

: d(x, y) =| r0 −
√

(x − x0)2 + (y − y0)2 |. The localized
control term is given by

f
(L)
2 (x, y) = f2(x, y)χ(d(x, y)), (11)

where χ(d) = 1 if d < α, χ(d) = 0 if d > β and χ equals
to a polynomial of degree three for d ∈ [α, β] in order
to ensure the derivability of the controlled Hamiltonian.
This means that there is a region (the gray circular an-
nulus in Fig. 3) where the full control term is applied
and two border regions (in black) where the control term
decreases to zero. In Fig. 3, we show some trajectories
of particles in the cases without control term, with the
full control term and with the localized control term for
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FIG. 3: Poincaré sections of (a) Hamiltonian (9), (b) with
localized control term (11) and (c) with a full control term
(10) for ε = 0.7 using the same initial conditions and same
time of integration. An enlargement of (b) is shown in (d).
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FIG. 4: Number of particles Nin that remain inside the annu-
lus during a time t = 30000 by the total number Ntot of parti-
cles versus the amplitude ε of the electric potential (9) without
control (open squares), with control term (10) (open circles),
and with the localized control term (11) (up-triangles).

Hamiltonian (9) with ε = 0.7. Whereas in the case with-
out the control term a lot of particles exit the apparatus
(the region Ω delimited by the circular annulus) and in
the case with the full control term the trajectories are
very well confined. The localized control acts only on
the border without modifying the chaotic motion inside
and outside the region Ω but catching the particles when
they arrive close to the border. A measure of this effect is
provided by the ratio of the number Nin of particles that
remain inside the barrier after a given interval of time,
divided by the total number Ntot of particles. In Fig. 4
the values of the ratio Nin/Ntot are plotted versus the
amplitude ε of the electric potential (9). It is shown that
also this localized control is able to significantly reduce
the escape of particles outside the barrier, although it is
less efficient than a full control which acts globally on
the system. We notice that the reduction of transport is
not achieved by the creation of a KAM torus as it is the
case for the forced pendulum but by creating a selected
region of phase space where the system behaves much
more regularly.

A measure of the relative size of the control terms
is given by the electric energies, denoted by E , e2 and

e
(L)
2 associated with the electric potentials V , f2 and

f
(L)
2 , respectively. We define an electric energy E =
〈 | E |2 〉 · |Ω|/8π where E(x, y, t) = −∇V and |Ω| is
the area where the control acts. For the potential (9)
with N = 25 and for a circular annulus of thickness
0.7, the relative amplitudes are: e

(L)
2 /E ≈ 0.03 × ε2 and

e
(L)
2 /e2 ≈ 0.28. For instance, by choosing ε = 0.7, e

(L)
2

is 1% of E . This comparison shows that the localized
control of transport is energetically more efficient than a
global control of chaos.

In summary, we have provided a method of control of
transport in Hamiltonian systems by designing a small
control term, localized in phase space, that is able to cre-
ate barriers of transport in situations of chaotic regime.
Furthermore we remark that in view of practical appli-
cations, one main feature of our method of localized con-
trol is that only the partial knowledge of the potential on
the designed support region is necessary. Our approach
opens the possibility of controlling the transport prop-
erties of a physical system without altering the chaotic
structure of its phase space.
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