
HAL Id: hal-00001520
https://hal.science/hal-00001520v3

Submitted on 20 Jan 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bi-criteria Algorithm for Scheduling Jobs on Cluster
Platforms

Pierre-Francois Dutot, Lionel Eyraud-Dubois, Grégory Mounié, Denis
Trystram

To cite this version:
Pierre-Francois Dutot, Lionel Eyraud-Dubois, Grégory Mounié, Denis Trystram. Bi-criteria Algorithm
for Scheduling Jobs on Cluster Platforms. ACM Symposium on Parallel Algorithms and Architectures
(SPAA), 2004, France. pp.125-132. �hal-00001520v3�

https://hal.science/hal-00001520v3
https://hal.archives-ouvertes.fr

cc
sd

-0
00

01
52

0,
 v

er
si

on
 3

 -
 2

0
Ja

n
20

05

Bi-criteria Algorithm for Scheduling Jobs on Cluster
Platforms ∗

Pierre-François Dutot
ID-IMAG

51 avenue Jean Kuntzmann
38330 Montbonnot Saint-Martin, France

pfdutot@imag.fr

Lionel Eyraud
ID-IMAG

51 avenue Jean Kuntzmann
38330 Montbonnot Saint-Martin, France

Lionel.Eyraud@imag.fr

Grégory Mounié
ID-IMAG

51 avenue Jean Kuntzmann
38330 Montbonnot Saint-Martin, France

Gregory.Mounie@imag.fr

Denis Trystram
ID-IMAG

51 avenue Jean Kuntzmann
38330 Montbonnot Saint-Martin, France

Denis.Trystram@imag.fr

ABSTRACT
We describe in this paper a new method for building an
efficient algorithm for scheduling jobs in a cluster. Jobs are
considered as parallel tasks (PT) which can be scheduled on
any number of processors. The main feature is to consider
two criteria that are optimized together. These criteria are
the makespan and the weighted minimal average completion
time (minsum). They are chosen for their complementarity,
to be able to represent both user-oriented objectives and
system administrator objectives.

We propose an algorithm based on a batch policy with
increasing batch sizes, with a smart selection of jobs in each
batch. This algorithm is assessed by intensive simulation
results, compared to a new lower bound (obtained by a re-
laxation of ILP) of the optimal schedules for both criteria
separately. It is currently implemented in an actual real-size
cluster platform.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling ; D.4.1 [Operating Systems]: Process man-
agement—Scheduling, Concurrency

General Terms
Algorithms, Management

∗Authors are members of the APACHE project supported
by CNRS, INPG, INRIA, UJF

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04, June 27–30, 2004, Barcelona, Spain.
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

Keywords
Parallel Computing, Algorithms, Scheduling, Parallel Tasks,
Moldable Tasks, Bi-criteria

1. INTRODUCTION

1.1 Cluster computing
The last few years have been characterized by huge tech-

nological changes in the area of parallel and distributed
computing. Today, powerful machines are available at low
price everywhere in the world. The main visible line of such
changes is the large spreading of clusters which consist in a
collection of tens or hundreds of standard almost identical
processors connected together by a high speed interconnec-
tion network [6]. The next natural step is the extension to
local sets of clusters or to geographically distant grids [10].

In the last issue of the Top500 ranking (from November
2003 [1]), 52 networks of workstations (NOW) of different
kinds were listed and 123 entries are clusters sold either by
IBM, HP or Dell. Looking at previous rankings we can see
that this number (within the Top500) approximately dou-
bled each year.

This democratization of clusters calls for new practical
administration tools. Even if more and more applications
are running on such systems, there is no consensus towards
an universal way of managing efficiently the computing re-
sources. Current available scheduling algorithms were mainly
created to provide schedules with performance guaranties for
the makespan criterion (maximum execution time of the last
job), however most of them are pseudo-polynomial, therefore
the time needed to run these algorithms on real instances
and the difficulty of their implementation is a drawback for
a more popular use.

