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On the scarring of eigenstates for some arithmetic
hyperbolic manifolds in dimension 2 and 3

Tristan POULLAOUEC

August 16, 2004

Abstract

In this paper, we shall deal with the so-called conjecture of Quantum Unique Ergod-
icity. In [9], Rudnick and Sarnak showed that there is no strong scarring (see definition
page 2) on closed geodesics for compact arithmetic congruence surfaces derived from a
quaternion division algebra (see Introduction and Theorem 0.1).

First we extend this Theorem to the congruence surface X = Γ(2)\H2 (it is not
compact but has finite measure), where Γ(2) is the kernel of the projection of SL(2,Z) into
SL(2,Z2). Then, after some algebraic and geometric preliminaries – and the establishment
of useful technical Lemmas – we extend Theorem 0.1 to a class of Riemannian manifolds
X

R
= Γ

R
\H3, the so-called (KS

2 ) class, that are again derived from quaternion division
algebras. We show that there is no strong scarring on closed geodesics or on Γ

R
- closed

imbedded totally geodesic surfaces.

Introduction

A topic of great interest in quantum mechanics is the study of the limit of the quantized
systems when ~−→ 0, which we call the semi-classical limit of quantum mechanics. The under-
lying purpose is to relate classical dynamics to the quantum one, in order to understand better
the quantum mechanics. This is the path we follow to study quantum chaos : we consider
a classicaly chaotic system, and we try to identify in the quantized system the influence of the
chaotic nature of the classical dynamics.

For M a Riemannian manifold of negative sectional curvature in dimension 2 or 3, it is
well known (see [1], [4], [5]) that the geodesic flow on the unitary sphere tangent bundle T 1M
is ergodic and chaotic. After quantization, the wave functions of the stationary Schrödinger
equation −~

2

2m
∆φ+ V (q)φ = E φ with E a constant (0.1)

are the L 2 eigenfunctions or eigenmodes of −~
2

2m
∆ + V (q), where ∆ is the Laplace-Beltrami

operator on M . The potential V (q) is in fact related to the curvature of M . We suppose
that this operator has a discrete spectrum (λk)k∈N with λk −→

k→∞
∞, which is true at least in

the compact case.
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We denote by (φk)k∈N the associated eigenfunctions – we assume that they are normalized,
so that ‖φk‖2

= 1 – and by (µk)k∈N the corresponding probability measures given by

dµk(q) =
∣
∣φk(q)

∣
∣
2
dvol(q) (0.2)

The measure µk is actually the probability of presence of a particle in the state φk at q.
Moreover the semi-classical limit is the limit at large energies i.e. when k −→ ∞. We shall
now state the so-called Quantum Unique Ergodicity Conjecture (see [10]) :

Conjecture Let M be a Riemannian manifold of dimension 2 or 3 and of sectional

curvature K < 0. Then dµk −→
k→∞

dvol

vol(M)
·

For a compact surface M whose geodesic flow is ergodic, this result was established in [12]
for a subsequence of full density of (µk). More precisely, we shall consider quotient manifolds
M = Γ\Hn (n = 2 or 3), where Γ is a freely acting discrete subgroup of Is(Hn), endowed with
the projection of the canonical Poincaré metric on Hn. In particular (see [3]), all Riemann
surfaces are of such a type, apart from S2, C, C∗ and T2. A first step towards this conjecture
was realized in [9] with the following Theorem :

Theorem 0.1 Let X = Γ\H2 be an arithmetic congruence surface derived from a quaternion

algebra and ν a quantum limit on X. If σ = singsupp ν is contained in the

union of a finite number of isolated points and closed geodesics, then σ = ∅.

In other words, there is no strong scarring (cf. [10]) of eigenmodes on closed geodesics.
In this Theorem, Γ is a congruence subgroup of a discrete group derived from an indefinite
quaternion division algebra. By a quantum limit ν we mean a probability measure on M such
that there exists a subsequence (µkj

)
j∈N of (µk)k∈N with µkj

−→
j→∞

ν.

In [9], a congruence subgroup is implicitely used to get a free action on H2. Thus, the
canonical projection H2 −→ Γ\H2 is a covering ; otherwise branching points would appear, at
which the projection of the canonical Poincaré metric would be singular.

In this work, we shall extend Theorem 0.1 to the particular arithmetic congruence surface
X = Γ(2)\H2, where Γ(2) is the congruence group Γ(2) = { γ ∈ SL(2,Z)

/
γ ≡ I2 [2] }.

This space is not compact anymore, but it has finite measure. The extension is straight forward,
we just adapt the technics and ideas of [9]. Note that, SL(2,Z) being derived from the matrix
algebra M(2,Z), Theorem 0.1 does not apply to the surface X.

Then we deal with the case of X
R

= Γ
R
\H3, where Γ

R
is a discrete group derived from a

class of division quaternions algebras explicitly defined in sections 3.2 and 4. We show that a
non empty set Λ contained in a finite union of isolated points, closed geodesics and Γ

R
- closed

(see section 4 for definition) imbedded totally geodesic surfaces of X
R

(in this last case, we
shall assume that area(Λ) 6= 0) cannot be the singular support of a quantum limit on X

R
.

Before giving the proof, we shall recall some useful points of algebra and geometry
(cf. section 2 and 3), and establish some arithmetical and geometrical Lemmas (cf. section 3
and 4). Contrary to the previous case, the proof is not a straight adaptation of [9] because
the algebraic formalism of binary quadratic forms used there does not apply to points or to
the imbedded surfaces anymore.
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1 The case Γ(2)\H2

Let us recall that

Γ(2) =

{

γ =

(
a b
c d

)

∈ SL(2,Z)
/
γ ≡ I [2]

}

(1.1)

We define the same way Γ(N) for N > 2. The result obtained is the following :

Theorem 1.1 If the singular support σ of a quantum limit on X = Γ(2)\H2 is contained

in a finite union of isolated points and closed geodesics of X, then σ = ∅.

1.1 Correspondences and separation

Definition A correspondence C of order r on a Riemannian manifoldX is a mapping from

X to Xr/Sr such that C (x) = (S1(x), . . . , Sr(x)) with Sk ∈ Is(X)

k = 1 . . . r. Here, Sr is the symmetric group of order r.

We shall denote by T
C

the associated operator of L 2(X) defined by T
C
(f) : x 7−→

r∑

k=1

f
(
Sk(x)

)
.

Definition Let Λ be a subset of X. We say that such a correspondence C separates Λ

if ∃ z ∈ X − Λ such that ∃ ! k ∈ {1, . . . , r}, Sk(z) ∈ Λ.

Then we have the following Proposition (proved in [9])

Proposition 1.1 Let Λ ⊂ X be a closed subset of zero volume and C be a correspondence

on X that separates Λ. Let (φj)j∈N be a sequence of eigenfunctions of T
C

such that ∀ j ∈ N, ‖φj‖
2

= 1 and that dν = lim
j→∞

|φj(z)|2dvol(z) exists.

Then singsupp ν 6= Λ.

Keep in mind than given any measure ν on X, its singular support is a closed subset of X.

1.2 H2, the modular group and operators

In the sequel, we shall set Γ = SL(2,Z) and deal with the hyperbolic space X = Γ(2)\H2.

1.2.1 Some hyperbolic geometry

• The space H2 = { z ∈ C / Im(z) > 0 } is provided with Poincaré hyperbolic metric

ds = |dz|/Im(z), which becomes in cartesian coordinates ds2 =
(
dx2 + dy2

)
/y2. As shown

on figure 1, the geodesics of H2 are the half-circles centered on the real axis (like γ who is

connecting a to b) and the vertical straight half-lines (like γ2 who is connecting c to infinity).

The metric ds induces on H2 the volume form dσ = dx dy/y2. Its curvature is K = −1,
and the Laplace-Beltrami operator on H2 is given by

∆ = y2

(
∂2

∂x2 +
∂2

∂y2

)
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Figure 1: H2 and its geodesics

Definition A measure ν on X is called a quantum limit if there exists a sequence
(
φj

)

j∈N
of eigenfunctions of ∆ in L 2(X), normalized by the condition ‖φj‖

2
= 1, such

that the measures |φj(z)|2 dz converge weakly towards dν.

• We know that Is(H2), the group isometries of H2, consists of the real linear fractional
transformations and fractional reflections. Moreover, PSL(2,R) = SL(2,R)/{±I} can be iden-
tified with Is+(H2), the subgroup of isometries preserving the orientation, by the action

SL(2,R) ×H2 −→ H2

(γ, z) 7−→ γ · z where

(
a b
c d

)

· z =
az + b

cz + d
(1.2)

The elements of Is+(H2) are characterized by their fixed points in H2 ∪ ∂H2 = H2 ∪ R ∪∞.
Moreover γ ·z = z ⇐⇒ cz2 +(d−a)z−b : the discriminant of this equation is (d−a)2 +4bc =
(d+ a)2 − 4, so that

� if Tr(γ)2 ∈ [0, 4[, the isometry γ has a single fixed point (which is a center) in H2 and
is called elliptic (we follow the classical terminology, see [8]).

� if Tr(γ)2 = 4 and γ 6= ±I, the isometry γ has a single fixed point (which is attractive) inR ∪∞ and is called parabolic.

� if Tr(γ)2 /∈ [0, 4], the isometry γ has a two distinct fixed points in R ∪∞, one attractive
and the other repulsive, and is called hyperbolic. The geodesic L connecting this fixed
points is called the axis of γ. The isometry γ leaves L invariant and acts on it as a
translation of the curvilinear abscisse.

• Finally we recall the notion of binary quadratic form and its use in geometry (cf. [9]).
Set M = [a, b, c], with a, b, c ∈ R, the real binary quadratic form on C2 defined by

∀ (x, y) ∈ C2 M(x, y) = ax2 + 2bxy + cy2

We shall identify M with its real symmetric matrix in the canonical basis, and we set
M ◦ g = M [g] = tgMg for g ∈ M(2,R). Only non degenerate forms will be considered in the
sequel i.e. we suppose that detM 6= 0.
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Let M be such a form : it has two distinct roots (x : y) in P1(C) ≃ C ∪∞, the equation
M(x, y) = ax2 + 2bxy + cy2 = 0 having discriminant b2 − ac = − detM 6= 0.

� if detM > 0, then M is anisotropic on R and M(z, 1) = 0 has a single root zM ∈ H2

� otherwise, M being isotropic on R, it has two distinct roots in P1(R) ≃ R ∪ ∞ and
we call γM the geodesic connecting them.

Therefore we associate to each non degenerate binary quadratic form M a point zM or
a geodesic γM of H2. Conversely, to each point or geodesic of H2, we associate a single
proportionality class of non degenerate real binary quadratic forms.

In this way, the action of g ∈ SL(2,R) on H2 translates into an action M 7−→ M [g−1] on
the binary quadratic forms.

1.2.2 The quotient space X = Γ(2)\H2

• Contrary to Γ, its subgroup Γ(2) contains no elliptic element (this is a particular case
of a general property of the congruence subgroups Γ(N) for N > 2 exposed in [6]) : it acts
therefore freely on H2 (see [8]) and X = Γ(2)\H2 is a Riemannian manifold of Gaussian
curvature K = −1. We know (cf. [6]) that

Γ(2)\SL(2,Z) = { 1, σ, τ, τσ, τ στ, τ σ τ σ } (1.3)

with σ and τ representing the classes modulo Γ(2) of the transformations S : z 7−→ −1/z
and T : z 7−→ z + 1. They verify σ2 = τ 2 = 1 and (σ τ)3 = 1.

0 1

ρ+ 2ρ

T F0
F0

TSF0SF0

TST F0TSTSF0

ν

ρ+ 1

Figure 2: A fundamental domain for Γ(2)\H2
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The discrete group Γ(2) acts moreover discontinuously on H2 (cf. [8]) ; knowing that Γ

admits the geodesic triangle F0 = (ρ, ρ+ 1,∞) as a fundamental domain (where ρ = e
2iπ
3 ), we

deduce from (1.3) that F = F0 ∪SF0 ∪TF0 ∪TSF0 ∪TSTF0 ∪TSTSF0 is a fundamental
domain for the group Γ(2) (cf. figure 2).

On this figure, we have ν =
1

1 − ρ
=

1

2
+

i

2
√

3
.

• Let us recall that the geodesics of Γ(2)\H2 are the projections of those of H2.

Definition A closed geodesic of a metric space (X, d) is the image of a periodic geodesic line

λ : R −→ X.

Proposition 1.2 Let L be a closed geodesic of X = Γ(2)\H2. There exists a hyperbolic

transformation γ ∈ Γ(2) whose axis L projects onto L .

The proof (see [8]) uses only the discontinuity of the action of Γ(2) on H2. In particular, there

exists a compact segment l of the geodesic L such that L =
⋃

n∈Z γn ·l and L = π(L) = π(l),

where π is the canonical projection π : H2 −→ Γ(2)\H2.

Lemma 1.1 Let F and G be two closed geodesics of X. Then F = G or F ∩G is finite.

Proof : we shall use Proposition 1.2. Let γ1 and γ2 ∈ Γ(2) be two hyperbolic transforma-

tions whose axis L1 and L2 project onto F and G respectively. Let l1 and l2 be compact

segments of L1 and L2 such that L1 =
⋃

n∈Z γn
1 · l1 and L2 =

⋃

n∈Z γn
2 · l2. Then

F ∩G = π(l1) ∩ π(l2) = π
[(

∪
γ ∈ Γ(2)

γ · l1
)

∩
(

∪
γ′ ∈ Γ(2)

γ′ · l2
)]

= π
[

∪
γ ∈Γ2

(

l1 ∩ γ · l2
)]

because for p ∈ γ · l1 ∩ γ′ · l2, γ−1p ∈ l1 ∩ (γ−1γ′) · l2 and π(γ−1 · p) = π(p).

Since the segments l1 and l2 are compact subsets of H2, we deduce from the discontinuity

of the action of Γ(2) on H2 that the set Γ0 =
{
γ ∈ Γ(2)

/
l1 ∩ γ · l2 6= ∅

}
is finite and that

F ∩G = π (l1 ∩ Γ0 · l2) (1.4)

Let us assume that F ∩G is infinite : l1 ∩ Γ0 · l2 is infinite so that, Γ0 being finite, there

exists γ ∈ Γ0 such that l1 ∩ γ · l2 is infinite. Hence L1 ∩ γ ·L2 is infinite, L1 and γ ·L2 being

two geodesics of H2 i.e. half-circles or half-lines : as a consequence, L1 = γ · L2 and F = G.

1.2.3 Modular correspondences

• Let us set P (n) =
{
M ∈ M(2,Z)

/
detM = n

}
and R(n) =

{
M ∈ P (n)

/
M ≡ I [2]

}
=

{
M ∈ M(2,Z)

/
det(M) = n and M ≡ I [2]

}
for n ∈ N. Note that Γ(2) = R(1) and Γ = P (1).

As is well-known, we have

Lemma P (1)\P (n) ≈
{(

a b
0 d

)

∈ M(2,Z)
/

ad = n, a > 1, 0 6 b < d

}
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Using the six representants for the cosets of R(1)\P (1) (cf. previous section), we show that

Lemma 1.2 R(1)\R(n) ≈
{(

a b
0 d

)

∈ R(n)
/

a > 1, 0 6 b < d

}

Obviously, R(n) 6= ∅ if and only if n is odd. We denote by Rpr(n) the set of the elements
of R(n) that are not integer multiples of matrices in M(2,Z) : these are the primitive elements.
We can now define the modular correspondence of order n ∈ N for n odd.

Definition Cn :

∣
∣
∣
∣

X −→ Xr/Sr

Γ(2) x 7−→ {Γ(2)α1x, . . . , Γ(2)αrx}

where R(1)\R(n) = {Γ(2)α1, . . . , Γ(2)αr}. Let Tn be the associated operator, which we call

a modular operator

Tn(f)(Γ(2)z) =
∑

δ∈R(1)\R(n)

f(Γ(2)δz) (1.5)

• Because R(1)\R(n) is finite, the modular operators are defined on L 2(X) : if f ∈ L 2(X)
and α ∈ Is(X), then f ◦α ∈ L 2(X). Moreover, ‖f ◦α‖2 = ‖f‖2 : they are bounded operators
on L 2(X). They also operators satisfy the classical properties of the modular operators :

� Tn is self adjoint and commutes with the Laplace-Beltrami operator ∆.

