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Near-best univariate spline discrete quasi-interpolants

ccsd-00001513, version 1 - 3 May 2004

on non-uniform partitions

D. Barrera, M.J. Ibanez, P. Sablonniere, D. Sbhibih

Abstract. Univariate spline discrete quasi-interpolants (abbr. dQIs)
are approximation operators using B-spline expansions with coeffi-
cients which are linear combinations of discrete values of the function
to be approximated. When working with nonuniform partitions, the
main challenge is to find dQIs which have both good approximation
orders and bounded uniform norms independent of the given partition.
Near-best dQIs are obtained by minimizing an upper bound of the in-
finite norm of dQIs depending on a certain number of free parameters,
thus reducing this norm. This paper is devoted to the study of some
families of near-best dQIs of approximation order 2.

§1.Introduction

A spline quasi-interpolant (abbr. QI) of f has the general form

Qf =) ptalf)Ba

a€A

where { B, a € A} is a family of B-splines forming a partition of unity and
{pa(f),a € A} is a family of linear functionals which are local in the sense
that they only use values of f in some neighbourhood of ¥, = supp(B,,).
The main interest of QIs is that they provide good approximants of func-
tions without solving any linear system of equations. In the literature, one
can find the three following types of Qls:

(i) Differential QIs (abbr. DQIs) : the linear functionals are linear combi-
nations of values of derivatives of f at some point in ¥, (see e.g. [5-7]).
(ii) Discrete QIs (abbr. dQIs) : the linear functionals are linear combina-
tions of values of f at some points in some neighbourhood of ¥, (see e.g.
[1‘3]7 [6]7 [9]7 [11]7 [13]7 [15'16]7 [24])

(iii) Integral QIs (abbr. iQls) : the linear functionals are linear combina-
tions of weighted mean values of f in some neighbourhood of ¥, (see e.g.

[2-3], [6], [13-14], [24-25]).
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In this paper and a subsequent one, we shall study various types of uni-
varaite dQIs and iQIs, more specifically those that we call near-best Qls
which are defined as follows:

(dQIs) assume that pa(f) = > s5cp. Aa(B)f(75) where the finite set of
points {xg, 3 € F,} lies in some neighbourhood of ¥,. Then it is clear
that, for ||fllcc < 1 and a € A, |ua(f)| < |[Aall1, where A, is the vector
with components A, (), from which we deduce immediately

1Qlloe < lta(f)|Ba < max |fia(f)] < max|Aalls = 11(Q).
a€A

Now, assuming that n = card(F},) for all o, we can try to find a A}, € R"
solution of the minimization problem

[Aalln = min{[[Aalli; Aa € R", Voo = ba}

where the linear constraints express that () is exact on some subspace of
polynomials. Thus, we finally obtain

1Qllee < 17(Q) = glg}H)\aHl-

(iQls) assume that pa(f) = > gcp, A fz Mg(t) f(t)dt, where the B-

splines Mg are normalized by [ Mg = 1 Once again, for ||flle < 1, we
have

PRGEDINING: ||/ M) fdt < S Pal@] = Aol

BeF, BeF,

whence, as we obtained above for dQIs,
190 < maxlAally =1 (Q).

As emphasized by de Boor (see e.g. [5], chapter XII), a QI defined on
non uniform partitions has to be uniformly bounded independently of the
partition (abbr. UB) in order to be interesting for applications. Therefore,
the aim of this paper is to define some families of dQIs satisfying this
property and having the smallest possible norm. As in general it is difficult
to minimize the true norm of the operator, we have chosen to solve the
minimization problems defined above. A further paper [25] will develop
the case of iQIs on nonuniform partitions. A few results are given in [24].