We present in this paper a new method for scheduling
the jobs submitted to a cluster inspired by several exist-
ing theoretically well-founded algorithms. This method has
been assessed on simulations and it is currently tested on
actual conditions of use on a large cluster composed by 104
bi-processor machines from Compaq (this cluster – called
Icluster2 – was ranked 151 in the Top500 in June 2003).

To achieve reasonable performance within reasonable time,
we decided to build a fast algorithm which has the best fea-
tures of existing ones. However, to speed up the algorithm
a guaranteed performance ratio cannot be achieved, thus we
concentrate on the average ratio on a large set of generated
test instances. These instances are representative of jobs
submitted on the Icluster [18].

1.2 Related approaches
Some scheduling algorithms have been developed for clas-

sical parallel and distributed systems of the last genera-
tions. Clusters introduce new characteristics that are not
really taken into account into existing scheduling modules,
namely, unbalance between communications and computa-
tions – communications are relatively large – or on-line sub-
missions of jobs.

Let us present briefly some schedulers used in actual sys-
tems: the basic idea in job schedulers [13] is to queue jobs
and to schedule them one after the other using some simple
rules like FCFS (First Come First Served) with priorities.
MAUI scheduler [14] extends the model with additional fea-
tures like fairness and backfilling.

AppleS is an application level scheduler system for grid. It
is used to schedule, for example, an application composed of
a large set of independent jobs with shared data input files
[4]. It selects resources efficiently and takes into account
data distribution time. It is designed for grid environment.

There exist other parallel environments with a more gen-
eral spectrum (heterogeneous and versatile execution plat-
form) like Condor [16] or with special capabilities like pro-
cessus migration, requiring system-level implementation like
Mosix [3]. However, in these environments scheduling algo-
rithms are online algorithms with simple rules.

1.3 Our approach
As no fast and flexible scheduling systems are available

today for clusters, we started two years ago to develop a
new system based on a sound theoretical background and
a significant practical experience of managing a big cluster
(Icluster1, a 225 PC machine arrived in 2001 in our lab). It
is based on the model of parallel tasks [9] which are inde-
pendent jobs submitted by the users.

We are interested here in optimizing simultaneously two
criteria, namely the minsum (ΣCi) which is usually targeted
by the users who all want to finish their jobs as soon as pos-
sible, and the makespan (Cmax) which is rather a system ad-
ministrator objective representing the total occupation time
of the platform.

There exist algorithms for each criterion separately; we
propose here a bi-criteria algorithm to optimize the Cmax

and ΣCi criteria simultaneously. The best existing algo-
rithm for minimizing the makespan off-line (all jobs are
available at the beginning) has a 3/2 + ǫ guaranty [7]. We
can derive easily an on-line batch version by using the gen-
eral framework of [21] leading to an approximation ratio of
3 + ǫ. For the other criterion, the best result is 8 for the
unweighted case and 8.53 for the weighted case [19]. Us-
ing a nice generic framework introduced by Hall et al.[12], a
(12;12) approximation can be obtained at the cost of a big
complexity which impedes the use of such algorithms.

The paper is organized as follows: In the next section,
we will introduce the definitions and models used in all the
paper. The algorithm itself is described in section 3, along

with the lower bound which is used in the experiments. The
experimental setting and the results are discussed in section
4. Finally we will conclude in section 5 with a discussion on
on-going works.

2. CONTEXT AND DEFINITION

2.1 Architectural and Computing Models
The target execution support that we consider here is a

cluster composed by a collection of a medium number of
SMP or simple PC machines (typically several dozens or
several hundreds of nodes). The nodes are fully connected
and homogeneous.

Primergy

PrimergyPrimergy

Primergy

Primergy

Primergy

Primergy

Front−end

Job queue

Figure 1: Job submission in clusters.

The submissions of jobs is done by some specific nodes by
the way of several priority queues as depicted in Figure 1.
No other submission is allowed.