� Tn Tm =
∑

d/(n,m)

dTnm/d2

� Tn =
∑

t2/n

Cn/t2 where Cnf(Γ(2)z) =
∑

δ∈R(1)\Rpr (n)

f(Γ(2)δz)

Nota Bene : in the sequel, we shall only consider operators Tp = Cp where p is an odd prime.
We shall also note Cp = Cp for simplicity’s sake. Let P be the set of all prime numbers.

Lemma 1.3 Let p ∈ P and R(1)\R(p) = {Γ(2)α1, . . . , Γ(2)αn}.
Then ∀ i, ∃ ! j such that αj αi ∈ pΓ(2) and ∀ k 6= j, αk αi ∈ Rpr(p2).

Proof : we just use the fact that for any odd m, the set R(m) is stable under passage to
the (transposite of the) comatrix

γ =

(
a b
c d

)

∈ R(m) =⇒ Com(γ) = mγ−1 =

(
d −b
−c a

)

∈ R(m) (1.6)

which corresponds actually to the passage to the inverse in Is+(H2) ≃ PGL+(2,Z). Let us

take i ∈ {1, . . . , n} : we have Com(αi) ∈ R(p) and Com(αi)αi = det(αi) I2 = p I2. Since

Γ(2)Com(αi) is a coset of R(1)\R(p), there exists j ∈ {1, . . . , n} such that Γ(2)Com(αi) =

Γ(2)αj. Therefore Γ(2)αj αi = pΓ(2) and αj αi ∈ pΓ(2).

For all k 6= j, we have Γ(2)αk 6= Γ(2)αj whence Γ(2)αk αi 6= Γ(2)αj αi = pΓ(2) so that
αk αi ∈ Rpr(p2) : this ends the proof of the Lemma. We deduce easily the self adjointness of
Tp from this Lemma.

We shall use in section 3.2 an extension of this Lemma to an order of a quaternion algebra
(cf. Proposition 3.7).
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1.3 Results on binary quadratic forms

In this section, we adapt the Lemmas 2.2 and 2.3 of [9] to the discrete group Γ(2).

Definition M = [a, b, c] is a Q-form if there exists λ ∈ R\{0} such that (λa, λb, λc) ∈ Q3.

Proposition 1.3 Let M and M ′ be two binary quadratic forms and p1, p2 and p3 be three
distinct primes for which either :

� ∃αi ∈ R(pi) such that M [αi] = λiM
′ ∀ i = 1 . . . 3.

� ∃αi ∈ Rpr(pi
2) such that M [αi] = λiM

′ ∀ i = 1 . . . 3.

Then M and M ′ are both Q-forms.

Proof : let us set M = [A,B,C] and M ′ = [A′, B′, C ′]. M and M ′ being non degenerate,
M [α1] = λ1M

′ ⇒ λ1 6= 0. As α1 ∈ GL(2,Q), M is a Q-form if and only if M ′ also is a Q-form.
Similarly, M and M ′ are simultaneously isotropic or anisotropic over ,Q.

If M is isotropic, it splits over Q : it is proportional to M0[γ], where M0(x, y) = xy and
γ ∈ GL(2,Q). Thus, M and M ′ are both Q-forms. Henceforth we assume that both M and
M ′ are anisotropic over Q. Let us fix n ∈ {1, 2} and assume

∀ i, M [αi] = λiM
′ with αi ∈ Rpr(pi

n) (1.7)

Taking the determinant of both sides of (1.7), we get pi
2n detM = λi

2 detM ′, so that

λi = εiκpi
n with εi = ±1 and κ =

√

detM

detM ′

Set αi =

(
ai bi
ci di

)

; as M [αi] = tαiMαi, equation (1.7) can be written as

∀ i λiM
′ =

(
Aai

2 + 2Baici + Cci
2 Aaibi + Ccidi +B(aidi + bici)

Aaibi + Ccidi +B(aidi + bici) Abi
2 + 2Bbidi + Cdi

2

)

(1.8)

• The identification of the lower right terms in relation (1.8) gives

λiC
′ = εiκpi

nC ′ = Abi
2 + 2Bbidi + Cdi

2 for i = 1 . . . 3 (1.9)

that we will write as




b1
2 b1d1 d1

2

b2
2 b2d2 d2

2

b3
2 b3d3 d3

2









A
2B
C



 = κC ′





ε1p1
n

ε2p2
n

ε3p3
n





that is

Ψ





A
2B
C



 = κC ′N with Ψ ∈ M(3,Z), det Ψ =
∏

16i<j63

(bidj − bjdi) and N ∈ Z3

If Ψ is invertible, Ψ−1N ∈ Q3 so that M and M ′ are both Q-forms. Otherwise
det Ψ = 0 : we may assume without loss of generality that b1d2 = b2d1. There exists

8



µ ∈ Q\{0}, µ(b1, d1) = (b2, d2) because det(αi) 6= 0 implies (bi, di) 6= (0, 0). Substituting
into relation (1.9), we find

κε2p2
nC ′ = µ2κε1p1

nC ′ = M(b2, d2) 6= 0 from the anisotropy of M over Q
so that p2

n = µ2p1
n. If n = 1, µ2 = p2/p1 is a square of Q, which cannot happen for two

distinct primes p1 and p2. As a consequence n = 2, µ = ±p2/p1 and p2(b1, d1) = ±p1(b2, d2),
and we deduce from the Gauss Theorem that

b1 ≡ d1 ≡ 0 [p1] and b2 ≡ d2 ≡ 0 [p2] (1.10)

• The identification of the upper left terms in (1.8) provides

λiA
′ = εiκpi

nA′ = Aai
2 + 2Baici + Cci

2 for i = 1 . . . 3 (1.11)

that we will write




a1
2 a1c1 c1

2

a2
2 a2c2 c2

2

a3
2 a3c3 c3

2









A
2B
C



 = κA′





ε1p1
n

ε2p2
n

ε3p3
n





that is

Φ





A
2B
C



 = κA′Ñ with Φ ∈ M(3,Z), det Φ =
∏

16i<j63

(aicj − ajci) and Ñ ∈ Z3

If Φ is invertible, we show as before that M and M ′ are both Q-forms. Otherwise, det Φ = 0
so that ∃ i 6= j ∈ {1, 2, 3}, ∃µ′ ∈ Q\{0}, µ′(ai, ci) = (aj, cj). Substituting into relation (1.11),

we get µ′ = ±pj/pi because A′ = λ1
−1M(a1, c1) 6= 0 by anisotropy of M over Q. Hence :

ai ≡ ci ≡ 0 [pi] and aj ≡ cj ≡ 0 [pj] (1.12)

Since {i, j} ⊂ {1, 2, 3}, either i ∈ {1, 2} or j ∈ {1, 2}. We may assume that i = 1. From
the relations (1.10) and (1.12) we deduce that α1 ∈ p1Γ(2), which contradicts the assumption
α1 ∈ Rpr(p1

n). This ends the proof of the Proposition.

Proposition 1.4 Let M, M1, . . . , Mr be binary quadratic forms representing points or

closed geodesics of Γ(2)\H2. Then there exists infinitely many primes p

such that ∀α ∈ R(p) ∪Rpr(p2) ∀ j = 1 . . . r M [α] 6= λjMj (1.13)

Proof : by Proposition 1.3, if the forms M and M ′ are not Q-forms, for all primes p except

at most 4, we have ∀α ∈ R(p) ∪ Rpr(p2), M [α] 6= λM ′. Hence, we just have to give the

proof for Q-forms. We shall set M = [A,B,C] with A, B and C ∈ Z, and ∀ i = 1 . . . r,

Mi = [Ai, Bi, Ci] with Ai, Bi and Ci ∈ Z.

Let p ∈ P, j ∈
{
1, . . . r

}
, n = 1 or 2 and α ∈ Rpr(pn) such that M [α] = λjMj . Let us

note that λj ∈ Q\{0} because α ∈ GL(2,Q) and M 6= 0. By taking the determinants of both

sides in relation M [α] = λjMj , we get

λj = pnκj with κj = ±
√

detM detMj
−1 ∈ Q\{0}

9



We restrict ourselves in the sequel to primes p such that ∀ j, ordp(κj) = 0. As α ∈ GL(2,Q),
the relation M [α] = λjMj implies that M and Mj are simultaneously isotropic or anisotropic
over Q. Thus we just have to investigate both cases.

• Anisotropic Case : the quadratic form M has for discriminant B2 − AC = d(M) ∈ Z,
so that M is anisotropic over a field K if and only if d(M) is not a square in K. As a
consequence d(M) is not a square in Q ; let us consider the primes p satisfying

∀ j = 1 . . . r ordp(κj) = 0 and

(
d(M)

p

)

= −1 (1.14)

They form (cf. [11]) a set of Dirichlet density 1/2 in P, therefore infinite. For such primes p,
the form M is still anisotropic over Qp.

If ∃α ∈ Rpr(pn), ∃ j ∈ {1 . . . r}, M [α] = λjMj , then for α =

(
a b
c d

)

{

Aa2 + 2Bac+ Cc2 = λjAj = κjp
nAj = M(a, c)

Ab2 + 2Bbd+ Cd2 = λjCj = κjp
nCj = M(b, d)

and, because Aj , Cj ∈ Z and ordp(κj) = 0, we get M(a, c) ≡ M(b, d) ≡ 0 [p]. Therefore,
by the anisotropy of M on Qp , α ∈ pR(1) is not primitive, which contradicts the choice of α.
Thus in the anisotropic case, for all p ∈ P satisfying the relation (1.14),

∀α ∈ R(p) ∪ Rpr(p2) ∀ j = 1 . . . r M [α] 6= λjMj

• Isotropic Case : we consider non degenerate quadratic forms with integer coefficients.
Thus they split overQ as a product of two linear forms that are independant by non-degeneracy.
LetM be such a form : it has two roots z1, z2 ∈ Q∪∞ ; let γM be the geodesic ofH2 connecting
these two points. We will show that γM cannot be a closed geodesic of X.

We look for γ =

(
a b
c d

)

∈ Γ(2) such that γ(z1) = z1 and γ(z2) = z2.

If z1 = ∞ and z2 ∈ Q : γ(∞) = ∞ =⇒ c = 0 =⇒ ad = 1. As a and d are integers,
a = d = ±1 and γ is not hyperbolic.

If z1 6= z2 ∈ Q : we have c 6= 0 and γ(x) = x ⇐⇒ cx2 + (d− a)x− b = 0. The two fixed
points of γ are then

z1,2 =
a− d±

√

(a+ d)2 − 4

2c

Thus z1, z2 ∈ Q =⇒
√

(a+ d)2 − 4 ∈ Q =⇒ ∃ y ∈ Q, y2 = (a+ d)2 − 4 ∈ Z so that

∃ y ∈ Z (a + d+ y)(a+ d− y) = 4

The integers a+ d+ y and a+ d− y being of same parity, necessarily a+ d+ y = a+ d− y =
a+ d = ±2 : γ cannot be hyperbolic.

Hence, γM is not the axis of any hyperbolic element of Γ(2) : owing to Proposition 1.2,
we can state that the binary quadratic Q-forms isotropic on Q are not associated with closed
geodesics of X = Γ(2)\H2. This ends the proof of the Proposition.
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1.4 Separation of points and geodesics

Proposition 1.5 Let Λ be a non-empty set contained in a finite union of closed geodesics

of X = Γ(2)\H2. There exists a modular correspondence Cp separating Λ.

Proof : given two points z, z′ ∈ H2 and M, M ′ the associated binary quadratic forms,
we have z = z′ ⇐⇒ ∃λ ∈ R, M ′ = λM . The same goes for two geodesics. We recall briefly
the proof presented in [9].

• Λ is finite : let us write Λ = {z1, . . . , zl}. We take z̃1, . . . , z̃l liftings to H2 and
M1, . . . , Ml the associated binary quadratic forms. Proposition 1.4 applied to them gives

∃ p ∈ P ∀α ∈ R(p) ∪Rpr(p2) ∀ j = 1 . . . l α · z̃1 6= z̃j (1.15)

We set R(1)\R(p) = {Γ(2)α1, . . . , Γ(2)αn} and w = Γ(2)α1z̃1 ∈ H2. Then, according to
relation (1.15), we have ∀ j = 1 . . . l, w 6= Γ(2)z̃j so that w /∈ Λ. Consider the correspondence
Cp(w) =

{
Γ(2)α1α1z̃1, . . . , Γ(2)αnα1z̃1

}
. From Lemma 1.3, we deduce

Cp(w) =
{
z1
}
∪B where B ⊂

{
Γ(2)α z̃1, α ∈ Rpr(p2)

}
= Cp2(z1)

As Cp2(z1)∩Λ = ∅ by relation (1.15), then Cp(w)∩Λ = {z1}. Hence, for this choice of w, we
have shown that Cp separates Λ in the sense of section 1.1.

• Λ is infinite : Λ ⊂ F1 ∪ · · · ∪ Fr , where the Fi are closed geodesics. Besides, at least one
of the sets Λ∩Fi, 1 6 i 6 r is infinite : we may assume Λ∩F1 is infinite. Let F̃1, . . . , F̃r be
liftings of those geodesics to H2. As before, we have according to Proposition 1.4

∃ p ∈ P ∀α ∈ R(p) ∪ Rpr(p2) ∀ j = 1 . . . r α · F̃1 6= F̃j (1.16)

From Lemma 1.1, F ∩ G is finite for two distinct closed geodesics F and G of X = Γ(2)\H2.
Hence, µ1 = Cp(F1) ∩ (F1 ∪ · · · ∪ Fr) and µ2 = Cp2(F1) ∩ (F1 ∪ · · · ∪ Fr) are finite subsets of
X according to relation (1.16). As a consequence

ν1 =
{
z ∈ X /Cp(z) ∩ µ1 6= ∅

}
and ν2 =

{
z ∈ X /Cp2(z) ∩ µ2 6= ∅

}

are finite subsets of X too and, Λ ∩ F1 being infinite, there exists z ∈ Λ ∩ F1\(ν1 ∩ ν2). Let
z̃ be a lifting of z to H2 and w = Γ(2)α1z̃ ∈ Cp(z) ⊂ Cp(F1). Because z /∈ ν1, we have
Cp(z) ∩ µ1 = ∅ so that Cp(z) ∩ Λ = ∅ (cf. z ∈ F1) and w /∈ Λ.

As before, Cp(w) = {z} ∪ B′ where B′ ⊂ Cp2(z). Finally z /∈ ν2 implies Cp2(z) ∩ µ2 = ∅,
so that Cp2(z) ∩ Λ = ∅ and Cp(w) ∩ Λ = {z} : thus Cp separates Λ. This ends the proof.

Conclusion : proof of Theorem 1.1

Let Λ be a non-empty closed set contained in such a finite union of closed geodesics of X,
and ν a quantum limit on X. Let (φj)j∈N be the associated sequence of eigenfunctions of ∆.
We make the assumption – as in [9], where an orthonormal basis of common eigenfunctions of
the operators ∆ and (Tn)n∈N is considered – that they’re also eigenfunctions of the modular
operators (that commute with ∆) as “all evidence points to the spectrum of ∆ being simple
...”. We shall make a similar assumption in section 9.

So our quantum limit is associated to a sequence of eigenfunctions of TC , where C = Cp

is the modular correspondence separating Λ given by Proposition 1.5 : owing to Proposition
1.1, we deduce that singsupp ν 6= Λ. This proves Theorem 1.1.
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2 Hyperbolic Geometry in dimension 3

2.1 Definition

• We take as model of hyperbolic space the upper half-space H3 =
{

(x, y, t) ∈ R3
/
t > 0

}
.

Using the classical notation j = 1 ∧ i ∈ R3 we getH3 =
{
z + t j

/
z ∈ C, t > 0

}

Therefore, we shall identify H3 with the subset R⊕R i⊕R+j of the algebra of quaternions of
Hamilton H = R[1, i, j,k]. The space H3 is provided with the Riemannian hyperbolic metric

ds2 =
|dz|2 + dt2

t2
=

dx2 + dy2 + dt2

t2

It is of constant sectional curvature K = −1 and defines the volume form dvol = dx dy dz/t3.
Finally the associated Laplace-Beltrami operator is

∆ = t2
(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂t2

)

− t
∂

∂t

• We deduce easily the geodesics of H3 from the ones of H2. They are the half-circles
centered on C and the half-lines orthogonal to C.