The paper extends some results of [1][13] and is organized as follows. We
first recall some ”classical” QIs of various types and we verify that they
are UB. Then we define and study several families of discrete and integral
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QIs, depending on a finite number of parameters, for which we can find
vi(Q). We show that this problem has always a solution (in general non
unique). We give more specific examples for quadratic and cubic splines.
Of particular interest are the results of theorems 3,5 and 6 where we show
that some families of dQIs are uniformly bounded independently of the
partition. Finally, we briefly give some applications to the approximation
of functions, to quadrature formulas and to pseudo-spectral methods (see
e.g. [12], [29]). A parallel study of spline QIs is done in [2] for uniform
partitions of the real line and in [3] for some uniform triangulations of the
plane.

§2. Notations

We shall use classical B-splines of degree m on a bounded interval I = [a, b]
or on I = IR. For the sake of simplicity, in the case I = IR, we take an
increasing sequence of knots T' = {t;,7 € 7ZZ}. In the case I = [a,b], we
take the usual sequence T of knots defined by (see [5][11][19][28]):

a=t_m=...=tg, b=tn=...=tnim
a<ti<ta<...<th_1<b

For J = {0,...,n +m — 1}, the family of B-splines {Bj,j € J}, with
support X; = [tj_m,t;41] is a basis of the space Sy, (I,T) of splines of
degree m on the interval I endowed with the partition 7. These B-splines
form a partition of unity, i.e. Zje] B; = 1. We denote h; =t; —t;—; for
all indices .

Let N,,, = NN [0,m — 1] and T; = {t;_,,r € IN;,,}: we recall that the
elementary symmetric functions o;(T") of the m variables in 7T} are defined
by 0¢(7j) =0 and for 1 <1 <m, by

UZ(Tj) = Z tj—rltj—rz . tj—m-

0<ri<re<...<r;<m-—1

Let C!, = l,(lel), be the binomial coefficients, then the monomials ¢;(z) =
x! can be written ¢; = Yics Q,EZ)BZ', with 02(” = 0)(T;)/C,, for 0 <1 < m.

This is a direct consequence of Marsden’s identity ([3], chapter IX).
SRR AR R RS R KRR KRR ok K o

§3. Differential QIs
For all j € J, we define ¢;(t) = [[,en,, (tj—r — t) (thus ¢; € P, for all

j € J). From de Boor and Fix [7] or de Boor ([5], chapter IX), we know
that for any 7 € X;, the functionals

M () = o S(1)™ Dy (1) D' (r)

m
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are dual functionals of B-splines, i.e. they satisfy, for all pairs (i,j) € JxJ
Aj(Bi) = 035

Therefore the differential quasi-interpolant (abbr. DQI)

Qf =>_ N(f)B;

jeJ
satisfies QB; = Bj for all j € J, i.e. @ is a projector on the space
Sm(I,T). In practice, it is interesting to choose T = 6; = L Y osen, ti-s =

s1(T;) = 0§1). However, the computation of A;(f) needs the evaluation all
derivatives of polynomials ;. Another method consists in writing ) in
the form

Qf =) _Ni(f)B;,

icJ

whose coefficient functionals are defined by

~ m l .
55 =3 oy L),
=0 )

and to impose that () be exact on monomials of degree at most m
Qer =e for 0 <k <m.

Setting a;(6;) = 0; 'a;(6;) and B,(6;) = 91-_891(3), we obtain the following
system of linear equations, for 0 < s < m:

> Clay(8;) = Bs(6;).
=0

The solutions of this system are given by

S

as(0:) = Y (=1)*7'CLBi(0:).

=0

Thus we finally obtain

Theorem 1. The coefficients of the differential forms {\;(f),i € J}, are
given, for 0 < s < m, by

S

as(0;) =Y (~1)*'Clos o).

=0
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However, these DQIs need the values of derivatives of f, so they are not
very easy to use in applications and we will not study them any more. Let
us only give examples of quadratic and cubic DQIs.

Example 1: Quadratic spline DQIs (see also section 4 below). In de
Boor’s form, we have for 7 = 0;: \;(f) = f(0;) — %(9]2 — 9§2))D2f(9j),
where 6; = 1(t;_1 + t;) and 9§2) = t;j_1t;, whence 65 — 93(.2) = H(tj_1 —
t;)? and finally X;(f) = f(6;) — §h?D?f(0;). Theorem 1 gives ao(f;) =
1,a1(0;) = 0,a2(0,) = 932 — 95.2), hence S\J(f) = \;(f).