Informally, a Parallel Task (PT) is a task that gathers
elementary operations, typically a numerical routine or a
nested loop, which contains itself enough parallelism to be
executed by more than one processor. We studied scheduling
of one specific kind of PT, denoted as moldable jobs accord-
ing to the classification of Feitelson et al. [8]. The number of
processors to execute a moldable job is not fixed but deter-
mined before the execution, as opposed to rigid jobs where
the number of processors is fixed by the user at submission
time. In any case, the number of processors does not change
until the completion of the job.

For historical reasons, most of submitted jobs are rigid.
However, intrinsically, most parallel applications are mold-
able. An application developer does not know in advance the
exact number of processors which will be used at run time.
Moreover, this number may vary with the input problem size
or number of available nodes. This is also true for many nu-
merical parallel libraries. The main exception to this rule is
when a minimum number of processors is required because
of time, memory or storage constraints.

The main restriction in a systematic use of the moldable
character is the need for a practical and reliable way to esti-
mate (at least roughly) the parallel execution time as func-
tion of the number of processors. Most of the time, the user
has this knowledge but does not provide it to the scheduler,
as it is not taken into account by rigid jobs schedulers. This
is an inertia factor against the more systematic use of such
models, as the users habits have to be changed.

Our algorithm proposes, thanks to moldability, to effi-
ciently decrease average response time (at the users request)
while keeping computing overhead and idle time as low as
possible (at the system administrators request).

2.2 Scheduling on clusters
The main objective function used historically is the makespan.

This function measures the ending time of the schedule, i.e.,
the latest completion time over all the tasks. However, this
criterion is valid only if we consider the tasks altogether and
from the viewpoint of a single user. If the tasks have been
submitted by several users, other criteria can be considered.
Let us present briefly the two criteria:

• Minimization of the makespan (Cmax = max(Cj) where
the completion time Cj is equal to σ(j)+pj(nbproc(j))).
pj represents the execution time of task j, σ function
is the starting time and nbproc function is the proces-
sor number (it can be a vector in the case of specific
allocations for heterogeneous processors).

• Minimization of the average completion time (ΣCi)
[20, 2] and its variant weighted completion time (ΣωiCi).
Such a weight may allow us to distinguish some tasks
from each other (priority for the smallest ones, etc.).

In a production cluster context, the jobs are submitted
at any time. Models were the characteristics of the tasks
(duration, release date, etc) are only known when the task
is submitted are called on-line as opposed to the off-line
models were all the tasks are known and available at all
times. It is possible to schedule jobs on-line with a constant
competitive ratio for Cmax. The idea is to schedule jobs by
batches depending on their arrival time. An arriving job
is scheduled in the next starting batch. This simple rule
allows constant competitive ratio in the on-line case if a
single batch may be scheduled with a constant competitive
ratio ρ.

Roughly, the last batch starts after the last task arrival
date. By definition, all the tasks scheduled in a batch are
scheduled in less than ρC∗

max, where C∗
max is the optimal off-

line makespan of the complete instance. The length of the
previous last batch is then lower than ρC∗

max. Moreover,
the length of the last batch, plus the starting time of the
previous last batch (at which none of the tasks of the last
batch were released) is less than ρ times the length of the
optimal on-line makespan.

As the on-line makespan is larger than the off-line makespan,
the total schedule length is less than 2ρ times the on-line op-
timal makespan. This is how the off-line 3/2 + ǫ algorithm
is turned into an on-line 3 + ǫ algorithm as we said in the
introduction.

3. A NEW BICRITERIA EFFICIENT SO-
LUTION

3.1 Rationale
Studying some extreme instances and their optimal sched-

ules for the minsum criterion, gave us an insight on the shape
of the schedules we had to build. For example, if all the tasks
are perfectly moldable (when the work does not depend on
the number of processors) the optimal solution is to sched-
ule all the tasks on all processors in order of increasing area.