Moreover they are uniquely defined by their ending points, two distinct points of P1(C) ≃C∪∞ that are the roots of a unique proportionality class of non-degenerate binary quadratic
form with coefficient in C : as in dimension 2, it is a bijection.

C z1

z2

j

R

R j
∞

iRz3

1

i

γ1

γ2

Figure 3: Geodesics of H3

Let us now turn to the imbedded totally geodesic submanifolds (abbreviated itgs) of H3.
By definition, an imbedded submanifold S in a manifold X is called totally geodesic if and
only if for all (M,~u) ∈ TS, the geodesic of X tangent to ~u at M is contained in S.

In H3, the geodesics being the half-lines and the half-circles orthogonal to C, the itgs are
the half-planes orthogonal to C and the half-spheres centered on C.
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2.2 Isometries of H3

We know (cf. [8] for results of inversive geometry) that Is(H3) consists of extensions to R3

of the Möbius transformations of C
M(C) =

{

z 7−→ az + b

cz + d
, z 7−→ az + b

cz + d

/ (
a b
c d

)

∈ PSL(2,C)

}

and Is+(H3), whose elements are extensions of the complex fractional linear transformations, is
isomorphic to PSL(2,C) : we shall make the identification implicitely in the sequel. More pre-
cisely (always identifying H3 with a subset of H) we have the following action

∀ γ =

(
a b
c d

)

∈ SL(2,C) ∀x ∈ H3 γ · x = (ax+ b).(cx+ d)−1 (2.1)

This extension is also known as the Poincaré extension. The action on H3 of an element

γ =

(
a b
c d

)

∈ GL(2,C) with ad− bc = n 6= 0

is for c = 0

γ .





z

t



 =







az + b

d
∣
∣
∣
a

d

∣
∣
∣ t







(2.2)

and for c 6= 0

γ .






z

t




 =








a

c
− n

c

cz + d

|cz + d|2 + |c|2t2

|n|t
|cz + d|2 + |c|2t2








(2.3)

Finally, the classification of the elements of Is+(H2) extends to Is+(H3) : they are elliptic,
parabolic or hyperbolic according to their trace. The notion of axis of a hyperbolic element is
the same. The main difference is that an elliptic element does not have a unique fixed point inH3 but a whole geodesic of them. Indeed, for c 6= 0,

(
a b
c d

)(

z

t

)

=

(

z

t

)

⇐⇒
{

a + d = Tr(γ) = 2 Re(cz + d)

|cz + d|2 + |c|2t2 = 1

and there exists solutions in H3 (in fact an euclidean ellipse) iff Tr(γ)2 ∈ [0, 4[ : we are in the
elliptic case. For c = 0,

(
a b
0 d

)(

z

t

)

=

(

z

t

)

⇐⇒
{

(a− d)z + b = 1

|a| = |d| = 1

and there exists one solution in H3 for a 6= d ∈ S1,whence Tr(γ)2 = a2 + 2 + a−2 ∈ [0, 4[.

In the parabolic case – Tr(γ)2 = 4 with γ 6= ±I2 – or in the hyperbolic one – Tr(γ)2 /∈ [0, 4],
the resolution of the equation γ · z = z on C leads to the existence of a fixed attractive point
or two fixed (attractive and repulsive) points in C respectively. In both cases, the value of
c ∈ C does not have any importance.

13



3 Algebraic complements

3.1 Number theory

We base on [7] in this section.

3.1.1 Extensions and prime ideals

• LetK be a number field and L a finite extension. We denote by OK and OL their respective

rings of algebraic integers. Let B be a prime ideal of OL. The prime ideal P = B ∩ OK of

OK is called the underlying ideal to B. Moreover,
[
OL/B : OK/P ] 6

[L : K ] < ∞ ; we

denote this quantity by fL /K(B) : it is the degree of B over K.

Conversely, let us take a prime ideal P of OK. We have POL = B1
e1 . . .Bs

es where the

Bi are prime ideals of OL. The quantities ei are called ramification indices, and by setting

∀ i, fi = fL/K(Bi), we get s∑

i=1

eifi =
[L : K ] (3.1)

If ∃ i with ei > 1, we say that P is ramified. There is only a finite number of such ones.

• Let K be a number field, P a prime ideal of OK, pZ = P ∩ Z the underlying prime
ideal and f = fK/Q(P ) its degree over Q. We define the norm of the ideal P by

N(P )
def
= |OK/P | = pf

Given a set A of prime ideals of OK, we shall say that A is regular with density a in the set of
all prime ideals of OK if ∑

p∈A

N(P )−s ∼
s→1+

a log
1

s− 1
(3.2)

• Finally, let us take a finite extension L/K with normal closure M/K and Galois group

G = Gal
(M/K). The set of the prime ideals P of OK satisfying POL = B1 . . .Br with

∀ i = 1 . . . r, Bi prime ideal and fL/K(Bi) = fi fixed, is regular and its density is the relative

frequence in G of the elements of G that, in the left translation representation considered as
a permutation group of the set G, are the products of r disjoints cycles of length f1, . . . , fr.

3.1.2 Application to quadratic extensions

• Let K be a number field and take a ∈ OK\{1} square-free. The field L = K (
√
a) ≃K[X]/(X2−a) is a quadratic (hence Galois) extension ofK, and its Galois group is G = {Id, τ}

where τ 2 = Id. Moreover OL = OK[α], with α = (1+
√
a)/2 if a ≡ 1 [4] and α =

√
a otherwise

(we just use that an algebraic integer of L must have trace and norm in OK).

For a prime ideal P of OK, we have L/(P ) = K/(P )[X]/(X2 − a) and POL = B1
e1 . . .Bs

es

with
∑

i eifi =
[L : K ] = 2, so that only three situations occur :

i) POL = R, prime in OL, is inert in iff a is not a square modulo P (density 1/2)

ii) POL = RR, with R prime in OL, splits iff a is a square modulo P (density 1/2)

iii) POL = R2, with R prime in OL, is ramified iff a ∈ P . (density 0)

• From now on, K = Q(
√
d) where d ∈ Z\{1} is square free, and we consider a ∈ OK that

is not a square. Let us denote by A the set {P primes of OK / a is not a square modulo P} ,
that is of density 1/2, and by B the set { pZ = P ∩ Z / P ∈ A } of underlying ideals of Z.
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We shall divide B into three subsets B = B1 ∪B2 ∪B3, respectively the sets of ideals that are
inert, ramified or split.

If P ∩ Z = pZ ∈ B1 : pOK = P ∈ A so that N(P ) = p2 because fK/Q(P ) = 2.

If P ∩ Z = pZ ∈ B2 ∪ B3 : pOK = P 2 or PP with P ∈ A, hence N(P ) = p.

An ideal pZ of B either splits (pZ ∈ B3) and there are two prime ideals of A above it, or it is
inert or ramified (pZ ∈ B1 ∪B2) and there is only one above it. Therefore

∑

P∈A

N(P )−s =
∑

pZ∈B1

p−2s +
∑

pZ∈B2

p−s + 2
∑

pZ∈B3

p−s =⇒
∑

P∈A

N(P )−s
6 2

∑

pZ∈B

p−s

Since A is of density 1/2, B contains a subset of density greater than 1/4. This proves

Proposition 3.1 Let d ∈ Z\{1} be square-free, K = Q(√d) a quadratic extension and

a ∈ OK that is not a square. There exists a regular subset C ⊂ P of density

greater than 1/4 such that for any prime ideal P of OK satisfying P∩Z = pZ
with p ∈ C , a is not a square modulo P .

3.1.3 A result on Legendre character

Definition Let p ∈ P and K be a field number. Elements a1, a2, . . . , an of K are

called p-independent if, as soon as a1
x1 a2

x2 . . . an
xn (with xi ∈ Z for all i)

is a pth power in K, then xi ≡ 0 [p] for all i = 1 . . . r.

Applied to quadratic characters, a Theorem from [7] states

Theorem 3.1 Let a1, . . . , an ∈ Z be 2-independent integers and z1, . . . , zn ∈ {±1} fixed.

There exists infinitely many p ∈ P such that ∀ i = 1 . . . n,
(

ai

p

)

= zi.

Proposition 3.2 Let a1, . . . , an ∈ Z\N. There exists infinitely many primes p such

that ∀ i = 1 . . . n,
(

ai

p

)

= −1.

Proof : let a1, . . . , an ∈ Z\N. If they are 2-independent, the result is immediate by ap-
plication of Theorem 3.1. Otherwise, let us take a maximal 2-independent subfamily, that we
may take up to a relabelling to be a1, . . . , am with 1 6 m < n. According to Theorem 3.1,
there exists infinitely many primes p such that

∀ i = 1 . . .m

(
ai

p

)

= −1

Let p be such a prime satisfying : ∀ i = m + 1 . . . n, ai 6≡ 0 [p], and let 1 6 j 6 n −m.
Because the selected 2-independent family is maximal, the elements a1, . . . , am and am+j

are not 2-independent and, after simplification

∃ q ∈ Z ∃x1, . . . , xm ∈
{
0, 1
}

a1
x1 . . . am

xmam+j = q2 > 0

As ai < 0 for all i, then
m∑

i=1

xi is necessarily odd and

am+j = q2
m∏

i=1

a−xi

i =⇒
(
am+j

p

)

=
m∏

i=1

(
ai

p

)xi

= (−1)
∑

xi = −1

We can take any j with 1 6 j 6 n−m, which ends the proof.
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3.2 Quaternion algebras

3.2.1 Definition

We base on [2] in this section.

Definition Let a, b ∈ Q. We call quaternion algebra of type (a, b) on Q the Q-algebra

A = Q[1, ω,Ω, ωΩ], with the multiplication table ω2 = a, Ω2 = b and ωΩ+Ωω = 0.

Such an algebra will be denoted by A =
(

a,bQ ). We may assume without loss of generality that

a and b are square free integers. We shall also take a 6= 1 in the sequel.

• The center of A is Q. F =
{
q+ r ω

/
q, r ∈ Q } is a subfield of A isomorphic to Q(

√
a).

We shall identify F to Q(
√
a), and write any element of A as α = x0 + x1 ω+ x2 Ω + x3 ωΩ =

ξ + ηΩ , with ξ = x0 + x1 ω, η = x2 + x3 ω ∈ F . Note that ∀ ξ ∈ F, ξ Ω = Ω ξ
F
. We define :

� α = x0 − x1 ω − x2 Ω − x3 ωΩ = ξ
F − ηΩ the conjugate of α.

� Tr(α) = α + α = Tr(ξ) = 2x0 ∈ Q the trace of α.

� N(α) = αα = ξ ξ
F − b η ηF = (x0

2 − ax1
2) − b(x2

2 − ax3
2) ∈ Q its norm.

Proposition ∀α1, α2 ∈ A α1.α2 = α2.α1.

Theorem A has zero divisors ⇐⇒ A ≃ M(2,Q)

In this case we shall speak of matrix algebra. Otherwise, we have a division algebra, as the one
considered here. But, after extending the scalars to F, we have zero divisors and the mapping

ϕ : α = ξ + ηΩ 7−→
(

ξ η

b ηF ξ
F ) (3.3)

provides the identification of A ⊗ F with M(2,F). Let us note that ϕ leaves the trace and
the norm (as they are defined on A) invariant, the norm on Im(ϕ) ⊂ M(2,F) being quite
simply the determinant.

Finally, we will call a quaternion algebra definite or indefinite whether its norm is definite
(a < 0 and b < 0) or indefinite (a > 0 or b > 0) as a quaternary quadratic form on R.

• Going back to matrix algebras, we have the following characterization :

Proposition 3.3 Let b ∈ P. If A =
(

a,bQ ) is a matrix algebra, then
(a

b

)

= 1.

Proof : given α = x0 + x1ω + x2Ω + x3ωΩ ∈ A, its norm is

N(α) = (x0
2 − ax1

2) − b(x2
2 − ax3

2) = (x0
2 − bx2

2) − a(x1
2 − bx3

2) (3.4)

If α ∈ A is a divisor of 0, we have α 6= 0 and N(α) = 0. Hence, by relation (3.4),

x0
2 − ax1

2 = b
(
x2

2 − ax3
2
)

with ∀ i = 0 . . . 3, xi ∈ Q
After the multiplication by the least common multiple of the denominators of the xi, we obtain

y0
2 − ay1

2 = b
(
y2

2 − ay3
2
)

where ∀ i = 0 . . . 3, yi ∈ Z
16



Let us deal with this equation :

(i) If b does not divide y1 : as y0
2 − ay1

2 ≡ 0
[
b
]
, then a ≡

(
y0

y1

)2
[
b
]

and a is a square
modulo b.

(ii) If b divides y1 : then b divides y0
2 so that, b being prime, b divides y0. By noting

y′0 = y0/b and y′1 = y1/b, we get
y2

2 − ay3
2 = b

(
y′0

2 − ay′1
2)

We find in case (ii) an equation in y2, y3 of the same type as before. Therefore after a finite
number of simplifications by b, we are in case (i), unless y1 = y3 = 0. In this last case, we have
y0

2 = by2
2 6= 0 as α 6= 0 , so that b ∈ Z is a square in Q i.e. in Z, which cannot happen for

b ∈ P. So we have shown

For b ∈ P A matrix algebra =⇒
(

a is a square modulo b
)

3.2.2 Definition of a discrete group of isometries associated to A

Definition An order I in A is a subring of A such that

1) 1 ∈ I.

2) α ∈ I =⇒ N(α) & Tr(α) ∈ Z.

3) I has four linearly independent generators over Q.

Thus, I is a free Z-module of rank four in A, that is besides stable under the conjugation.

For example, I0 = OF⊕OFΩ =
{
ξ+ηΩ

/
ξ, η ∈ OF } is a particular order for any quaternion

algebra A =
(

a,bQ ), and M(2,Z) is an order for the matrix algebra A = M(2,Q).

Proposition 3.4 Let I be an order. Then ∃D, D′ ∈ Z\{0} D′I ⊂ DI0 ⊂ I.

Proof : the orders I and I0 being two free Z-modules of rank four in A, their Z-bases
are two Q-bases of A. Let us call M ∈ GL(4,Q) any transition matrix from a basis of I

to a basis of I0. We just have to take two integers D and D′ such that DM ∈ M(4,Z)
and D′D−1M−1 ∈ M(4,Z) to satisfy the above property. Moreover, OF ≃ Z2 and I ≃ Z4 is
countable.

• Given n ∈ Z, we define I(n) =
{
α ∈ I

/
N(α) = n

}
and Ipr(n) = I(n)∩Ipr the subset

of primitive elements, where the primitive elements are the ones that cannot be divided in I

by a non trivial integer.

Proposition 3.5 Let p ∈ P be a prime such that ordp(2abDD
′) = 0 and

(
a
p

)

= −1.

∀α = ξ + ηΩ ∈ Ipr, N(α) ≡ 0 [p] =⇒ ordp N(ξ) = ordp N(η) = 0.

In particular, ξ η 6= 0 for such an α.

Proof : let p ∈ P and α = ξ + ηΩ ∈ I satisfy the above assumptions ; thus we have

N(α) = ξ ξ
F − b η ηF = N(ξ) − bN(η) ≡ 0 [p]. As D′I ⊂ DI0 ⊂ I, then D′ξ = Dξ1 and

D′η = Dη1 with ξ1, η1 ∈ OF. Besides, ordp(DD
′) = 0 so that ordp N(ξ) = ordp N(ξ1) > 0

and ordp N(η) = ordp N(η1) > 0 (we follow the classical convention ordp(0) = +∞). By taking

the norm, we get
N(D′α) = N

[
D(ξ1 + η1 Ω)

]
= D2

[
N(ξ1) − bN(η1)

]
≡ 0 [p]
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hence, as ordp(D) = 0, N(ξ1) − bN(η1) ≡ 0 [p] and ordp(b) = 0 implies

ordp N(ξ1) > 0 ⇐⇒ ordp N(η1) > 0

Let us assume that
ordp N(ξ) = ordp N(ξ1) > 0 (3.5)

ordp N(η) = ordp N(η1) > 0 (3.6)

a 6≡ 1[4] : as a consequence, OF = Z[
√
a] and ξ1 = b0 + b1

√
a with b0, b1 ∈ Z. Relation (3.5)

can be expressed as p / b0
2 − ab1

2.