Example 2: Cubic spline DQIs. In de Boor’s form, we have for 7 = 0;:
Ni(f) = F(0,) = 563 —07) D2 (0;) — §05(6;) D £ (0;), with 6; = §(t;—o+
tjy +t;) and 02 = L(t;_ot; 1 +t;_t; +tj_ot;), whence 62 — %) =
g (hF_y +hi—1hi +h7) and 4;(0;) = (t; —0;)(tj—1 — 0;)(t;—2 — ;). Finally,
we obtain A;(f) = f(0;) — = (h?_| 4+ hi—1h; + hZ)D?f(0;) — 15 (2hi—1 +
hi)(hi — hi—1)(hi—1 + 2h;)D? f(0;). Theorem 1 gives ag(f;) = 1,a1(0;) =
0,a2(8;) = 62 — 0%, az(0;) = 05 — 30,0 + 203 = L(2h;_1 + hy)(h; —
hi—1)(hi—1 + 2h;), whence X;(f) = A;(f).

§4. Uniformly bounded discrete QIs exact on Py

It is now possible to derive discrete QlIs from the preceding DQIs by re-
placing the values of derivatives D'f(6;)/I! of f by divided differences at
the points 6, lying in ;. Doing this, we loose the property of projection
on S,,(I,T). However, by choosing conveniently the divided differences,
we can obtain some families of dQIs which are UB and exact on specific
subspaces of polynomials.

Let us construct for example a family of dQIs of degree m which are
exact on IP5. We start from functionals which are truncations at order 2
of those of the preceding section:

A(f) = 3 (-1 DTy (1D (7).

As 1);(t) is of degree m, we obtain successively D™; (1) = (—1)"m!,
me m m— m 2
D™y (r) = (=1)"ml(r—0;), D24 (r) = S(=1)™ml (72 26,t+07).

More specifically, taking 7 = 6;, we get

1

D™ i(6;) = 0, D™ 2(6;) = (1) ml(05” — 63)

and we obtain the DQI exact on 1P,

Qxf = _AP(1)B;,

JjeJ
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whose coefficient functionals are given by
1
NP () = 16)) = 567 = 07)D*(0)).
We recall the expansion (se e.g.[9][17]):

72 _ 2 () _ 1 | 2
R A I T R > (e —tim)?>0.
(r,s)ENZ r<s

On the other hand, %DQf(Qj) coincide on the space Py with the second
order divided difference [6,_1,0;,0,+1]f, therefore the dQI defined by

Qsf =>_ u?(H)B;,

jeJ
with coefficient functionals
2 ~(2
WP (F) = £00;) = 0°10,-1,05,0,11]f,
is also exact on IP5. Moreover, one can write
ﬁém(f)::aaﬂ—1-%baﬂ'+chﬂ+1

with a; = -0 /A, _1 (A1 + AG;), b; =1+ 0 /A1 A6,
c; = —§§2)/A0i(A0i_1 + Ab;). So, according to the introduction

Q3 1o < max(fas| + [bi] + lei]) < 1+ 2max 8 /A0; 1 AB;.

The following theorem extends a result given for quadratic splines in
[13][22][23].

Theorem 2. For any degree m, the dQIs Q5 are uniformly bounded.
More specifically, for all partitions of I:

. 1
Q31 < [5(m +4)
Proof: We only give the proof for m = 2k + 1, the case m = 2k being

similar. For the sake of simplicity, we take j = k, i.e. we shall determine
an upper bound of the ratio

N/ Dy = 07 | A0, 1 A6,
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with
- 1
A S )
Setting H = Z:’i_ll h;, then we get a lower bound for the denominator

1 1 H®
Dy = — (tm-1 = to)(tm — t1) = —5 (ho + H)(H + 1) 2 —5

The numerator Ny is composed of k — 1 pairs of sums (5, S,)