This example shows that the minsum criterion tends to give
more importance to the smaller tasks.

Previous algorithms presented in the literature are also de-
signed to take into account this global structure of schedul-
ing the smaller tasks first. Shmoys et al. [12] used a batch
scheduling with batches of increasing sizes. The batch length
is doubled at each step, therefore only the smaller tasks are
scheduled in the first batches.

Existing makespan algorithms for moldable tasks are also
designed with a common structure of shelves (were all tasks
start at the same time) which is a relaxed version of batches.
See for example [17] or [7] for schedules with 2 shelves.

Our algorithm was built with this structure in mind: stack-
ing tasks in shelves of increasing sizes with the additional
possibility of shuffling these shelves if necessary. However,
our main motivation was to design a fast algorithm for the
management of some clusters of a big regional grid in Greno-
ble. Our algorithm does not have a known performance
guaranty on the worst cases, however we tested its behavior
on a set of generated instances which simulate real jobs sub-
mitted on our local clusters. The principle of the algorithm
is shown in Figure 2.

t0 t3 t4t1 t2 tK tK+1

Figure 2: Principle of the algorithm.

3.2 Algorithm
More formally, we detail below the algorithm starting with

the input describing the instances:

• n tasks available at time 0

• pi(k) the processing time of task i on k processors

• wi is its weight

• m the number of processors

Compute the approximate C∗
max with the dual approx-

imation algorithm.
tmin = mini,j{pi(j)}

K = ⌊log2

(

C∗

max

tmin

)

⌋

for j = 0..K + 1 do

tj =
C∗

max

2K−j

end for

T = {1..n}
for j = 0..K do

S = {i ∈ T such that ∃j, pi(j) ≤ tj}
Merge the small sequential tasks sorted by decreasing
weight.
Select the set Sj ⊆ S of tasks to schedule in the cur-
rent batch (using a knapsack).
Schedule the batch between tj and tj+1.
Remove Sj from T .

end for

Compact the schedule with a list algorithm using the
batch ordering.

First, our algorithm calls a dual approximation makespan
algorithm (defined in [7]) to determine an approximation
of the optimal makespan of the instance. With this value
C∗

max and the smallest possible duration of a task tmin, we
compute the smallest useful batch size t0 (such that at least
one task can be done) and K + 1 the number of batches.
The values tj are the length of our batches. For every j,
tj+1 is twice the value of tj .

The main loop of the algorithm corresponds to the selec-
tion of the jobs to be scheduled in the current batch. We
first select the tasks which are not too long to run in the
batch. If there are several tasks that can be run in less than
half the batch size on one processor, we can merge some of
these tasks by stacking them together. In order to have as
much weight as possible, this merge is done by decreasing
weight order.

The next step is to run a knapsack selection, written with
integer dynamic programming. We want to maximize the
sum of the weight of the selected tasks while using at most m
processors. The allocation of the task i is alloti, the smallest
allocation that fits (in length) into the batch. Values of
W (i, j) are initialized to −∞ for j < 0 and 0 otherwise. For
i going from 1 to n and for j going from 1 to m, we compute:

W (i, j) = max (W (i − 1, j), W (i − 1, j − alloti) + wi)

The largest W (n, ·) is the maximum weight that can be done
in the batch. The complexity of this knapsack is O(mn).

The first schedule is simple: we start all the selected tasks
of one batch at the same time. A straightforward improve-
ment is to start a task at an earlier time if all the processors
it uses are idle. A further improvement is to use a list algo-
rithm with the batch ordering and a local ordering within
the batches, as it allows to change the set of processors al-
loted to the tasks.

Finally, an additional optimization step is used. The
batch order is shuffled several times and the best resulting
compact schedule is kept. This only leads to small improve-
ments.

The overall complexity of this algorithm is O(mnK).