. If p / b1, then p / b0 and ξ1 = p ξ2 with ξ2 ∈ OF.

. Otherwise a ≡
(
b0
b1

)2

[p] and

(
a

p

)

= 1, contradicting the assumption.

a ≡ 1[4] : in this case, OF = Z [1 +
√
a

2

]

and ξ1 =

(

b0 +
b1
2

)

+
b1
√
a

2
with b0, b1 ∈ Z.

We have p /N(2ξ1) thus p / (2b0 + b1)
2 − ab1

2.

. If p / b1, then p / 2b0 + b1 and p / b0, so that ξ1 = p ξ2 with ξ2 ∈ OF.

. Otherwise, a ≡
(

2b0
b1

+ 1

)2

[p] and

(
a

p

)

= 1, contradicting the assumption.

Therefore, relation (3.5) leads to ∃ ξ2 ∈ OF, ξ1 = p ξ2. In the same way, relation (3.6) leads

to ∃ η2 ∈ OF, η1 = p η2. Thus D′α = D
(
ξ1 + η1 Ω

)
= pD

(
ξ2 + η2 Ω

)
= pDα2 where α2 ∈ I0.

Because p ∧D′ = 1, there exists x, y ∈ Z such that xD′ + yp = 1 (Bézout) and

α = xD′α + pyα = p(xDα2 + yα). (3.7)

As α2 ∈ I0 and DI0 ⊂ I, we have Dα2 ∈ I and α ∈ pI : α is not primitive. This ends the
proof of the Proposition.

• Let A be an indefinite quaternion algebra of type (a, b) on Q ; we shall consider in the
sequel orders of type (q1, q2) in A ; they are principal and we can use them to define modular
correspondences (cf. [2] §3). For q1 = 1, these orders are simply the maximal ones.

Let I be such an order of type (q1, q2) and R = ϕ(I) its image in M(2,F), where ϕ is
defined by relation (3.3). We shall implicitely identify I with its image by ϕ and denote by
α = ξ + ηΩ any element of R. Via Poincaré extension, the set R∗ =

{
α ∈ R

/
det(α) 6= 0

}
is

identified with a subgroup of Is+(H3). For n ∧ q1q2 = 1, we define

R(n) = { α ∈ R / N(α) = n} (3.8)

Rpr(n) = { α ∈ R / α primitive and N(α) = n} (3.9)

which are infinite subsets of M(2,F). For example, let I be a maximal order containing I0 :
Pell-Fermat Theorem applied to the equation N(α) = x0

2 − ax1
2 − bx2

2 + abx3
2 = 1 implies

that I(1) is infinite because at least one of the square-free integers a, b is positive.

Let Γ
R

= R(1) be the discrete subgroup of SL(2,C) induced by R. We shall denote the
quotient space by X

R
= Γ

R
\H3 and the canonical projection by π

R
: H3 −→ Γ

R
\H3.
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To insure that X
R

inherits the Riemannian structure of H3, the group Γ
R

must not contain
any elliptic element.

Proposition 3.6 Let us assume that b ∈ P\{3}. If Γ
R

contains an elliptic element,

one of the integers a, −a or −3a is a square modulo b.

Proff : if Γ
R

contains an elliptic element, there exists α = ξ+ηΩ ∈ I such that |Tr(α)| < 2

and N(α) = ξ ξ
F − b η ηF = 1. Since I is an order, we have Tr(α) = Tr(ξ) ∈

{
− 1, 0,+1

}
.

Set ξ = x + y
√
a and η = z + t

√
a ∈ F, where x, y, z and t ∈ Q. Then N(α) = x2 − a y2 −

b(z2 − a t2) = 1 and Tr(α) = 2x ∈
{
− 1, 0,+1

}
. We shall assume that a 6≡ 0 [b] (otherwise a

would automatically be a square modulo b).

If x = 0 : then −ay2 = 1 + b(z2 − at2) and after multiplication by the least common
multiple of the denominators of y, z and t, we get −ay′2 = E2 + b(z′2 − at′2) with integers y′,
z′ and t′ such that y′ ∧ z′ ∧ t′ = 1.

. If y′ 6≡ 0 [b], −a ≡ E2/y′2 [b] and −a is a square modulo b.

. If y′ ≡ 0 [b], b divides E and z′2 − at′2 ≡ 0 [b] where z′ 6≡ 0 [b] and t′ 6≡ 0 [b] because

a 6≡ 0 [b] and y′ ∧ z′ ∧ t′ = 1 . Therefore a ≡ z′2/t′2 [b] and a is a square modulo b.

If x = ±1/2 : then −ay2 = 3/4+b(z2 −at2) and after multiplication by the least common
multiple of the denominators of y, z and t, we get −ay′2 = 3E2 + b(z′2 − at′2) with integers
y′, z′ and t′ such that y′ ∧ z′ ∧ t′ = 1. As in the case x = 0, we deduce that

. If y′ 6≡ 0 [b], −3a ≡ 9E2/y′2 [b] and −3a is a square modulo b.

. If y′ ≡ 0 [b], b divides E because |b| 6= 3, and z′2 − at′2 ≡ 0 [b] where z′ 6≡ 0 [b] and

t′ 6≡ 0 [b] because a 6≡ 0 [b] and y′ ∧ z′ ∧ t′ = 1. Thus a ≡ z′2/t′2 [b] and a is a square
modulo b, which ends the proof of the Proposition.

• For all n ∈ N such that n∧ q1q2 = 1, R(1)\R(n) is finite (cf. [2] §7) : we may define (as
in section 1.2.3) the modular correspondences on the quotient space X

R
= Γ

R
\H3 by

Tn f(z) =
∑

α∈R(1)\R(n)

f(α · z) Cn f(z) =
∑

α∈R(1)\Rpr (n)

f(α · z) (3.10)

We call these operators modular operators. They possess the classical properties of the modular
operators we have seen in dimension 2 (cf. section 1.2.3) and they are bounded linear operators
of L 2(X

R
). Moreover, the proof of Lemma 1.3 can be adapted to an order R : for any n ∈ N,

the set R(n) is stable under the passage to the comatrix, which corresponds to the conjugation
of the underlying element of I

ϕ(ξ + ηΩ) =

(
ξ η

bηF ξ
F ) ∈ R(n) =⇒ ϕ(ξ

F − ηΩ) =

(

ξ
F −η

−bηF ξ

)

∈ R(n) (3.11)

Adapting the proof of Lemma 1.3), we show that for p ∈ P such that p ∧ q1q2 = 1 (only such
p will be considered thereafter)

Proposition 3.7 |R(1)\R(p)| = m. We shall denote R(1)\R(p) =
{
R(1) σ1, . . . , R(1) σm

}
.

∀ i, ∃ ! j such that σjσi ∈ pR(1) and ∀ k 6= j, σkσi ∈ Rpr(p2).
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4 The quotient space X
R

= Γ
R
\H3

4.1 Definition of the studied class

We take an indefinite division algebra A =
(

a,bQ ) with a < 0 and b > 0, and consider an

order I of type (q1, q2), e.g. a maximal order containing the order I0, such that Γ
R

acts freely

on H3. This way, we get a class
(
K2

)
of quotient manifolds X

R
= Γ

R
\H3 that are Riemannian

and of sectional curvature K = −1 when provided with the metric induced by H3.

This class
(
K2

)
is far from being empty. Indeed, take a ∈ Z−\{−1,−3} and b ∈ P\{3}

such that a is not a square modulo b : A is an indefinite division quaternion algebra according

to Proposition 3.3. For the action of Γ
R

to be free, we just have to impose that −1 and
−3 are squares modulo b, by Proposition 3.6. Given a fixed, Theorem 3.1 shows that these

three conditions modulo b are simultaneously satisfied by infinitely many primes b, because

the negative integers a, −1 and −3 are 2-independent.

Definition The infinite set of
(
K2

)
-manifolds satisfying the conditions

a ∈ Z−, b ∈ P,
(a

b

)

= −1,

(−1

b

)

= 1,

(−3

b

)

= 1 (4.1)

is called the class
(
KS

2

)
.

For example, we can take a = −2 and b = 13.

4.2 Properties of
(
KS

2

)
-manifolds

• In the sequel of this work, we shall consider manifolds X
R

of the class
(
KS

2

)
. The conju-

gation in F ≃ Q(√a) coincides with the complex conjugation because a < 0.

Lemma 4.1 Let ξ ∈ F\{0}. Then ordb |ξ|2 is even.

Proof : let ξ = x′ + y′
√
a be any element in F. We can write

ξ =
p
(
x+ y

√
a
)

q

with q, p, x, y ∈ Z, x ∧ y = 1 and p ∧ q = 1. Assume that |x + y
√
a|2 = x2 − a y2 ≡ 0 [b].

If b divides y, then b divides x, which contradicts x ∧ y = 1. Therefore y 6≡ 0 [b] so that

a ≡
(
x

y

)2

[b] i.e
(a

b

)

= 1

and X
R

cannot be of class
(
KS

2

)
. Hence |x+ y

√
a|2 6≡ 0 [b] and, as |ξ|2 = p2 q−2 |x+ y

√
a|2,

we deduce that ordb |ξ|2 = 2
[
ordb (p) − ordb (q)

]
is even. This ends the proof of the Lemma.

Proposition 4.1 Let X
R

be a
(
KS

2

)
-manifold. Then Γ

R
has no parabolic element.

Proof : let us take a parabolic element γ = ξ + ηΩ in Γ
R
. By taking its opposite −γ if

necessary, we may always assume that ξ = 1 + x
√
a and η = y + z

√
a with x, y and z ∈ Q.

As N(γ) = 1, we have
0 = |ξ|2 − b |η|2 − 1 = −ax2 − b (y2 − az2)
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Let us multiply x, y and z by the least common multiple of their denominators and divide the
obtained integers by their greatest common divisor ; we get

aX2 + b (Y 2 − aZ2) = 0 with X, Y, Z ∈ Z and X ∧ Y ∧ Z = 1 (4.2)

Because b ∧ a = 1, b divides X. Setting X0 = X/b, we get after simplification

abX0
2 + Y 2 − aZ2 = 0 (4.3)

If b divides Z, b divides Y too, which contradicts the relation X ∧ Y ∧ Z = 1. Therefore

Z 6≡ 0 [b] and we get by reduction of (4.3) modulo b

a ≡
(
Y

Z

)2

[b] i.e.
(a

b

)

= 1

As a consequence, X
R

cannot be of class
(
KS

2

)
.

• Two geometrical properties of the space Γ(2)\H2 stated in section 1.2.2 extend directly
to the space X

R
, because Γ

R
acts freely and discontinuously on H3 cf. [8]. We have thus

Proposition 4.2 Let L be a closed geodesic of X
R

= Γ
R
\H3. There exists an hyperbolic

transformation γ ∈ Γ
R

whose axis L ⊂ H3 projects onto L in X
R
.

In particular, there exists a compact portion l of L such that L = π
R
(L) = π

R
(l) = πR(l).

Lemma 4.2 Let F and G be two closed geodesics of X
R
. Then F = G or F ∩G is finite.

• We have similar properties for closed itgs, which are compact itgs of X
R
.

Definition An itgs S of H3 is closed for Γ
R

if its projection S in X
R

is closed, that is

∃F ⊂ S compact ∃Γ′ ⊂ Γ
R

S =
⋃

γ∈Γ′

γ · F = Γ′.F (4.4)

Thus S = π
R
(S) = π

R
(F ). As the group Γ

R
is countable and the complete space S has non

empty interior, then F has non empty interior by Baire’s Lemma. More precisely

Proposition 4.3 Let S be a closed itgs of X
R

and S be a lifting to H3. There exists

a group Γ0 ⊂ Γ
R

and a compact subset F ⊂ S with non empty interior

such that
γ ∈ Γ0 ⇐⇒ γ · S = S and S =

⋃

γ∈Γ0

γ · F = γ0 · F

There exists moreover γ = ξ + ηΩ ∈ Γ0 hyperbolic, with and η 6= 0.

Proof : let Γ0 denote the set

Γ0 =
{
γ ∈ Γ

R

/
γ.F ⊂ S

}
⊃ Γ′ (4.5)

For γ ∈ Γ0, the set γ · S ∩ S ⊃ γF has non zero area. As γ · S and S are both itgs of H3

i.e. half-planes or half-spheres, γ · S = S. Conversely, the relation γ · S = S implies that
γ.F ⊂ γS = S and γ ∈ Γ0. Hence, Γ0 =

{
γ ∈ Γ

R
/ γ.S = S

}
. That Γ0 is a group is obvious.
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From the definition of the class
(
KS

2

)
and Proposition 4.1, we know that the groups Γ0 and

Γ
R

contain only hyperbolic elements except for {±Id} . Now Γ0 6= ±Id otherwise S = F

would be a compact itgs in H3, and we can find a hyperbolic element γ = ξ + ηΩ ∈ Γ0. Then

|ξ|2 > Re2(ξ) > 1 and b |η|2 = |ξ|2 − N(γ) = |ξ|2 − 1 > 0, so that η 6= 0.

Lemma 4.3 Let S1 and S2 be two distinct closed itgs of X
R
. Their intersection S1∩S2 is

either the empty set or a closed geodesic of X
R
.

Proof : in a Riemannian manifold, two distinct itgs intersect transversally, because an itgs
is entirely defined by a point and the tangent space at this point. Then their intersection has
dimension 1 if it is not empty.

Since S1 and S2 are closed itgs of X
R
, they are compact. Hence, L = S1∩S2 is a compact

subset of X
R
. If L 6= ∅, it is a complete geodesic because for (M,~u) ∈ TL, the geodesic of X

R

tangent to ~u at M is contained in both S1 and S2. As L is compact, it is a closed geodesic
of X

R
.

4.3 The type So and Γ
R
- closed itgs

• The half-sphere So = S
(
O, 1/

√
b
)

is invariant under the action of all the isometries
induced by A ⊗R : given γ = ξ + ηΩ ∈ A ⊗R such that N(γ) = |ξ|2 − b |η|2 6= 0, we have

∀ θ ∈ R ∣
∣γ(b−1/2 eiθ)

∣
∣ =

∣
∣
∣
∣

ξeiθb−1/2 + η

b ηeiθb−1/2 + ξ

∣
∣
∣
∣
=

1√
b

∣
∣
∣
∣
∣

ξ eiθ + η
√
b

η
√
b+ ξ e−iθ

∣
∣
∣
∣
∣
=

1√
b

(4.6)

whence γ · (So ∩C) = So ∩ C and γ · So = So. We shall also denote by So the projection
of this half-sphere in X

R
. Unfortunately, we shall see in Appendix A that So is the only itgs

of H3 that is closed for Γ
R

: indeed, the subgroup Γ0 of elements of Γ
R

leaving an itgs S
invariant is generically a one-parameter group (cf. I is a Z-modulus of rank 4) so that Γ0\S
cannot be compact.

• Lacking of closed itgs in X
R
, we shall use instead the weaker notion of Γ

R
- closed itgs and

look for modular correspondances separating points, closed geodesics or Γ
R

- closed itgs.

Definition An itgs S of H3 is called Γ
R

- closed if there exists γ = ξ+ηΩ ∈ Γ
R

hyperbolic

such that γ · S = S. Its projection S in X
R

is also called a Γ
R

- closed itgs.

There are infinitely many of them, as we shall see in Proposition 8.3 section 8.

Lemma 4.4 Let S1 and S2 be to distinct Γ
R

- closed itgs of X
R
. Then area(S1∩S2) = 0.

Proof : it is a straightforward corollary of the first part of the proof of Lemma 4.3, since
every 1-dimensional set has zero area. Just be aware that the notion of area is here inherent
to the manifold Σ1 (for example), which is provided with the Riemannian metric induced byH3. That will be – and has been – always the case : we only mention the area of subsets of
two-dimensional imbedded manifolds of X

R
.

Definition We say that Λ ⊂ X
R

has type (So) if Λ is contained in a finite union of

Γ
R

- closed itgs and area(Λ) = area(Λ ∩ So) 6= 0.
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5 Statement of the result in dimension 3

Theorem 5.1 Let X
R

= Γ
R
\H3 be a 3-dimensional manifold, Γ

R
being a discrete subgroup

of Is+(H3) derived from an indefinite quaternion algebra A =
(

a, bQ ).
We shall assume moreover that X

R
is a manifold of class

(
KS

2

)
.