Sp= > (tr—t)? Sp= > (tr—t)*

S—r=p s—r=k+p—1

for 1 < p <k —1. Both sums contain at most p times the terms hf and
2h;h; (i # j), hence we can write S, + S, < 2pH?, which implies

2H? kS?
(m_1)2<m_2)(1+2+...k—1):72(771_1)2,

N <

so, we get
Ni/Dy < k/2,

and finally, for m = 2k + 1 odd
« 1 1
Q3loe < k+2= 2 (m+3) = [ (m+4)

For m = 2k, we obtain respectively Dy > % and Nj < 4(%2_1), whence

Ny /Dy < %, and finally for m = 2k even

Q31 < k2= S(m+4) = [(m+4)

st sk st ok s ok ok kst ok st ok st ok st sk st sk st sk st sk st sk s sk sk sk sk sk kst kst sk stk stk st sk stk stk stk stk stk stk stk st kst ok stk ok sk ok sk ok stk stk ok ok
okok ok ok okok ok ok

§6. Existence and characterization of near-best discrete QIs
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6.1. Existence of near-best dQIs

We consider the following family of dQIs defined, for the sake of simplicity,
on I = IR endowed with an arbitrary non-uniform increasing sequence of
knots T = {t;;i € 7},

Qf = Qp,qf = Z Hz(f)Bz

<y/4

Their coefficient functionals depend on 2p + 1 parameters, with p > m

wi(f) = Y Ai(s)f (i),

s=—p

and they are exact on the space IP,, where ¢ < min(m,2p). The latter
condition is equivalent to Qe,. = e, for all monomials of degrees 0 < r < q.
It implies that for all indices i, the parameters \;(s) satisfy the system of
q + 1 linear equations:

p
Z Ai(8)0], = 02@, 0<r<gq.

s=-—p

The matrix V; € RUTYXEPHD of this system, with coefficients V(r, s) =

i1s> is @ Vandermonde matrix of maximal rank ¢q + 1, therefore there are
2p — q free parameters. Denoting b; € IR the vector in the right hand
side, with components b;(r) = 91@, 0 <r < g, we consider the sequence

of minimization problems, for i € ZZ:

We have seen in the introduction that v](Q) = max;ecz min||A;||; is an
upper bound of ||Q,|lcc Which is easier to evaluate than the true norm of
the dQIL.

Theorem 3. The above minimization problems have always solutions,
which, in general, are non unique.

Proof: The objective function being convex and the domains being affine
subspaces, these classical optimization problems have always solutions, in
general non unique.

We postpone to sections 7 and 8 the computation of some optimal solutions
in the case ¢ = 2.
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6.2. Characterization of optimal solutions

For b € R™ and A € R™*", let us consider the /;-minimization problem
(1) min||r(a)|l1, r(a)=0>b-— Aa.

We recall the characterization of optimal solutions for l/;-problems given
in [30], chapter 6. Define the sets

Z(a)={1 <i<m]|riy(a) =0}

Via) ={v e R™;||v]|eo <1, v; = sgn(ri(a)) fori¢ Z(a)}

Theorem 4. a* is a solution of (1) if and only if there exists a vector
v* € V(a*) satisfying ATv* = 0.

s sk s ok sk ok sk sk sk sk sk sk sk ok sk st sk st sk st sk s ok s sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skok skok sk okskok

§7. A general family of spline discrete QIs exact on P,

In this section, we restrict our study to the subfamily of spline dQIs which
are exact on IPs, i.e; we choose ¢ = 2. We shall try to characterize optimal
solutions in the sense of theorem 3 with the help of theorem 4. Let

Qpaf=>_ wi(f)B;

1EXL
where the coefficient functionals depend on 2p + 1 parameters
P
pi(£) =Y M) fBigr)-
r=—p
We shall need the following sets of indices
K={-p,....,p}, K*={-p0,p}, K=K\K"

K:K1UK2, Klz{—p+1,...,—1}, KQZ{l,...,p—l}.