3.3 Lower Bound
In order to assess this algorithm with experiments, for

each instance we need to know the value of an optimal solu-
tion. But since the problem is NP-Hard in the strong sense,
computing an optimal solution in reasonable time is impos-
sible. We are thus looking for good lower bounds.

For Cmax a good lower bound may easily be obtained by
dual approximation [7]. For ΣCi the lower bound is com-
puted by a relaxation of a Linear Programming formulation
of the problem. This formulation is not intended to yield a
feasible schedule, but rather to express constraints that are
necessarily respected by every feasible schedule. For this
formulation, we divided the time horizon into several inter-
vals Ij = (tj , tj+1] with 0 ≤ j ≤ K. The values of the tj and
the value of K are defined as in the previous section.

Once the time division is fixed, we consider the decision
variables xi,j = 1 if and only if task i ends within Ij (i.e.
between tj and tj+1), and xi,j = 0 otherwise.

For each task i and each interval j, we can also compute
the minimal area occupied by task i if it ends before tj+1:

Si,j = min
1≤k≤m

{kpi(k) such that pi(k) ≤ tj+1}

If the set is empty, let Si,j = +∞.

With these values, we can give the formulation of the
problem:

Minimize
∑

i,j
witjxi,j

Subject to ∀i,
∑

j
xi,j ≥ 1

∀j,
∑

0≤l≤j

∑

i
Si,lxi,l ≤ mtj+1

∀i, ∀j, xi,j ∈ {0, 1}

The first constraint expresses that every task should be
performed at least once. The minimization criterion implies
that no task will be performed more than once: if xi,j and
xi,j′ are equal to one, we get a better, yet still feasible solu-
tion by setting one of them to zero.

The second constraint is a surface argument. For each
interval Ij , we consider the tasks that end before or in this
interval (they end in Il, for l ≤ j). By definition, a task
i ending in interval l takes up a surface at least Si,l. The
sum of all these surfaces has to be smaller than the total
surface between time 0 and time tj+1, which is mtj+1. This
is obviously optimistic, because it does not take into ac-
count collisions between tasks: scheduling according to this
formulation might require more than m processors.

Both of these constraints are satisfied by every feasible
schedules, so for every feasible schedule S, there is a solution
R to this linear program. Since for each job i,

∑

j tjxi,j ≤
Ci, the objective function of R is not larger than the min-
sum criterion of the schedule S. In particular, every optimal
schedule yields a solution to the linear program, so the op-
timal value of the objective function is always smaller than
the optimal value of the minsum criterion of the schedul-
ing problem. This still holds when considering the relaxed
problem, where xi,j is in [0; 1]. The lower bound might be
weaker, but is much faster to compute.

4. EXPERIMENTS

4.1 Experimental setting
The experimental simulations presented here were per-

formed with an ad-hoc program. Each experience is ob-
tained by 40 runs; for each run tasks are generated in an
off-line manner, then given as an input to the scheduling
algorithm and to the linear solver which computes a lower
bound for this instance. Comparison between the two re-
sults yields a performance ratio, and the average ratio for
the whole set of runs is the result of the experiments.

The runs were made assuming a cluster of 200 processors,
and a number of tasks varying from 25 to 400. In order
to describe a mono-processor task, only its computing time
is needed. A moldable task is described by a vector of m
processing times (one per number of processor alloted to the
task). We used two different models to generate the tasks.
The first one generates the sequential processing times of
the tasks, and the second one uses a parallelism model to
derive all the other values.

Two different sequential workload type were used: uni-
form and mixed cases. For all uniform cases, sequential
times were generated according to an uniform distribution,
varying from 1 to 10. For mixed cases, we introduce two
classes : small and large tasks. The random values are
taken with gaussian distributions centered respectively on
1 and 10, with respective standard deviations of 0.5 and 5,
the ratio of small tasks being 70%.