Let Λ ⊂ X
R

be a non empty set contained in a finite union of isolated points,

closed geodesics and Γ
R

- closed itgs of X
R

(we assume in that area(Λ) 6= 0 in

this last case) that has not type (So). Then Λ cannot be the singular support

of a quantum limit on X
R
.

First we prove a separation result on such a subset Λ :

Proposition 5.1 Let X
R

be a manifold of class
(
KS

2

)
. For all non-empty subset Λ ⊂ X

R

contained in a finite union of isolated points, closed geodesics and Γ
R

- closed

itgs (with area(Λ) 6= 0 in this last case) that has not type (So), there exists

a correspondence T separating Λ.

We shall distinguish three cases and treat them separately in sections 6 to 8 :

1) Λ is finite

2) Λ ⊂ F1 ∪ · · · ∪ Fr a finite union of closed geodesics

3) Λ ⊂ S1 ∪ · · · ∪ Sl a finite union of Γ
R

- closed itgs.

and complete the proof in section 9. Let us first state a proposition that will simplify the
calculations in the sequel. We call objects of the same type of X

R
a set of points, a set of

closed geodesics or a set of Γ
R

- closed itgs of X
R

= Γ
R
\H3.

Proposition 5.2 Let F1, . . . , Fr be objects of the same type of X
R

and G1, . . . , Gr fixed

liftings of these objects to H3. There exists a finite subset of prime numbers

F ⊂ P such that, given p ∈ P\F , the relation

∃α ∈ R(p) ∪ Rpr(p2) ∃ i ∈ {1 . . . r} α ·G1 = Gi

leads to

∃N ∈ F ∃ α̃ ∈ Rpr(N p) ∪Rpr(N2p2) α̃ ·G1 = G1 (5.1)

Proof : let us fix n = 1 or 2 and assume that ∃ i ∈ {1, . . . , r}, ∃ pi ∈ P, ∃αi ∈ Rpr(pi
n),

αi · G1 = Gi. As a consequence G1 = Com(αi) · Gi. Take p 6= pi ∈ P and α ∈ Rpr(pn) :
α · G1 = Gi =⇒ α̃ · G1 = G1 where α̃ = Com(αi)α ∈ R(pi

npn) = R(Nnpn). This element is
primitive : otherwise, n = 2 and α̃ ∈ pR or α̃ ∈ piR as p and pi are both primes, whence

. if α̃ ∈ pR then αi α̃ = αiCom(αi)α = pi
2α ∈ pR and α ∈ pR as pgcd(pi, p) = 1,

a contradiction with α ∈ Rpr(p2).

. if α̃ ∈ piR then α̃Com(α) = Com(αi)αCom(α) = p2Com(αi) ∈ piR and αi ∈ piR,
a similar contradiction.

Proceeding the same way with all the indices i ∈ {1 . . . r}, we get to relation (5.1) after exclusion
of at most r values of p ∈ P, the forementionned set F = {p1, . . . , pr}.
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6 Case of the points

• Let Λ =
{
x̃1, . . . , x̃l

}
be a set of points of X

R
and xi = (zi, ti) ∈ H3 liftings of the

points x̃i for i = 1 . . . l. Let us apply Proposition 5.2 to those points : for n = 1 or 2, N ∈ F

and p ∈ P\F a prime satisfying the assumptions of Proposition 3.5 i.e.

ordp(2abDD
′) = 0 and

(
a

p

)

= −1 (6.1)

we take α = ξ+ηΩ ∈ Rpr(Nnpn) such that α ·x1 = x1. In that case, ordp |ξ|2 = ordp |η|2 = 0 ;
in particular ξ 6= 0 and η 6= 0. By relation (2.3), the action of α as an isometry of H3 is

α ·
(

z

t

)

=







ξ

bη
− Nnpn

bη

ξ + bηz

|ξ + bηz|2 + b2|η|2t2
Nnpnt

|ξ + bηz|2 + b2|η|2t2







It is well defined for any t > 0 because η 6= 0. The relation α · x1 = x1 implies

Nnpn = |ξ + b η z1|2 + b2 |η|2 t12 = |ξ|2 − b |η|2 (6.2)

η z1 + η z1 = 0 (6.3)

Note that z1 6= 0, otherwise relation (6.2) gives |ξ|2+b2 |η|2 t12 = |ξ|2−b |η|2 so that |η| = 0,
a contradiction. As a consequence, we deduce from relation (6.3) that

−z1
z1

=
η

η
= constant ∈ F

Fix η0 ∈ OF such that η0/η0 = −z1/z1. We have

η

η
=
η0

η0

whence
η

η0

=
η

η0

∈ R ∩ F = Q (because a < 0)

so that ∃m ∈ Q, η = mη0. As D′ η ∈ OF by Proposition 3.4, we get by taking the norm
m2D′2 |η0|2 ∈ Z, with D′2 |η0|2 fixed in Z. Thus, there exists E ∈ N fixed (i.e. only depending
on η0) such that Em ∈ Z∗. The expansion of relation (6.2) provides

Nn pn = |ξ|2 + 2 bmRe (ξ0 η0 z1) + b2 m2 |η0|2 (t1
2 + |z1|2) = |ξ|2 − bm2 |η0|2

and we get after simplification by bm 6= 0, we get

2 Re (ξ η0 z1) +m |η0|2
[
1 + b (t1

2 + |z1|2)
]

= 0 (6.4)

As D′ ξ ∈ OF by Proposition 3.4, we have 2D′ξ = X + Y
√
a with X, Y ∈ Z. The coefficient

of m in relation (6.4) being strictly positive because b > 0, then m is a linear function of X
and Y . Hence the middle term of (6.2) is a definite positive quadratic form of the two integer
variables X and Y , which we will write

Nn pn = c1X
2 + c2XY + c3Y

2 (6.5)

A priori c1, c2, c3 ∈ R ; moreover c2
2−4c1c3 < 0 since the quadratic form is definite positive.

• Let us suppose that for all N ∈ F , there are at most two primes p ∈ P\F satisfying
both relations (6.1) and (6.5) ; let ∆ ∈ N be the product of all those primes p. For all
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p ∈ P\F satisfying relation (6.1) and such that ordp(∆) = 0, for all N ∈ F and for all
α ∈ Rpr(N2p2) ∪ R(Np), we have α · x1 6= x1. We deduce from Proposition 5.2 that

∀ p ∈ P\F such that ordp(2abDD
′∆) = 0 and

(
a

p

)

= −1

∀α ∈ R(p) ∪Rpr(p2) ∀ i ∈ { 1 . . . l } α · x1 6= xi

(6.6)

We know that there are infinitely many convenient primes p ; they even form a regular subset
of P of density 1/2.

• Now assume that for some N ∈ F , equation (6.5) is solvable for at least three distinct
primes p1, p2, p3 satisfying relation (6.1) : we have three points (Xi : Yi)i=1,2,3 ∈ P1(Q)
such that

∀ i = 1 . . . 3 Nn pi
n = c1Xi

2 + c2XiYi + c3Yi
2 (6.7)

Using these three relations, we shall show that c1, c2, c3 ∈ Q. If (Xi : Yi) = (Xj : Yj) for
i 6= j, n = 2 and pj(Xi : Yi) = pi(Xj : Yj) ; since pgcd(pi, pj) = 1, αi ∈ piR, a contradiction
with relation (6.1) and Proposition 3.5. Thus (X1 : Y1), (X2 : Y2) and (X3 : Y3) are three
distinct points of P1(Q). By relation (6.7), we can write






X1
2 X1Y1 Y1

2

X2
2 X2Y2 Y2

2

X3
2 X3Y3 Y3

2











c1

c2

c3




 = Nn






p1
n

p2
n

p3
n




 ∈ Z3

The above Vandermonde matrix has a non-zero determinant
∏

i<j(YjXi − YiXj) ∈ Q∗ so that
c1, c2, c3 ∈ Q after inversion of the linear system. Thus, relation (6.5) becomes

κpn = αX2 + βXY + γY 2 with p ∈ P\F X, Y ∈ Z (6.8)

with κ, α, β, γ ∈ Z. Besides, δ = β2−4αγ < 0 as the quadratic form in the previous relation
is positive definite. By reduction modulo p of relation (6.8), we finally get

δ is a square modulo p (6.9)

Therefore, if p ∈ P\F satisfies

ordp(2abDD
′) = 0

(
a

p

)

= −1 and

(
δ

p

)

= −1 (6.10)

we have according to relations (6.1) and (6.9)

∀N ∈ F ∀α ∈ R(Np) ∪ Rpr(N2p2) α.x1 6= x1

whence, by Proposition 5.2

∀α ∈ R(p) ∪Rpr(p2) ∀ i ∈ {1, . . . , l} α.x1 6= xi (6.11)

By Proposition 3.2, a and δ being strictly negative integers, there exists infinitely many primes
p /∈ F satisfying relations (6.10) and – as a consequence – (6.11). Together with relation (6.6),
this leads to

Proposition 6.1 Let x1, . . . , xl be points of H3. There exists infinitely many primes p

such that
∀α ∈ R(p) ∪ Rpr(p2) ∀ i ∈ {1, . . . , l} α · x1 6= xi (6.11)
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7 The geodesics

The proof presented in [9] still holds ; we associate to any geodesic of H3 a proportionality
class of complex binary quadratic and, using Proposition 3.1, we obtain

Proposition 7.1 Let L1, . . . , Lr be geodesics of H3. There exists infinitely many primes p

such that
∀α ∈ R(p) ∪ Rpr(p2) ∀ i ∈ {1 . . . r} α · L1 6= Li (7.1)

8 Case of the Γ
R
- closed Itgs

Keep in mind that the itgs of H3 are the half-spheres centered on C and the half-planes
orthogonal to C. Only such half-spheres and half-planes will be considered in the sequel of this
section, without need for us to mention it.

Definition Let S be an itgs of H3. Its trace C on C is the set of its limit points in C,

that is C = S ∩C in R3.

The trace of an itgs of H3 is then either a circle, either a straight line of C – id est a circle
of P1(C). Moreover, each itgs its uniquely defined by its trace on C, whence

Proposition There is a bijection between the itgs of H3 and the circles of P1(C).

As a consequence, the action of an isometry on an itgs in H3 is entirely determinated by the
former’s action on the latter’s trace in C, much more easy to deal with. In particular

Proposition 8.1 Let S1 and S2 be two itgs of H3 whose traces on C are C1 and C2

respectively. Then

∀ γ ∈ SL(2,C) γ · S1 = S2 ⇐⇒ γ(C1) = C2

To obtain a separation result on a finite set of Γ
R

- closed itgs of H3, we shall deal with
isometries leaving such an itgs invariant, and then apply Proposition 5.2. We shall prove by
the way the existence of infinitely many Γ

R
- closed itgs in a manifold X

R
of class

(
KS

2

)
.

8.1 Of the half-planes

Proposition 8.2 Let the half-plane P be an itgs of H3, and D be its trace. Consider an

element γ =

(
a b
c d

)

∈ SL(2,C) with a+ d 6= 0 and c 6= 0 :

γ · P = P ⇐⇒







a

c
∈ D ,

−d
c

∈ D : D is given by relation (8.1)

(a+ d)2 ∈ R
Proof : we have by Proposition 8.1

γ · P = P ⇐⇒ γ(D) = D
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If γ(D) = D , then γ(∞) = a/c ∈ D and γ−1(∞) = −d/c 6= a/c ∈ D ; so

z ∈ D ⇐⇒ ∃λ ∈ R, z = λ
(a

c

)

+ (1 − λ)

(−d
c

)

=
λ a+ (λ− 1) d

c
=
λ (a+ d) − d

c

⇐⇒ cz + d

a+ d
∈ R ⇐⇒ cz − a

a+ d
∈ R

whence

D =

{

z ∈ C /

Im

(
cz

a+ d

)

= Im

(
a

a+ d

)

= Im

( −d
a+ d

) }

(8.1)

Moreover, a/c ∈ D = γ(D) so that

γ
(a

c

)

∈ D ⇐⇒ a2 + bc

c(a + d)
∈ D

⇐⇒ Im

(
a2 + bc

(a+ d)2

)

= Im

(
a

a+ d

)

= Im

(
a2 + ad

(a+ d)2

)

⇐⇒ Im

(
ad− bc

(a+ d)2

)

= Im

(
1

(a+ d)2

)

⇐⇒ (a + d)2 ∈ R
Reciprocally, assume that a/c = γ(∞) ∈ D , −d/c = γ−1(∞) ∈ D and (a + d)2 ∈ R : by

relation (8.1), we still have γ(a/c) ∈ D ; besides

γ
(a

c

)

=
a2 + bc

c(a + d)
6= a

c
since ad− bc = 1 6= 0

Therefore, the isometry γ takes the three distinct points ∞, a/c, −d/c of D into a/c, γ(a/c)
and ∞, which also are distinct points of D : any circle of P1(C) being uniquely defined by
three points, we have de facto γ(D) = D , which ends the proof.

Keep in mind that for any hyperbolic element γ = ξ+ηΩ ∈ Γ
R
, we have Tr(γ) = Tr(ξ) 6= 0

and η 6= 0 (cf. proof of Proposition 4.3) : those elements, which are the only interesting ones
for us, will satisfy the hypothesis of the above Proposition.

• We are now able to show easily the existence of infinitely many Γ
R

- closed itgs in H3.
Take any hyperbolic element γ = ξ+ηΩ ∈ Γ

R
: z1 = γ−1(∞) and z2 = γ(∞) are two distinct

points of C, since Tr(γ) 6= 0. Let us define the itgs Pγ by Pγ = Dγ ⊕R∗
+j, where

Dγ = (z1, z2) =
{

z ∈ C / Im(b η z) = Im(ξ)
}

(8.2)

Since Tr(γ) ∈ Z ⊂ R, we have γ(Dγ) = Dγ and γ · Pγ = Pγ by Proposition 8.2 : the
half-plane Pγ is a Γ

R
- closed itgs of H3. Furthermore :

Proposition 8.3 There exist infinitely many Γ
R

- closed itgs in H3, e.g. the half-planes

P(t) = D(t) ⊕R∗
+j = R(1 + t

√
a
)
⊕R∗

+ j for t ∈ Z.

Proof : let us fix t ∈ Z and look for an element γt = ξ + ηΩ ∈ Γ
R

having the form
γt = x+ y(1 + t

√
a) Ω, with x, y ∈ Z∗ ; γt is hyperbolic as y 6= 0, and relation (8.2) provides
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Dγt
= R (1 + t

√
a
)

= D(t). For such a γt,

N(γt) = 1 ⇐⇒ x2 − b (1 − at2) y2 = 1 (8.3)

and, by Fermat’s Theorem on the Equation of Pell, we can solve this equation for non-trivial
integers x, y as soon as d = b (1 − at2) is not a square in Z. But

b (1 − at2) is a square in Z =⇒ 1 − at2 ≡ 0 [b] =⇒
(a

b

)

= 1

a contradiction with the definition of the
(
KS

2

)
- manifolds. So, for each t ∈ Z, the natural

integer d = b (1 − at2) is not a square and we can find γt = ξt + ηt Ω ∈ Γ
R

such that
Dγt

= D(t) = R (1 + t
√
a
)
. This fullfills the proof.

Let us take for example a = −2 and b = 13 :

. for t = 0, d = 13, γ0 = 649 + 180Ω ∈ Γ
R

and P(0) = R⊕R∗
+ j.

. for t = 1, d = 39, γ1 = 25 + 4(1 + i
√

2)Ω ∈ Γ
R

and P(1) = R(1 + i
√

2
)
⊕R∗

+j.

. for t = 2, d = 117, γ2 = 649 + 60(1 + 2i
√

2)Ω ∈ Γ
R

and P(2) = R(1 + 2i
√

2
)
⊕R∗

+j.

We shall see other examples of Γ
R

- closed itgs in Appendix B, half-planes that do not containR∗
+j and miscellaneous half-spheres. Moreover, we shall prove that

Proposition 8.4 There exist infinitely many Γ
R

- closed itgs in X
R
.

• Let us finally state the main result of this section :

Proposition 8.5 Let P1 be a Γ
R

- closed half-plane of H3 and F a finite subset of P.