The three equations expressing the exactness of ), 2 on IP5 can be written

Ai(=p) + Xi(0) + Ai(p) =1 — Z Ai(r)

reK

0i—pAi(—p) + 0:Ni(0) + iy pXi(p) = 0 — > 0, 0(r)

rekK
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02 Ni(—p) + 020 (0) + 02, Ni(p) = 0,7 — 3 02\

rekK

This system has a positive Vandermonde determinant
Vi= V(ei—m 0i, 9i+p) = (0; — 9i—p)<9i+p - ei)(ei—H? - 0i—p)~

Let us denote by

the unique solution of the above system with the right-hand side obtained
by taking A;(r) = 0 for all » € K. Using Cramer’s rule and the determi-
nants W;(s) obtained by replacing the column of 6,1, in V; by this rhs,
we obtain

N (=p) = Wi(=p)/Vi,  A[(0) = Wi(0)/Vi, A (p) = Wi(p)/Vi.

Then we can express the general solution of the above system in the form

Ai(=p) = A5 (=p) = DY ani(r) + Y ashi(s)

reKi seKo
)\i Z ﬁr z Z 65 7,
reki sEK>
Ai(p) = Af(0) + D v di(r) = Y vshils)
reKy seKo

The various coefficients are quotients of Vandermonde determinants
ar =V (0r,0i,0i4p)/Vi, as=V(0:,05,0i4p)/ Vi,
Br =V (0i—p,0r,0i+p)/Vi, Bs =V (0i—p,0s,0i+p)/Vi,
Vr =V (0i—p,0r,0:)/Vis s =V(0i—p,0:,05)/Vi.
We denote by Q) 5 the spline dQI whose coefficient functionals are
BE(F) = NP Bimp) + X016 + X (9)F (B
In that case, an upper bound of the norm is max;cy v, where

vi = A (=p)[ 4+ A O)] + (A (p)]

Theorem 5. For all p > m = degree of the spline, the infinite norms
of the spline dQIs Q) 5 are uniformly bounded by m+%. This bound is
independent of p and of the sequence of knots T

Proof: We have to find a good upper bound of

vi = X (=p) + A (0)] + A ()]



Univ Spline QI/non-uniform partitions 11
where, expanding the determinants, we have
X (=p) = 07 (Birp — i) (0 — 0:y)
X (0) = 1+ 87/ (Biey — 0)((6: — bi)
N (0) = =0/ (Brvp = 01-p) (Birp — 02)

We recall that 0; = % ZT:BI t;—r and

- 1
952) - Z (ti—r . ti—s)Q _ S1

2 _ 2 _
m (m 1) (r,8)EN,,,r<s m (m 1)

We first compute

p
0; —0;i—p = % Z (ticr —ticp—y) = % Z Z hi—k—rs1 = S2/m.

€N, €N, k=0
1 p
Oivp —0; = — (Ligp—r —tiyp) = — Ritk—rt1 = S3/m,
eN M EN. k=0
reN,, rcN,, k=

The proof being essentially the same for all p > m and for all ¢ € 7, we
can restrict our study to the cases p = m and ¢ = m — 1. In that case, we
get

m—1
Sy =mhi—mi1+ Y k(h+h) > 85 =hy +2hy + ...+ (m — 1)hp,_1,
k=1
m—1

S3 =mhi_mi1+ »_ k(h+h) > Sh = (m—1)hy+(m—2)ho+. . .+2hm_2+hm_1.
k=1

Denoting, for 1 <k <m —1
Sk =hy+ ...+ hg,
and s = s,,,_1, we get
Sy = s1+8a+. . . ASm_1, S5 =s+(s—51)+(s—52)+...(5=8m_2) = ms—S,
whence

S283 > 8585 =ms(sy 4+ 52+ ...+ Sm_1) — (51 + 824 ... 4+ 5m_1)%
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Now, we come back to S; and we shall prove that S; < S45% < S5S55. S

can be written under the form

m—1 m— m
=D hiry = Z s; Z > (si—sy)%,
j=1 =1 i=j+1
from which we deduce
m—1 m—1 m
51:( —1) 812—2 Sj Z S;.
i=1 j=1  i=j+1