Modeling the parallelism of the jobs was done in two dif-
ferent ways. In the first, successive processing times were
computed with the formula pi(j) = pi(j − 1)X+j

1+j
, where X

is a random variable between 0 and 1. Depending on the
distribution of X, tasks generated are highly parallel (with
a quasi-linear speedup) or weakly parallel (with a speedup
close to 1). Respectively highly and weakly parallel are gen-
erated using gaussian distribution centered on 0.9, and 0.1,
and with a standard deviation of 0.2. Any random value
smaller than 0 and larger than 1 are ignored and recom-
puted. According to the usual parallel program behavior,
this method generates monotonic tasks, which have decreas-
ing execution times and increasing work with k. For the
mixed cases, the small tasks are weakly parallel and the
large tasks are highly parallel.

The second way of modeling parallelism was done accord-
ing to a model from Cirne and Berman [5], which relies on a
survey about the behavior of the users in a computing cen-
ter. Only the uniform(1, 10) sequential time model is used
for theses tasks.

To evaluate our algorithm, we use the lower bound (cf sec-
tion 3.3) as reference. Some simple ”standard” algorithms
are used to compare the behavior and efficiency of our ap-
proach.

Gang : Each task is scheduled on all processors. The tasks
are sorted using the ratio of the weight over the exe-
cution time. This algorithm is optimal for instances
with linear speedup.

Sequential : Each tasks is scheduled on a single processor.
A list algorithm is used, scheduling large processing
time first (LPTF).

List Graham: All the 3 algorithms are multiprocessor list
scheduling [11]. Every tasks is alloted using the num-
ber of processor selected by [7]. This should lead to
a very good average performance ratio with respect
to the Cmax criterion. Only the order of the list is
changing between the three algorithms :

• the first one keep the order of [7], listing first task
of the large shelf then the tasks of small shelf then
the small tasks,

• weighted largest processing time first (LPTF), a
classical variant, with a very god behavior for
Cmax criterion, but the tasks are in fact sorted
using the ratio between weighted and their exe-
cution time.

• smallest area first (SAF), almost the opposite of
LPTF, the tasks are sorted according to their area
(number of processors × execution time). The
goal is to improve the average performance ratio
for the

∑

wiCi criterion.

In all experiments, task priority is a random value taken
from an uniform distribution between 1 and 10.

4.2 Simulation results
The results of the simulation runs are given in all the

following figures, plotting the minimum, maximum and av-
erage values for Cmax and

∑

wiCi. The average of the com-
petitive ratio is computed by dividing the sum of the execu-
tion times over the sum of the lower bounds for every point

[15]. Every workload type are represented separately. The
same scale is represented for identical criterion between the
workload type.

The tasks of Figure 3 are weakly parallel. This is the
worst case for our algorithm as it spends resources to accel-
erate completion of small and high priority parallel tasks.
These resources are thus spend without much gain. Note
that Gang scheduling does not appear in the presented range
for Cmax, as Gang always has a very big ratio in this case.

As expected, the average performance ratio for our algo-
rithm is worse than all other algorithms except Gang. Nev-
ertheless, the performance ratio for Cmax is no more than
2. All other algorithms have an average performance ratio
around 1.5. The difference is large enough to influence also
the results for the minsum criterion. From this case we may
deduce that for most cases, our algorithms will not be much
worse than a performance ratio of 2 for both criterion.

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450

W
iC

i r
at

io

Number of tasks

Weakly Parallel

DEMT

Gang

Sequential

List Scheduling

SAF

LPTF

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300 350 400 450

C
m

ax
 r

at
io

Number of tasks

Weakly Parallel

DEMT

Gang

Sequential

List Scheduling

SAF

LPTF

Figure 3: Performance ratio for the simulation on

200 processors, weakly parallel tasks

Figure 4 presents the same experiments with the highly
parallel tasks. On the minsum criterion, our algorithm is
clearly the best one. Gang and sequential have opposite
behavior on both criteria, Gang being good with a small
number of tasks and sequential good for a large number of
tasks only. The other algorithms are stable (with respect to