There exists infinitely many primes p ∈ P\F such that

∀N ∈ F ∀α ∈ Rpr(Np) ∪Rpr(N2p2) α · P1 6= P1 (8.4)

Proof : let D1 be the trace of P1 on C. As P1 is Γ
R

- closed, there exists a hyperbolic
element γ1 = ξ1 + η1 Ω ∈ Γ

R
such that γ1 · P1 = P1, whence γ · D1 = D1. Moreover η1 6= 0,

Tr(γ1) 6= 0 and we can apply Proposition 8.2 : we deduce from relation (8.1) that

D1 =
{

z ∈ C /

Im(b η1 z) = Im(ξ1)
}

(8.5)

Let us take a prime number p ∈ P\F satisfying the assumptions of Proposition 3.5

ordp(2abDD
′) = 0 and

(
a

p

)

= −1

and assume that for n = 1 or 2,

∃N ∈ F ∃α = ξ + ηΩ ∈ Rpr(Nnpn) α(D1) = D1 (8.6)

Then η 6= 0 and relation (8.6) implies that α−1(∞) = −ξ/bη ∈ D1 which means that

−Im

(
η1 ξ

η

)

= Im

(
η1 ξ

η

)

= Im(ξ1) and ∃λ ∈ R, ξ

η
=
λ+ i Im(ξ1)

η1

In fact, λ ∈ Q = R ∩ F because all the complex numbers considered belong to the number
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field F. From the norm equation N(α) = Nnpn, we deduce that

Nnpn = |ξ|2 − b |η|2 = |η|2
( |ξ|2
|η|2 − b

)

=
|η|2
|η1|2

[

λ2 + Im(ξ1)
2 − b |η1|2

]

From |ξ1|2 − b |η1|2 = N(γ1) = 1, we get Im(ξ1)
2 − b |η1|2 = 1 − Re(ξ1)

2 so that

Nnpn =
|η|2

4|η1|2
[

4λ2 + 4 − Tr(γ1)
2
]

(8.7)

By Proposition 3.5, ordp|η|2 = 0 ; we shall moreover impose ordp|η1|2 = 0. As Tr(γ1) ∈ Z,

relation (8.7) provides ordp(4λ
2) > 0 whence 4λ2 + 4 − Tr(γ1)

2 ≡ 0 [p], so that Tr(γ1)
2 − 4 is

a square modulo p.

Assume that the integer Tr(γ1)
2 − 4 is a square : Tr(γ1) = m ∈ Z and ∃n ∈ Z such

that m2 − 4 = n2, whence m2 − n2 = (|m| + |n|) × (|m| − |n|) = 4 = 2 × 2 = 4 × 1. Because

|m| + |n| > |m| − |n| > 0, we have the following alternative :

. either |m| + |n| = |m| − |n| = 2, so that n = 0 and m = Tr(γ1) = ±2, a contradiction
with γ1 hyperbolic.

. or |m| + |n| = 4 and |m| − |n| = 1, so that |m| = 5/2 ∈ N, a contradiction.

Hence, c = Tr(γ1)
2 − 4 is not a square. Since γ1 is hyperbolic, c > 0.

Finally, we see that ∀ (x, y) ∈ Z2, axcy square in Z =⇒ ax > 0 =⇒ x ≡ 0 [2] as a < 0,
whence cy is a square in Z and y ≡ 0 [2] because c is not a square in Z. Thus, a and c are
2-independent and there exists by Theorem 3.1 infinitely many primes p ∈ P such that

(
a

p

)

=

(
Tr(γ1)

2 − 4

p

)

= −1

If we restrict to the primes p ∈ P\F such that ordp(2abDD
′) = 0 = ordp|η1|2, we obtain by

relation (8.7) infinitely many primes for which relation (8.6) can’t be satisfied. They satisfy
therefore relation (8.4), which ends the proof of the Proposition.

8.2 Of the half-spheres

• We shall begin with a characterization of the half-spheres of H3 that are Γ
R

- closed
itgs. Let S = S(a1, r) be such an itgs and C = C(a1, r) be its trace on C : there exists a
hyperbolic element γ ∈ Γ

R
such that γ · S = S , whence γ(C ) = C . Using this relation, we

obtain a system of three algebraic equations that lead to

Proposition 8.6 Let S(a1, r) 6= So be a Γ
R

- closed itgs : a1 6= 0. If q = 1+b (|a1|2−r2) 6= 0,

then ζ =
a1

q
∈ F∗ and ∃ (X, Y ) ∈ Z×Q, a (1 − 4b|ζ |2) = (X2 − 4) Y 2 > 0.

Applying Proposition 8.6 to S1, we obtain relations on a1 and r (the same notations q
and ζ are used). Let F be a finite subset of P and n = 1 or 2. Then, for N ∈ F and
p ∈ P\F , consider α = ξ + ηΩ ∈ Rpr(Nnpn) such that α · S1 = S1. The case η = 0 is
straightforward. If η 6= 0, we proceed as in the proof of Proposition 8.6 and obtain a similar
system of three algebraic equations. From this system we deduce that except for finitely many
primes p : if q 6= 0 then a (1− 4 b |ζ |2) is a square modulo p ; if q = 0 then b |η1|2 is a square
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modulo p, where η1 is a fixed non nul integer of F that depends only on a1. Therefore, after
proving that the above quantites are not squares in Q, we deduce from Theorem 3.1 that

Proposition 8.7 Let S = S(a1, r) 6= So be a Γ
R

- closed itgs of H3 and F be a finite

subset of P. There exists infinitely many primes p ∈ P\F such that

∀N ∈ F ∀α ∈ Rpr(Np) ∪ Rpr(N2p2) α · S 6= S (8.8)

• First we need a technical lemma for both Propositions :

Lemma 8.1 Let C1 = C(a1, r1) and C2 = C(a2, r2) be two circles of C, N ∈ Z and

α = ξ + ηΩ ∈ Rpr(N) with η 6= 0. If α(C1) = C2, then

∃ ε = ±1







b
(
r1 η a2 − ε r2 η a1

)
=
(
r1 + εr2

)
ξ (8.13)

b2 r2
1 |η|2 − |ξ + b η a1|2 = Nε

r1
r2

(8.14)

|ξ|2 − b|η|2 = N (8.15)

Proof : assume the hypothesis of the Lemma. We have

∀ z ∈ C, α(z) =
ξz + η

bηz + ξ
=

ξ

bη
+

b|η|2 − |ξ|2
bη
(
bηz + ξ

) =
ξ

bη
− N

bη
(
bηz + ξ

)

so that

∀ z ∈ C, α(z) =
ξ

bη
+

k

z − ζ
where k = − N

b2η2 and ζ = −ξ/bη (8.9)

r1

a1

r2

a2

αI

ζ ζ̂

A2

B′A′

B2

A1 B1

αR

α

a′

r2

C2

C0

C ′
C1

Figure 4: Action of α on C1

Note that ζ /∈ C1 otherwise α(ζ) = ∞ ∈ C2, and that cannot happen. Relation (8.9) implies
that α = αR ◦ αI , where αI : z 7−→ ζ + |k|/(z − ζ) is an inversion of center ζ and αR is
an orientation reversing euclidean isometry of C.
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First we assume that ζ 6= a1. We denote by InvC1 the inversion of circle C1 and we set
ζ̂ =InvC1(ζ) = a1 + r2

1/(ζ − a1). All the circles passing through ζ and ζ̂ are orthogonal to
C1 because they are invariant under InvC1 . Let C0 be such a circle : αI .C0 is a line and it
is orthogonal to αI .C1 = C ′, hence it is a diameter. As a consequence, αI(ζ̂) = a′ – the
intersection of all the diameters of C ′ – is the center of C ′, and α(ζ̂) = αR ◦αI(ζ̂) = a2 is the
center of C2. We set (

ζ, a1

)
∩ C1 =

{
A1, B1

} (
ζ, a1

)
∩ C

′ =
{
A′, B′}

We take here as a convention that the points A1 and ζ are on the same side of a1 on the line
(ζ, a1), and that B1 and ζ are on opposite sides. We have A′ = αI(B1), B

′ = αI(A1) and

A1 − ζ =
a1 − ζ

|a1 − ζ |
(
|a1 − ζ | − r1

)
, B1 − ζ =

a1 − ζ

|a1 − ζ |
(
|a1 − ζ |+ r1

)
(8.10)

whence

A′ = ζ +
|a1 − ζ |
a1 − ζ

|k|
|a1 − ζ |+ r1

and B′ = ζ +
|a1 − ζ |
a1 − ζ

|k|
|a1 − ζ | − r1

Therefore 2r2 = |A′ − B′| = 2|k|r1/ |a1 − ζ |2 − r1
2|. We set ε = 1 if ζ is inside of C1 and

ε = −1 otherwise, so that
r2
r1

=
ε|k|

r12 − |a1 − ζ |2 (8.11)

As ζ̂− ζ = a1 − ζ+ r1
2/
(
ζ−a1

)
=
(
r1

2 −|a1 − ζ |2
)
/
(
ζ−a1

)
= ε|k|r1/r2

(
ζ−a1

)
, we deduce

from relation (8.9) that

α(ζ̂) =
ξ

bη
+
ε
(
ζ − a1

)
k r2

r1 |k|

Besides, |k| = N/b2|η|2 so that k/|k| = −|η|2/η2 = −η/η and

α(ζ̂) =
ξ

bη
− ε

η

η

r2
r1

(
ζ − a1

)
= a2 (8.12)

whence
b
(
r1ηa2 − ε r2ηa1

)
=
(
r1 + εr2

)
ξ (8.13)

Injecting ζ = −ξ/bη and | k| = N/b2|η|2 in relation (8.11), we get

b2r1
2|η|2 − |ξ + bηa1|2 = Nε

r1
r2

(8.14)

Finally, the computation of the norm of α provides the relation

|ξ|2 − b|η|2 = N (8.15)

In the case ζ = a1 = −ξ/bη, we have ε = 1, ζ̂ = ∞ and α(ζ̂) = ξ/bη = a2 so that
the relation (8.13) is still satisfied. Moreover, C ′ = C(a1, r2) : αI .C(a1, r1) = C(a1, r2) so that
|k| = r1r2 = N/b2|η|2 whence relation (8.14). Hence, in each case, we obtain the system of
three equations (8.13), (8.14) and (8.15), which ends the proof of the Lemma. We shall prove
a converse in Appendix B.

• Proof of Proposition 8.6 : let us take a hyperbolic element γ = ξ + ηΩ ∈ Γ
R

such that
γ(C ) = C = C(a1, r). If a1 = 0, then γ · C(0, r) = C(0, r) id est ∀ θ ∈ R,

∣
∣γ(r eiθ)

∣
∣ = r.

Thus
∀ θ ∈ R ∣

∣ξ r eiθ + η
∣
∣ = r

∣
∣b η r eiθ + ξ

∣
∣ =

∣
∣ξ r eiθ + b r2 η

∣
∣ (8.16)
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By taking the maxima of both sides of this equality considered as functions of eiθ ∈ S1, we get

r |ξ| + |η| = r |ξ| + b r2 |η|. As η 6= 0 by hyperbolicity of γ, 1 = b r2 and r = 1/
√
b whence

S = So, a contradiction with the definition of S . As a consequence, a1 6= 0. We shall assume
in the sequel that q = 1 + b (|a1|2 − r2) 6= 0. By Lemma 8.1, the relation γ(C ) = C leads to

∃ ε = ±1






b
(
η a1 − ε η a1

)
=
(
1 + ε

)
ξ (8.13′)

b2 r2 |η|2 − |ξ + b η a1|2 = ε (8.14′)

|ξ|2 − b|η|2 = 1 (8.15′)

If ε = 1 , we deduce from (8.13’) that ξ = i b Im(η a) and Re(ξ) = 0, which contradicts
the hyperbolicity of γ. Therefore ε = −1, and relation (8.13′) implies that Re(η a1) = 0.
From relations (8.14’) and (8.15’), we deduce that

|ξ + b η a1|2 − b2r2|η|2 = 1 = |ξ|2 − b|η|2
and

|ξ|2 + 2 bRe(ξ η a1) + b2 (|a1|2 − r2) |η|2 = |ξ|2 − b |η|2

As 2 bRe(ξ η a1) = b
(
ξ η a1 + ξ η a1

)
= b

(
ξ − ξ

)
η a1 and η 6= 0, we deduce from the above

equation that (
ξ − ξ

)
a1 +

[
1 + b (|a1|2 − r2)
︸ ︷︷ ︸

q

]
η = 0

De facto ξ − ξ 6= 0 and ζ = a1/q = η/(ξ − ξ) ∈ F∗, that is η = (ξ − ξ) ζ = −2iIm(ξ) ζ .
Injecting this in relation (8.15’), we obtain

1 = Re(ξ)2 + (1 − 4 b |ζ |2) Im(ξ)2

Setting 2 Re(ξ) = X ∈ Z and 2 Im(ξ)/
√−a = Y −1 ∈ Q∗, we get X2 − a (1− 4 b |ζ |2) Y −2 = 4

whence
∃ (X, Y ) ∈ Z×Q a (1 − 4 b |ζ |2) = Y 2 (X2 − 4) > 0

because Y 6= 0 and X2 = Tr2(γ) > 4 as γ is hyperbolic. This ends the proof.

• Proof of Proposition 8.7 : we fix n = 1 or 2 ; let us consider a prime p ∈ P\F such
that ordp(2abDD

′) = 0 and

∃N ∈ F ∃α = ξ + ηΩ ∈ Rpr(Nnpn) α · S = S = S(a1, r) (8.17)

Keep in mind that S being a Γ
R

- closed itgs of H3, a1 6= 0 by Proposition 8.6. If η = 0,
α · (z, t) = (ξz/ξt) for any (z, t) ∈ H3 : the transformation α acts as an euclidean rotation of

the space R3. The relation α · S = S implies then a1 = α · a1 = ξ a1/ξ 6= 0 and ξ/ξ = 1 :
ξ ∈ R and α = ξ = ±Np ∈ pR cannot be primitive in R, a contradiction.

Since η 6= 0, we can proceed as in the proof of Proposition 8.6 : let us set C = C(a1, r) ;
relation (8.17) provides α(C ) = C whence, by Lemma 8.1,

∃ ε = ±1






b
(
η a1 − ε η a1

)
=
(
1 + ε

)
ξ (8.13′′)

b2 r2|η|2 − |ξ + b η a1|2 = εNnpn (8.14′′)

|ξ|2 − b|η|2 = Nnpn (8.15′′)
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� If ε = −1, we get η a1 + η a1 = 2 Re(η a1) = 0 and ηa1 ∈ iR\{0} from relation (8.13”).
We proceed as with relation (6.3) : there exists η1 ∈ OF fixed (depending on a1) such that

∃λ ∈ Q η = λ η1

Using the relations (8.14”) and (8.15”), we get |ξ + b η a1|2 − b2 r2|η|2 = |ξ|2 − b |η|2 whence

2 bRe(ξ η a1) + b |η|2
[
1 + b (|a1|2 − r2)

]
= 0 i.e. 2 Re(ξ η a1) + q |η|2 = 0 and

2 Re (ξ η1 a1) = −λ q |η1|2 where q = 1 + b (|a1|2 − r2) (8.18)

Let us assume for the moment that q 6= 0. By Proposition 8.6, ζ = a1/q ∈ F and

ξ η1 ζ ∈ F, so that ∃µ ∈ Q, 2 i Im(ξ η1 ζ) = µ
√
a. Therefore, 2 ξ η1 ζ = −λ |η1|2 + µ

√
a and

4 |ξ η1 ζ |2 = λ2|η1|4 − a µ2. Injecting this in relation (8.15”), we get

4Nn pn |η1|2|ζ |2 = 4 |ξ η1 ζ |2 − 4 b |η|2|η1|2|ζ |2

= −a µ2 + λ2|η1|4
(
1 − 4 b |ζ |2

)

For λ = l/r, µ = m/r ∈ Q with integers l,m, r satisfying l∧m∧ r = 1, this relation becomes

after multiplication of both sides by a r2

a
(
1 − 4 b |ζ |2

)
(l |η1|2)2 = 4 a |η1|2|ζ |2 r2Nn pn + a2m2 (8.19)

We know by Proposition 8.6 that 1 − 4 b |ζ |2 6= 0. For p ∈ P such that ordp(1 − 4 b |ζ |2) =

ordp|ζ |2 = ordp|η1|2 = 0, we see from relation (8.19) that l ≡ 0 [p] if and only if m ≡ 0 [p].