Moreover, for all 1 <i < m — 1, we have
(m —1)s7 = ms? — 57 < MSiSm_1 — 5

therefore, we obtain the result

m—1 m—1 m—1
2 2
S; < (m-1) E 55 < mSpm—1 S; — s; = 855% < 5553.
i=1 i=1 i=1

Finally, for all i € ZZ, we have

whence [|Q} 5o < maxjez vy < 2t O

In the next section, we prove that the QIs Q) , are near-best in the sense

of section 6.
st sk s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok

§8. A family of near-best spline discrete QIs

For dQIs @, 2 depending on p > m parameters, the coefficients (see

proof of theorem 5) are given by
N (=p) = =0 (O — 0:) (6: — 6:y)
N (0) =146,/ (O — 0)((0: — 01-)

A (p) = —07 [ (Orsy — 0ip)((Bip — 05).

Now, let us write the minimization problem of section 7 in Watson’s form.

Denote

Ai=Ni(=p+1),...,(=1), \(1), ..., lambda;(p — 1))T € R*~2
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A= (A (=p),0,...,A1(0),0,..., Ar(p)T € R

Let A; € R®PHDX2P=1) 1o the matrix with the following coefficients
(notations of section 7)

FOT r 6 Kl : Al(_p7 T) - a’l“? AZ(Oar) — ﬁr, A;(p,’l") = _77’7

For s e K2 . AZ(_pa 8) = —Qs, A’L(Ov 8) = ﬁsa A’L(pv 8) = Vs
Forre Ky: Ai(r,7) =0, v #r, Ai(r,r) =—1, Ai(r,s) =0, s € K»,
Forse Ky: Ai(s,r) =0, 7€ Ky, Ai(s,s)=—1, A;(s,8') =0, s’ #s.

Then, using these notations, we can write
Xl = [IA7 = Aiilla

Theorem 6. Assume that the sequence of knotsT' satisfies, for all i € 7Z,
the following properties

Oic1 +0; <0i—p+0iyp, <0; +0,41,

then, for all i € 7, A\ is an optimal solution of the local minimization

problem min || A;|1. Thus, for allp > m, the spline dQIs Q}, , are near-best

and their infinite norms are uniformly bounded by ™. This bound is

m—1
independent of p and of the sequence of knots T'.

Proof: According to Watson’s theorem, we must find a vector v* € IR?P*!
satisfying

v |00 < 1, A;-TU* =0, v*(r)=sgn(A\(r)) for r=—p,0,p.
Let us choose
v*(—p) = —1,0*(0) = 1,v"(p) = —1,

v (r) = —ap + Br + Y, for r e Ky,
v*(s) = —as + Bs + s, for s € K.

Then it is easy to verify that the equations A7 v* = 0 are satisfied. More-
over, the above expressions of A (r) for r = —p, 0, p with 51(2) > 0 imply
that sgn(v*(r)) = sgn(A(r)) for r = —p,0,p. It only remains to prove
that, for (r,s) € Ky x Kj

0" ()] = | =+ By 9l S 1, [0"()] = e + B — el < 1.



14 ps

As B, =1—a,+ - forr € K; and s = 1+ as — s for s € Ko, it is
equivalent to prove

0<a,—7% <1, 0<~v—as<1, for (rs) € K; x K>

We only detail the proof for r € K7, that for s € K5 being quite similar.
Using the Vandermonde determinants, we get

Cpr — Yr = ‘/2;_1(91' - 97“)(92'+p - gi—p)[(ei—kp + ei—p) — (0r + 0:)],
As 0; — 0, > 0 and 0,4, — 0;_, > 0, we shall have o, —~, > 0 if and only
if
Or +0; <0;i1p+0;p

for all r € K,. However, since we have 0, + 0; < 6;_1 + 60;, there only
remains the unique condition

Oi1+0; <0i—p+0iyp.
The other inequality «, — 7, < 1 can be written
(0i — 0:)[(Oigp + Oi—p) — (67 + 65)] < (65 — 0i—p)(Oigp — 0i)