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450

W
iC

i r
at

io

Number of tasks

Higly Parallel

DEMT

Gang

Sequential

List Scheduling

SAF

LPTF

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300 350 400 450

C
m

ax
 r

at
io

Number of tasks

Higly Parallel

DEMT

Gang

Sequential

List Scheduling

SAF

LPTF

Figure 4: Performance ratio for the simulation on

200 processors, highly parallel tasks

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450

W
iC

i r
at

io

Number of tasks

Mixed

DEMT

Gang

Sequential

List Scheduling

SAF

LPTF

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300 350 400 450

C
m

ax
 r

at
io

Number of tasks

Mixed

DEMT

Gang

Sequential

List Scheduling

SAF

LPTF

Figure 5: Performance ratio for the simulation on

200 processors, mixed model parallel tasks

the number of tasks) but with a larger ratio on the minsum.
Remark that the allotment computed for list algorithms is
quite good, as Cmax performance ratio of these algorithms
is always smaller than 2.

The next experiment (cf Figure 5) presents mixed in-
stances with some large tasks and plenty of small tasks. In
this cases our algorithm is still quite stable with a perfor-
mance ratio of around 2 for both criterion, however SAF is
better than our algorithm. The ratio of the two other list
algorithms greatly increase with the number of tasks, which
points out that the order of tasks is very important here.

Finally, the last experiment use a well known workload
generator which emulates real applications [5]. In this more
realistic setting our algorithm clearly outperforms the other
ones for the minsum criterion, and is also the only one to
keep a stable ratio for any number of tasks.

Several observations can be made from these results. First,
the performance ratio for the minsum criterion is never more
than 2.5, and is on average around 2. The performance ratio
for the makespan is almost always below 2, and is 1.9 on av-
erage. This is very good, even for each criterion separately.

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450

W
iC

i r
at

io

Number of tasks

Cirne

DEMT

Gang

Sequential

List Scheduling

SAF

LPTF

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300 350 400 450

C
m

ax
 r

at
io

Number of tasks

Cirne

DEMT

Gang

Sequential

List Scheduling

SAF

LPTF

Figure 6: Performance ratio for the simulation on

200 processors, cirne model parallel tasks

The second observation is that our algorithm performs
better when tasks are more parallel. This can be understood

if we remark that, for a weakly parallel task, there is only
one or two intervals in which it can be scheduled without
degrading its performance. So the scheduling algorithm is
more constrained when the tasks are not parallel.

The SAF algorithm perform quite well on simple cases. It
appears on complex cases that our approach is required to
keep a good performance on the minsum criterion. Thus our
algorithms should be preferred in actual applications as its
performance ratio for minsum is insensitive to jobs behavior
and its performance ratio for the makespan is not far from
alternatives.

Finally, Figure 7 shows that the execution time of our
scheduling algorithm is low (less than 2 seconds for the
largest instances), as expected.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350 400 450

T
im

e
(s

)

Number of tasks

Weakly Parallel
Cirne

Highly Parallel

Figure 7: Execution time of the algorithm.

5. CONCLUDING REMARKS
In this paper we presented a new algorithm for scheduling

a set of independent jobs on a cluster. The main feature
is to optimize two criteria simultaneously. The experiments
show that in average the performance ratio is very good, and
the algorithm is fast enough for practical use. The algorithm
has been assessed by comparing the minsum performance to
a new lower bound based on the relaxation of an ILP, and
comparing the makespan performance to the best known
approximation. Actual results are not available at the mo-
ment, but we are currently implementing this algorithm on
a full-scale platform (Icluster2).

Several technical problems still have to be solved for an
even more efficient practical solution, namely the reserva-
tion of nodes which reduces the size of the cluster and the
mix of different types of jobs (moldable jobs, rigid jobs, and
divisible load jobs).

6. REFERENCES
[1] The top500 organization website.

http://www.top500.org.