If l ≡ 0 [p], (2 r η1 ζ) ξ =
(
− l |η|2 +m

√
a
)
∈ pOF with r 6≡ 0 [p] because l ∧m ∧ r = 1, and

r η = l η1 ∈ pOF : thus α = ξ + ηΩ ∈ pR, which contradicts the choice of α primitive. As a

consequence, l 6≡ 0 [p] and relation (8.19) implies that a
(
1 − 4 b |ζ |2

)
is a square modulo p.

If q = 0, we deduce from relation (8.18) that Re(ξ η1 a1) = 0 = −Im(ξ) Im(η1 a1), and
Im(ξ) = 0, because η1 a1 ∈ iR\{0}. Then ξ = µ ∈ Q and η = λ η1, so that Nnpn =
µ2 − b |η1|2 λ2 by relation (8.15”), whence

∃ (l,m, r) ∈ Z3, l ∧m ∧ r = 1 and r2Nnpn = m2 − b |η1|2 l2 (8.20)

Let p ∈ P such that ordp|η1|2 = 0 : we have l ≡ 0 [p] ⇐⇒ m ≡ 0 [p] ⇐⇒ α ∈ pR as in

the case q 6= 0, a contradiction with the primitivity of α. Thus l 6≡ 0 [p] and relation (8.20)
implies that the integer b |η1|2 is a square modulo p.

� If ε = 1, relation (8.13”) leads to ξ = b (η a1−η a1)/2 = i b Im(η a1) ∈ iR and ξ+ b η a1 =

b (η a1 + η a1)/2 = bRe(η a1) ∈ R. Using relations (8.14”) and (8.15”), we get Nnpn =

b2 r1
2 |η|2 − b2 Re2(η a1) = b2 Im2(η a1)− b |η|2, so that b2 |η|2

(
r1

2 − |a1|2
)

= −b |η|2 6= 0. Hence

b
(
|a1|2 − r1

2
)

= 1 and q = 2

So a1 = 2 ζ ∈ F∗ (cf. Proposition 8.6). We can set η a1 = X + Y
√
a with X, Y ∈ Q. After

multiplication of both sides by |a1|2, relation (8.15”) becomes

|a1|2Nnpn = −a b2 |a1|2 Y 2 − b
(
X2 − a Y 2

)
= b

[

a
(
1 − b |a1|2

)
Y 2 −X2

]

Let p ∈ P such that ordp|a1|2 = 0 = ordp(1−b |a1|2) : as before, a
(
1−b |a1|2

)
= a

(
1−4 b |ζ |2

)

is a square modulo p.
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� We can now end the proof of the Proposition : if q = 0, η1 ∈ F∗ and ordb(|η1|2) is even
by Lemma 4.1, so that b |η1|2 is not a square in Q. Therefore, there exists infinitely many
primes p such that b |η1|2 is not a square modulo p (cf. section 3.1.2).

If q 6= 0, we know that a
(
1 − 4 b |ζ |2

)
= (X2 − 4) Y 2 > 0 with (X, Y ) ∈ Z × Q, from

Proposition 8.6. As we saw in the proof of Proposition 8.5, X2 − 4 is a square in Z if and
only if X = ±2 i.e. X2 − 4 = 0, which cannot happen here. Hence, a

(
1 − 4 b |ζ |2

)
is not a

square in Q, and there exists once again infinitely many primes p such that a
(
1− 4 b |ζ |2

)
is

not a square modulo p.

As a consequence, after the exclusion of the prime factors of a finite set of rational numbers,
we still have infinitely many primes p for which relation (8.17) cannot be satisfied, whence
∀N ∈ F , ∀α ∈ Rpr(Nnpn), α · S 6= S . This ends the proof of the Proposition.

8.3 Synthesis

Let us take S1, . . . , Sl Γ
R

- closed itgs of H3, with S1 6= So, to which we apply Proposition
5.2. Let F be the finite subset of P given by this Proposition ; we know by Propositions 8.5
and 8.7 that there are infinitely many primes p ∈ P\F such that

∀N ∈ F ∀α = ξ + ηΩ ∈ Rpr(Np) ∪ Rpr(Nnpn) α · S1 6= S1 (8.21)

whence, by Proposition 5.2

Proposition 8.8 Let S1, . . . ,Sl be Γ
R

- closed itgs of H3, with S1 6= So. There exists

infinitely many primes p ∈ P such that

∀α ∈ R(p) ∪Rpr(p2) ∀ i ∈ { 1 . . . l } α · S1 6= Si (8.22)

9 Conclusion

Proof of Proposition 5.1

We consider a manifold X
R

of class (KS
2 ) and Λ ⊂ X

R
a non-empty set that has not type

(So) such that
Λ ⊂ z1 ∪ . . . ∪ zl ∪ L1 ∪ . . . ∪ Lr ∪ Σ1 ∪ . . . ∪ Σs

where the zi are points, the Lj are closed geodesics and the Σk are Γ
R

- closed itgs of X
R
.

We assume moreover that area(Λ) 6= 0 if s > 1. We look for a modular correspondence Cp

separating Λ (see section 1.1 for definitions) ; to this end, we shall adapt the method borrowed
from [9] and exposed in section 1.4.

• Λ is finite : we have Λ = {z1, . . . , zl}. Let us take by z̃1, . . . , z̃l liftings of these points
of X

R
to H3. By Proposition 6.1,

∃ p ∈ P ∀α ∈ R(p) ∪ Rpr(p2) ∀ i = 1 . . . l α z̃1 6= z̃i (9.1)

As in section 1.4, we show that there exists a prime p such that the modular correspondence
Cp separates Λ.
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• Λ is infinite and contained in a finite union of closed geodesics : then we shall write
Λ ⊂ L1 ∪ . . . ∪ Lr, where the Lj are closed geodesics, and assume that Λ ∩ L1 is infinite.
Let the geodesics L̃1, . . . , L̃r be liftings to H3 of the Lj . By Proposition 7.1,

∃ p ∈ P ∀α ∈ R(p) ∪ Rpr(p2) ∀ j = 1 . . . r α · L̃1 6= L̃j (9.2)

As in section 1.4, we deduce that there exists a prime p such that Cp separates Λ.

• Λ is contained in a finite union of Γ
R

- closed itgs and area(Λ) 6= 0 : as Λ has not
type (So), we can write Λ ⊂ Σ1 ∪ . . . ∪ Σs where the Σk are Γ

R
- closed itgs, Σ1 6= So and

area(Σ1 ∩ Λ) 6= 0. Let the itgs S1, . . . , Ss be liftings of the Σk to H3 : S1 6= So and we
deduce from Proposition 8.8 that

∃ p ∈ P ∀α ∈ R(p) ∪Rpr(p2) ∀ k = 1 . . . r α · S1 6= Sk (9.3)

Let p ∈ P be such a prime : Cp(Σ1) and Cp2(Σ1) consist of Γ
R

- closed itgs all distinct from
the Σk. By Lemma 4.3, the sets

µ1 = Cp(Σ1) ∩ (Σ1 ∪ . . . ∪ Σl) and µ2 = Cp2(Σ1) ∩ (Σ1 ∪ . . . ∪ Σl)

have zero area. As a consequence,

ν1 =
{
z ∈ X

R

/
Cp(z) ∩ µ1 6= ∅

}
and ν2 =

{
z ∈ X

R

/
Cp2(z) ∩ µ2 6= ∅

}

have zero area, so that there exists z ∈ Λ ∩ Σ1\(ν1 ∪ ν2). Let z̃ be a lifting of z to H3 and

w = Γ
R
α1z̃ ∈ Cp(z) ⊂ Cp(Σ1). Proceeding as in section 1.4 (infinite case), we show that w /∈ Λ

and Cp(w) ∩ Λ = {z} : the modular correspondence Cp separates Λ. This ends the proof of
Proposition 5.1.

Proof of Theorem 5.1

Let Λ ⊂ X
R

be a set satisfying the statement of Proposition 5.1 : there is a modular
correspondence C separating Λ. Let ν be a quantum limit on X

R
which is – we make the

same assumption as in section 1.4 – associated to a sequence of eigenfunctions of ∆ and
(Tn)n∈N, hence of T = TC . From Proposition 1.1, we deduce that singsupp ν 6= Λ, which
finally proves Theorem 5.1.
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A Of closed itgs in X
R

Let S 6= So be an itgs of H3 closed for Γ
R

: by Proposition 4.3, there exists a compact
subset F ⊂ S and a group Γ0 ⊂ Γ

R
such that S = Γ0 · F , id est

∀x ∈ S ∃ γ ∈ Γ0 γ · x ∈ F (1.1)

We set t0 = inf
{
t
/

(z, t) ∈ F
}

= min
{
t
/

(z, t) ∈ F
}
> 0 since F is compact in H3.

A.1 The half-spheres

We shall write S = S(a1, r) with a1 ∈ C and r > 0. By Proposition 8.6, a1 6= 0 ; we fix

(z, t) =

(

a1

[

1 +

√
r2 − t2

|a1|

]

, t

)

∈ S with 0 < t < t0

Let γ = ξ + ηΩ ∈ Γ0. If η 6= 0, γ is hyperbolic and we deduce from relation (8.13’) – see the
proof of Proposition 8.6 – that ηa1 ∈ iR∗ ; moreover

γ · (z, t) = (z̃, t̃) =

(

∗ , t

|ξ + bηz|2 + b2|η|2t2
)

(1.2)

by relation (2.3). As ηz ∈ iR, |ξ+bηz|2 > Re(ξ)2 > 1 by hyperbolicity of γ : hence t̃ < t < t0
and γ · (z, t) = (z̃, t̃) /∈ F . If η = 0, γ = ±I2 and γ · (z, t) = (z, t) /∈ F . Therefore

∃x ∈ S ∀ γ ∈ Γ0 γ · x /∈ F

a contradiction with relation (1.1).

A.2 The half-planes

We shall write S = D ⊕ R∗
+ j. Let γ0 = ξ0 + η0 Ω ∈ Γ0 with η0 6= 0 : by relation (8.2)

we have

D =
{

z ∈ C / Im(b η0 z) = Im(ξ0)
}

=

(−ξ0
bη0

;
ξ0
bη0

)

We set
∀λ ∈ R zλ =

−ξ0
bη0

+
λ

bη0
∈ D

Let γ = ξ + ηΩ ∈ Γ0. If η 6= 0,

ξ + bηzλ = ξ − ξ0η

η0
+
λη

η0
= η

[
ξ

η
− ξ0
η0

+
λ

η0

]

(1.3)

Since γ ∈ I, D′2|η|2 ∈ N whence D′2|η|2 > 1 : as a consequence,

N(γ) = |ξ|2 − b|η|2 = 1 =⇒
∣
∣
∣
∣

ξ

η

∣
∣
∣
∣

2

= b+
1

|η2| 6 b+D′2

and

∀ γ ∈ Γ
R

∣
∣
∣
∣

ξ

η
− ξ0
η0

∣
∣
∣
∣

2

6 2
(
b+D′2) (1.4)

Fix λ >
[√

2 (b+D′2) +D′]|η0| and t ∈]0, t0[ ; from relations (1.4) and (1.3), we deduce that
|ξ + bηzλ|2 > D′2|η|2 > 1 : γ · (zλ, t) /∈ F by relation (1.2) . If η = 0, γ · (zλ, t) = (zλ, t) /∈ F

and we get the same contradiction with relation (1.1) as before.

36



A.3 Synthesis

So we have just shown that for any (KS
2 ) - manifold X

R
, there is only one possible closed

itgs, the projection of So = S(0, 1/
√
b) in X

R
. We shall prove now that this itgs is actually

closed : Γ
R

acts on the hyperbolic surface So – which is equivalent to H2 – as a subgroup of
its direct isometries ; we proceed exactly the same way as in [2] to prove that Γ

R
\So is compact

for a maximal order R in an indefinite division quaternion algebra over Q.

• Set I = Z [i1, i2, i3, i4] and J = R [i1, i2, i3, i4] = I ⊗ R = A ⊗ R ; for the mapping ϕ

defined by relation (3.3), we have Γ
R

ϕ≃ I(1) and G
R

ϕ≃ J(1), where

G
R

=

{(
ξ η

bη ξ

)

∈ M(2,C)
/

|ξ|2 − b |η|2 = 1

}

(1.5)

is the group of isometries induced by A ⊗ R. We already know from relation (4.6) that

∀ γ ∈ Γ
R
, γ · So = So whence γ ·

(

0, 1/
√
b
)

∈ So. Further :

Lemma 1.1 The mapping
ψ : G

R
−→ So

γ 7−→ γ ·
(

0, 1/
√
b
)

defines a continuous surjection. Set Mc =
{
ξ + ηΩ ∈ G

R

/
|ξ| 6 c, |η| 6 c

}
:

for every c > 0, the set ψ(Mc) is compact.

Proof : For γ = ξ + ηΩ ∈ G
R

such that η 6= 0, we have |ξ|2 = 1 + b |η|2 so that

γ ·





0

1/
√
b



 =







ξ

bη
− 1

bη

ξ

|ξ|2 + b|η|2
1√

b (|ξ|2 + b|η|2)







=








ξ

bη

(

1 − 1

1 + 2 b |η|2
)

1√
b (1 + 2 b |η|2)








if η 6= 0, whence

∀ γ ∈ G
R

ψ(γ) =

(
2 ξ η

1 + 2 b |η|2 ,
1√

b (1 + 2 b |η|2)

)

∈ So

If η = 0, ψ(γ) = (0, 1/
√
b) and we find again the same expression. We obtain this way all

the points of So when ( |η|, Arg ξη ) runs [0,+∞[×] − π, π] and ψ is a surjection. From its
above expression, ψ is moreover continuous on G

R
. For all c > 0, Mc is a compact subset of

M(2,C) so that ψ(Mc) is compact.

Note that ∀ γ1, γ2 ∈ G
R
, ψ(γ1.γ2) = γ1 · ψ(γ2) from the definition of ψ.

• Let us consider elements ξ = x1i1+x2i2+x3i3+x4i4 with ∀ j, xj ∈ R such that N(ξ) = 1,
and set Mc =

{
ξ ∈ A ⊗R / ∀ j, |xj | 6 c

}
∩ { ξ : N(ξ) = 1 } for c > 0. We have (see [2])

Lemma 1.2 Let A be an indefinite division algebra over Q and I = Z [i1, i2, i3, i4]

a maximal order of A. There exists c > 0 fixed such that

∀ ξ ∈ A ⊗R with N(ξ) = 1 ∃ ε ∈ I(1) εξ = η ∈Mc
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By application of the mapping ϕ, we obtain from the above relation

∃ c > 0 ∀ γ ∈ G
R

∃γ0 ∈ Γ
R

γ0γ = γ1 ∈ Mc

so that

∃ c > 0 ∀ γ ∈ G
R

∃ γ0 ∈ Γ
R

γ0 · ψ(γ) = ψ(γ0.γ) ∈ ψ(Mc)

By Proposition 1.1
∀x ∈ So ∃ γ ∈ G

R
x = ψ(γ)

and the set F = ψ(Mc) is a compact subset of So such that

∀x ∈ So ∃ γ0 ∈ Γ
R

γ0 · x ∈ F i.e. So = Γ
R
F

which leads to

Proposition 1.1 Let X
R

be a (KS
2 ) -manifold. The half-sphere So = S(0, 1/

√
b) is the

only

itgs of H3 closed for Γ
R

; its projection in X
R

is then compact.

A.4 Complement : the case a > 0

• One could think that the arbitrary choice of a < 0 is the cause of the lack of closed itgs
in the (KS

2 ) - manifolds. Thus, we define a class (KS
1 ) of quotients manifolds X

R
by taking

a ∈ Z b ∈ P

(a

b

)

= −1

(−1

b

)

= 1

(−3

b

)

= 1 (1.6)

For example, a = 2 and b = 13 zre convenient, since we just have to take the opposite of a
to get from the (KS

2 ) - manifolds to the (KS
1 ) ones. We have the same properties as in section 4

– they are consequences of relation (1.6) – except that the conjugation in F does not coincide
with the complex conjugation anymore. For the definition of the Γ

R
- closed itgs, we shall

moreover impose that the considered hyperbolic elements γ = ξ + ηΩ satisfy η 6= 0.