Setting 61 = 0, —0;_p, 02 = 0;—0,, and 43 = 0;, —0;, the latter inequality
can be written

92(03 — 1) < 93(02 + 1), or 01(d2 + d3) >0

which is obviously satisfied. For s € K5, the inequalities 0 < v4 — as < 1
are satisfied if and only if

Oi—p +0iyp < 0; + 0,11,

whence the conditions on the sequence of knots. O

Remark. Theorem 6 imposes some conditions on the sequence of
knots. For quadratic splines, we have studied arithmetic and geometric
sequences: in both cases, the higher is p, the stronger are the conditions

and for p — 400, T is closer and closer to a uniform sequence.
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9.1. Approximation of functions

When a spline dQI @ is uniformly bounded independently of the partition,
we can apply a classical result in approximation theory (see [5], Th 22,
and [11], chapters 2 and 5):

1QF = flloo < (1 + [|Qlcc)doo (£, S)

where S is the space of splines. In particular, when () is exact on the
space IP,,, then for f € C™*1(I), one has

1Qf = flloo < CR™ [ f™ o

for some constant C' which does not depend on the given partition. There-
fore spline dQIs give the best possible approximation order. More detailed
results on error bounds are given in [1],[13] and [23].

9.2. Quadrature formulas

Approximating [, f by [; Q5(f), where Q3(f) is the quadratic spline dQI
of section 8, gives rise to an interesting quadrature formula

/IQS(ﬁ - fo/IBo n gum /IBi T fan /IBnH

As it is well known, leO = %, fIBn_H = }%" and le’i = %

for 1 < i < n. This formula is exact on Py , but in the case of a uniform
partition,(see [21]), it is exact on IP3 and provides an interesting comple-
mentary formula to Simpson’s rule in the sense that, in general, errors for
both formulas have opposite signs. This will be detailed in another paper,
together with applications to integral equations.

9.3. Pseudo-spectral methods

One can approximate the first derivatives of a given function f at the data
sites

1
O, ={00=toy, 0, = 5(&'—1 +1t;), for 1<i<n, 0,11 =t}

by the derivatives of the quadratic spline dQI of section 8.1
Qsf = f(to)Bo+ > pi(f)Bi+ f(tn) Busa.
i=1

For interior points #;, 3 <i <n — 2, we obtain the general formula

(Q3.0)'(0:) = piea (£)Bi_1(05) + () Bi(0:) + i1 (f) Biya (6:)
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which can also be written, by setting f; = f(6,):
N 1
(Q51)'(6:) = F{_Uiai—lfi—Q + [=oibi1 + (00 — 0j4 1 )ail fia

[—oici—1+(0i—0i1)bitai] fi+[(0i—0i 1) citbiya] fiy1+0i g civa figa}

For the first indices 0 < ¢ < 2, the coefficients are modified according to
the convention hy = 0, which gives 09 = 0,0, =1,01 =1 and ¢; = 0. We
thus obtain

2

(Q51) (60) = h—l{(al —1)fo+bifi +ecifa}

(Q51)'(61) = hil (02a1 — 1) fo + [o2b1 + ogas] f1+

[02c1 4+ o5ba] fo + o5¢a f3}
1 .
(Q3f)'(62) = h—{—02a1f0+[—0251+(02— sigmasy)ag] fi+[—oac1+(02—05)ba+osas] f2
2

+[((72 — O'é)CQ -+ O'ébg]fg -+ UéCgf4}

In the same way, for the last indices n — 1 < i < n 4 1, the coefficients
are modified according to the convention h,+; = 0 and we obtain similar
formulas for (Q3f) (0n-1), (Q5f) (6,) and (Q5f) (0+1). In the case of a
unifom partition, the formulas are given in [21]. Concerning error esti-
mates, it is rather easy to verify that (Q3f) (6;) — f'(6;) = O(h?) where
h = maxj<i<n hi. A more detailed study will be done elsewhere. These

results can be used in pseudo-spectral methods, as described for example
in [12] and [29].
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