[2] F. Afrati, E. Bampis, A. V. Fishkin, K. Jansen, and
C. Kenyon. Scheduling to minimize the average
completion time of dedicated tasks. Lecture Notes in
Computer Science, vol. 1974, 2000.

[3] A. Barak and O. La’adan. The MOSIX multicomputer
operating system for high performance cluster
computing. Future Generation Computer Systems,
13(4–5):361–372, Mar. 1998.

[4] H. Casanova, G. Obertelli, F. Berman, and R. Wolski.
The AppLeS parameter sweep template: User-level
middleware for the grid. In Proceedings of
SuperComputing’2000, Nov 2000.

[5] W. Cirne and F. Berman. A model for moldable
supercomputer jobs. In 15th Intl. Parallel &
Distributed Processing Symp., 2001.

[6] D. E. Culler, J. P. Singh, and A. Gupta. Parallel
Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann Publishers, inc., San
Francisco, CA, 1999.

[7] P.-F. Dutot, G. Mounié, and D. Trystram. Handbook
of Scheduling, chapter Scheduling Parallel Tasks -
Approximation Algorithms. CRC Press, 2004. chapter
28 of this book.

[8] D. G. Feitelson. Scheduling parallel jobs on clusters.
In R. Buyya, editor, High Performance Cluster
Computing, volume 1, Architectures and Systems,
pages 519–533. Prentice Hall PTR, Upper Saddle
River, NJ, 1999. Chap. 21.

[9] D. G. Feitelson and L. Rudolph. Parallel job
scheduling: Issues and approaches. Lecture Notes in
Computer Science, 0(949):1–18, 1995.

[10] I. Foster and C. Kesselman. The grid: blueprint for a
new computing infrastructure. Morgan Kaufmann
Publishers Inc., 1999.

[11] M. R. Garey and R. L. Graham. Bounds on
multiprocessor scheduling with resource constraints.
SIAM Journal on Computing, 4:187–200, 1975.

[12] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein.
Scheduling to minimize average completion time:
Off-line and on-line approximation algorithms.
Mathematics of Operations Research, 22:513–544,
1997.

[13] R. L. Henderson. Job scheduling under the portable
batch system. In D. G. Feitelson and L. Rudolph,
editors, Job Scheduling Strategies for Parallel
Processing, volume 949 of LNCS, pages 279–294, 1995.

[14] D. Jackson, Q. Snell, and M. J. Clement. Core
algorithms of the maui schedule. In D. G. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for
Parallel Processing, volume 2221 of LNCS, pages
87–102, 2001.

[15] R. Jain. The art of computer systems performance
analysis. John Wiley, New York, 1991.

[16] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor :
A hunter of idle workstations. In 8th International
Conference on Distributed Computing Systems
(ICDCS ’88), pages 104–111, Washington, D.C., USA,
June 1988. IEEE Computer Society Press.

[17] G. Mounié, C. Rapine, and D. Trystram. Efficient
approximation algorithms for scheduling malleable
tasks. In Eleventh ACM Symposium on Parallel
Algorithms and Architectures (SPAA’99), pages 23–32.
ACM, juin 1999.

[18] E. Romagnoli, Y. Denneulin, and D. Trystram. A
synthetic workload generator for cluster computing. In
3rd International Workshop on Performance
Modeling, Evaluation, and Optimization of Parallel
and Distributed Systems (PMEO-PDS’2004) in
conjunction with IPDPS’04, Santa Fe, New Mexico,
2004.

[19] U. Schwiegelshohn, W. Ludwig, J. Wolf, J. Turek, and
P. Yu. Smart SMART bounds for weighted response
time scheduling. SIAM Journal on Computing, 28,
1998.

[20] H. Shachnai and J. Turek. Multiresource malleable
task scheduling to minimize response time.
Information Processing Letters, 70:47–52, 1999.

[21] D. Shmoys, J. Wein, and D. Williamson. Scheduling
parallel machine on-line. SIAM Journal on
Computing, 24(6):1313–1331, 1995.