• This time, the itgs that is left invariant under the action of all the isometries induced by
A ⊗ R is P o = R ⊕ R∗

+ j ≃ H2. Indeed, A ⊗ R induces the group SL(2,R) since
√
a ∈ R.

The action of

γ =

(
a b
c d

)

∈ SL(2,R)

on P o is given by

∀ (x, t) ∈ R×R∗
+ γ ·





x

t



 =







ax+ b

d

a t

d







=





x̃

t̃



 ∈ P o

if c = 0. Then

x̃+ it̃ =
a(x+ it) + b

d
= α(x+ it)

and we recognize the fractional linear action of SL(2,R) on H2. If c 6= 0

∀ (x, t) ∈ R×R∗
+ γ ·






x

t




 =








a

c
− 1

c

cx+ d

(cx+ d)2 + c2t2

t

(cx+ d)2 + c2t2








=






x̃

t̃




 ∈ P o
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whence

x̃+ it̃ =
a

c
− c(x− it) + d

c |c(x+ it) + d|2
=

a

c
− 1

c [c(x+ it) + d]

=
a [c(x+ it) + d] − 1

c [c(x+ it) + d]
=

ac (x+ it) + bc

c [c(x+ it) + d]
since ad− 1 = bc

=
a (x+ it) + b

c(x+ it) + d
= α(x+ it)

and we recognize once again the fractional linear action of SL(2,R) on H2. Therefore the
discrete group Γ

R
⊂ SL(2,R) has the same action on P o and on H2 : we deduce [2]) that,

for a maximal order R in an indefinite division quaternion algebra A over Q, the quotient
Γ

R
\P o is compact : the itgs P o is closed for Γ

R
. Let us verify that it is the only one H3.

• Let γ = ξ + ηΩ ∈ Γ
R

and x = (z, t) ∈ H3 :

γ ·
(

z

t

)

=

(

ξ2z

ξ2t

)

=

(

z̃

t̃

)

if η = 0, and

γ ·






z

t




 =









ξ

bηF − 1

bηF ξ
F

+ bηFz
|ξF + bηFz|2 + b(ηF)2t2

t

|ξF + bηFz|2 + b(ηF)2t2














z̃

t̃






if η 6= 0. Since ξ, η ∈ F ⊂ R, we easily compute that in each case

Im(z̃)

t̃
=

Im(z)

t

def
= f(x) (1.7)

Let us consider an itgs S 6= P o that is closed for Γ
R

: there exists a compact subset
F ⊂ S and a group Γ0 ⊂ Γ

R
such that S = Γ0 · F id est

∀x ∈ S ∃ γ ∈ Γ0 γ · x ∈ F

As F is a compact set of H3 and f is continous on H3, this function is bounded on F ; we
deduce from both previous relations that

∃M > 0 ∀x ∈ S |f(x)| 6 M (1.8)

We can now get to the desired contradiction :

. If S is a half-plane – whose trace is denoted by D – different from P o, there exists
z0 ∈ D\R : for all t > 0, xt = (z0, t) ∈ S and |f(xt)| −→ ∞ as t→ 0, a contradiction
with relation (1.8).

. If S = S(a, r) is a half-sphere, we have r 6= 0 and a + ir /∈ R or a − ir /∈ R : we
may assume wlog that a + ir /∈ R. Set xt = (a + i

√
r2 − t2, t) for t ∈]0, r] : then

f(xt) ∼ |Im(a) + r| /t −→ ∞ as t→ 0, a contradiction again.
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Hence we have established

Proposition 1.2 Let X
R

be a (KS
1 ) -manifold. The half-plane P o = R⊕R∗

+j is the only

closed itgs of H3 for Γ
R

; its projection in X
R

is thus compact.

De facto, the lack of closed itgs is not specific to the (KS
2 ) - manifolds, as we could have

thought a priori. Moreover, for any (KS
1 ) - manifold, we see from (8.5) that there is only one

Γ
R

- closed half-plane, P o. The closed geodesics are particular too, since they link two points ofP1(R). We shall also have restrictions on the Γ
R

- closed half-spheres. All those considerations
justify a posteriori our choice to deal with the (KS

2 ) - manifolds rather with the (KS
1 ) - ones.

B Of Γ
R
- closed itgs

B.1 Proof of Proposition 8.4

Let us consider the infinite family
(
P(t)

)

t∈Z of Γ
R

- closed half-planes of H3 given by
Proposition 8.3. To prove Proposition 8.4, we must verify that the set of their projections in
X

R
is still infinite.

Let us take t1 and t2 ∈ N ; the half-planes P(t1) and P(t2) have for traces on C
respectively D1 = (1 + t1

√
a)R and D2 = (1 + t2

√
a)R. A circle of P1(C) being entirely

defined by three distinct points, we have for γ = ξ + ηΩ ∈ Γ
R
\{±Id} (so that η 6= 0)

γ · P(t1) = P(t2) ⇐⇒ γ(D1) = D2 ⇐⇒







γ(∞) =
ξ

b η
∈ D2 (1)

γ(0) =
η

ξ
∈ D2 (2)

γ(1 + t1
√
a) ∈ D2 (3)

The relations (1) and (2) are equivalent since η/ξ = (b |η|2/|ξ|2) × ξ/b η. By relation (1),
we have ξ η ∈ D2 and

∃λ ∈ Q ξ = λ b η (1 + t2
√
a)

Relation (3) provides
ξ (1 + t1

√
a) + η

b η (1 + t1
√
a) + ξ

∈ D2

⇐⇒ [ξ (1 + t1
√
a) + η] [ξ + b η (1 − t1

√
a)] ∈ D2

⇐⇒ ξ2 (1 + t1
√
a) + b η2 (1 − t1

√
a) ∈ D2 since ξη ∈ D2

⇐⇒ λ2 b (1 + t2
√
a) (1 + t1

√
a) η2

︸ ︷︷ ︸

z1

+

(
1 − t1

√
a

1 + t2
√
a

)

η2

︸ ︷︷ ︸

z2

∈ R
Note that the complex numbers z1 and z2 ∈ F have opposite arguments : as a consequence,

either they have the same module, either they are both reals. In the first case,

λ4 b2 (1 − at2
2) (1 − at1

2) |η|4 =
1 − at1

2

1 − at2
2 |η|4 id est b λ2 (1 − at2

2) = 1
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whence ordb(1 − at2
2) = ordb|1 + t2

√
a|2 is odd, a contradiction with Lemma 4.1. Thus, z1

and z2 are real hence rational numbers – even rational numbers since F ∩R = Q – and

∃µ ∈ Q η2 = µ (1 + t1
√
a) (1 + t2

√
a)

By taking the square of the module, we get |η|4 = (|η|2)2
= µ2 (1 − at1

2) (1 − at2
2) with

|η|2 ∈ Q, so that (1 − at1
2) (1 − at2

2) is a square in Q. We have hence proved that
(

∃ γ ∈ Γ
R

γ · P(t1) = P(t2)
)

=⇒ (1 − at1
2) (1 − at2

2) is a square in N
The first condition means that the itgs P(t1) and P(t2) have the same projection in X

R
.

To fullfill the proof of Proposition 8.4, we have to find an infinite subset I ⊂ N such that

∀ t1 6= t2 ∈ I (1 − at1
2) (1 − at2

2) is not a square in N (2.1)

and it seems reasonable to think that it is possible for every negative integer a. Take a = −2
for instance : we verify that all numbers between 0 and 24000 statisfy this relation, except from
2, 11, 12, 70, 109, 225, 408, 524, 1015, 1079, 1746, 2378, 2765, 4120, 5859, 8030, 10681, 13860,
16647, 17615 and 21994. More generally, a conjectural Theorem states

Conjecture Let A, B, C be integers relatively primes such that A is positive, A+B and

C are not both even and B2 − 4AC is not a perfect square. Then there are

infinitely many primes of the form An2 +Bn+ C with n ∈ Z.

So, according to this highly probable Conjecture, there are for all negative integer a infinitely
many primes of the form 1−at2 with t ∈ N, whence the existence of an infinite set of integers
I satisfying relation (2.1).

B.2 Of families of Γ
R
- closed half-planes

We have seen in Proposition 8.3 the existence of infinitely many Γ
R

- closed half-planes inH3,
denoted by P(t) = R(1 + t

√
a
)
⊕R∗

+ j for t ∈ Z. They all contain the half-line R∗
+ j. But

it is easy to find other Γ
R

- closed half-planes : indeed, for γ = ξ + ηΩ hyperbolic, we have
0 ∈ Dγ ⇐⇒ Im(ξ) = 0, by relation (8.2). Given t ∈ Z, we shall then look for an hyperbolic
element in Γ

R
of the form γ = x+ y

√
a+ z(1 + t

√
a) Ω with x, y, z ∈ Z∗. For such a γ,

N(γ) = 1 ⇐⇒ x2 − ay2 − b(1 − at2)z2 = 1 (2.2)

Let us fix u ∈ Z and set y = uz : then γ = γt,u = x+ zu
√
a+ z(1 + t

√
a) Ω and

N(γt,u) = 1 ⇐⇒ x2 −
[
au2 + b(1 − at2)
︸ ︷︷ ︸

d

]
z2 = 1 (2.3)

As d ≡ au2 [b] and a is not a square modulo b, since X
R

is a manifold of class (KS
2 ), d

cannot be a square in Z. Moreover, d = b− a(bt2 − u2) > 0 as soon as |t| is big enough : in
that case (cf. Pell-Fermat), we can solve the above equation for non-trivial integers x, z. We
deduce finally from relation (8.2)

Dγt,u
= D(u, t) =

(R+
i Im(ξ)

b|η|2
)

η =

(R+
u
√
a

b(1 − at2)

)

(1 + t
√
a)

which proves the following extension of Proposition 8.3 :
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Proposition 2.1 There are infinitely many Γ
R

- closed half-planes in H3 that do not

contain R∗
+ j, the half-planes P(t, u) =

(R + u
√

a
b(1−at2)

)

(1 + t
√
a) ⊕ R∗

+ j

for t, u ∈ Z such that d = b− a(bt2 − u2) > 0.

For a = −2 and b = 13 again :

. γ0,1 = 10 + 3i
√

2 − 3Ω leaves P(0, 1) =
(R + i

√
2

13

)

⊕R∗
+ j invariant..

. γ1,4 = 8+12i
√

2+3(1+ i
√

2) Ω leaves P(1, 4) =
(R+ 4i

√
2

39

)

(1+ i
√

2)⊕R∗
+ j invariant.

. γ2,3 = 10+3i
√

2+(1+2i
√

2) Ω leaves P(2, 3) =
(R + i

√
2

39

)

(1+2i
√

2)⊕R∗
+ j invariant.

B.3 Families of half-spheres

• We shall first complete Lemma 8.1 to obtain

Proposition 2.2 Let C1 = C(a1, r1) and C2 = C(a2, r2) be two circles of C, N ∈ Z and

α = ξ + ηΩ ∈ Rpr(N) with η 6= 0. Then α(C1) = C2 if and only if

∃ ε = ±1







b
(
r1 η a2 − ε r2 η a1

)
=

(
r1 + εr2

)
ξ (8.13)

b2 r1
2 |η|2 − |ξ + b η a1|2 = Nε

r1
r2

(8.14)

|ξ|2 − b|η|2 = N (8.15)

Proof : we just have to prove the backward implication to fullfill the proof. Keep the
notations of Lemma 8.1. Relation (8.14) provides

∣
∣
∣
∣

ξ

b η
+ a1

∣
∣
∣
∣

2

− r1
2 6= 0 whence ζ = − ξ

b η
/∈ C1

Therefore, αI(C1) = C ′ is a circle and α(C1) = αR(C ′) = C ′′ = C(a′′, r′′). We still have, by
relation (8.14), ε = 1 iff ζ is inside of C1. Applying the Lemma to C1 and C ′′, we deduce
from relation (8.11)

r′′

r1
=

ε|k|
r12 − |a1 − ζ |2 =

εN

b2 r12 |η|2 − |ξ + b η a1|2
=
r2
r1

since |k| = N/b2 |η|2 : then r′′ = r2. Finally, αI(ζ̂) is the center of C ′ so that α(ζ̂) = a′′ ;
as (8.13) ⇐⇒ (8.12) ⇐⇒ α(ζ̂) = a2, then a′′ = a2 so that α(C1) = C2.

• Now we can use of the above Proposition in our quest for Γ
R

- closed half-spheres in H3.
Let S be an half-sphere of H3, C = C(a1, r) its trace on C and γ = ξ + ηΩ ∈ Γ

R
a

hyperbolic element ; then γ · S = S ⇐⇒ γ(C ) = C and we apply Proposition 2.2 to
the circle C = C(a1, r). Necessarily, as we already saw in the proof of Proposition 8.6, ε = −1
by hyperbolicity of γ. As a consequence,

γ · S = S ⇐⇒







η a1 + η a1 = 0

|ξ + b η a1|2 − b r2 |η|2 = 1

|ξ|2 − b |η|2 = 1
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whence

γ · S = S ⇐⇒







η a1 + η a1 = 0

(ξ − ξ) a1 +
[
1 + b (|a1|2 − r2)

]
η = 0

|ξ|2 − b |η|2 = 1

(E)

Let us fix a1 ∈ F = Q[
√
a], set r =

√

|a1|2 + 1/b ∈ R∗ and consider S = S(a1, r). For
ξ = X ∈ Z and η = a1 Y

√
a with Y ∈ Z, we have η a1 + η a1 = 0 and ξ = ξ (cf.

√
a ∈ iR),

so that

γ · S = S ⇐⇒ |ξ|2 − b |η|2 = X2 + a b |a1|2 Y 2 = 1

From Lemma 4.1, we know that ordb(|a1|2) is even as a1 ∈ F, so that the natural integer
d = −a b |a1|2 cannot be a square in Q. Therefore, the previous Pell equation is solvable for
non-trivial integers X and Y . We have proved

Lemma 2.1 For all a1 ∈ F = Q[
√
a], the half-sphere S

(

a1,
√

|a1|2 + 1
b

)

is Γ
R

- closed.

Here are some examples for a = −2 and b = 13 :

. γ = 64425 + 1666i
√

2(2 + 5i
√

2) Ω leaves S
(

2 + 5i
√

2,
√

54 + 1
13

)

invariant.

. γ = 96747 + 2318i
√

2(7 + 3i
√

2) Ω leaves S
(

7 + 3i
√

2,
√

67 + 1
13

)

invariant.

. γ = 561835 + 11074i
√

2(7 + 5i
√

2) Ω leaves S
(

1
5

+ i
√

2
7
,
√

99
1225

+ 1
13

)

invariant.

More generally, for a1 ∈ F∗ and r ∈ R∗ such that r2 ∈ Q, the resolution of the system
(E) leads to {

ξ = X − 1
2
[1 + b (|a1|2 − r2)] Y

√
a

η = Y a1

√
a

with X, Y ∈ Z
and the norm equation provides

1 = X2 − a

4

{[
1 + b (|a1|2 − r2)

]2 − 4 b |a1|2
}

︸ ︷︷ ︸

d

Y 2

For r2 ∈ Q close enough to |a1|2, we have 4 b |a1|2 > [1 + b (|a1|2 − r2)]
2

and the rational
number d is non negative. Assume moreover that ordb |a1|2 > 0 and ordb r

2 > 0 : then
d ≡ a/4 [b] is not a square modulo b for X

R
a (KS

2 ) - manifold, so that d is not a square inQ. Hence, the above Pell equation is solvable for non-trivial X, Y ∈ Z, which proves

Proposition 2.3 Let a1 ∈ F = Q[
√
a] and r2 ∈ Q such that ordb |a1|2 > 0, ordb r

2 > 0

and 4 b |a1|2 > [1 + b (|a1|2 − r2)]
2
. The half-sphere S(a1, r) is a Γ

R
- closed

itgs of H3.

Let us give some examples for a = −2 and b = 13 :

. γ = 359 + 168i
√

2 + 18i
√

2(2 + 3i
√

2) Ω leaves S
(

2
3

+ i
√

2,
√

3
)

invariant.

. γ = 19603 − 51480i
√

2 + 2574i
√

2(5 + 2i
√

2) Ω leaves S
(
5 + 2i

√
2,
√

30
)

invariant.
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