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On the scarring of eigenstates for some arithmetic
hyperbolic manifolds in dimension 2 and 3

Tristan POULLAOUEC
August 16, 2004

Abstract

In this paper, we shall deal with the so-called conjecture of Quantum Unique Ergod-
icity. In [[], Rudnick and Sarnak showed that there is no strong scarring (see definition
page 2) on closed geodesics for compact arithmetic congruence surfaces derived from a
quaternion division algebra (see Introduction and Theorem D.1]).

First we extend this Theorem to the congruence surface X = T'(2)\H? (it is not
compact but has finite measure), where I'(2) is the kernel of the projection of SL(2,Z) into
SL(2,Z2). Then, after some algebraic and geometric preliminaries — and the establishment
of useful technical Lemmas — we extend Theorem P.]] to a class of Riemannian manifolds
X, =T, \H?, the so-called (K¥) class, that are again derived from quaternion division
algebras. We show that there is no strong scarring on closed geodesics or on I', - closed
imbedded totally geodesic surfaces.

Introduction

A topic of great interest in quantum mechanics is the study of the limit of the quantized
systems when A— 0, which we call the semi-classical limit of quantum mechanics. The under-
lying purpose is to relate classical dynamics to the quantum one, in order to understand better
the quantum mechanics. This is the path we follow to study quantum chaos : we consider
a classicaly chaotic system, and we try to identify in the quantized system the influence of the
chaotic nature of the classical dynamics.

For M a Riemannian manifold of negative sectional curvature in dimension 2 or 3, it is
well known (see [fl, [, [F]) that the geodesic flow on the unitary sphere tangent bundle T M
is ergodic and chaotic. After quantization, the wave functions of the stationary Schrodinger
equation 2

Dy Ap+V(g)p=F¢ with E a constant (0.1)
are the .#? eigenfunctions or eigenmodes of ;—fj A+ V(q), where A is the Laplace-Beltrami
operator on M. The potential V(q) is in fact related to the curvature of M. We suppose

that this operator has a discrete spectrum (Ay) with A\, — oo, which is true at least in
the compact case. k—00

keN



We denote by (¢),. the associated eigenfunctions — we assume that they are normalized,
so that |[¢g]|, = 1 — and by (u),. the corresponding probability measures given by

keN

du(g) = |éw(9)|” dvol(g) (0.2)

The measure p; is actually the probability of presence of a particle in the state ¢ at q.
Moreover the semi-classical limit is the limit at large energies i.e. when k& — oo. We shall
now state the so-called Quantum Unique Ergodicity Conjecture (see [[{]) :

Conjecture Let M be a Riemannian manifold of dimension 2 or 3 and of sectional

dvol
curvature K < 0. Then duy h— W.

For a compact surface M whose geodesic flow is ergodic, this result was established in [[[Z]
for a subsequence of full density of (y). More precisely, we shall consider quotient manifolds
M =T\H" (n =2 or 3), where I' is a freely acting discrete subgroup of Is(H"), endowed with
the projection of the canonical Poincaré metric on H". In particular (see []), all Riemann
surfaces are of such a type, apart from S? C, C* and T?. A first step towards this conjecture
was realized in [ with the following Theorem :

Theorem 0.1 Let X = I'\H? be an arithmetic congruence surface derived from a quaternion
algebra and v a quantum limit on X. If o = singsupp v is contained in the
union of a finite number of isolated points and closed geodesics, then o = ().

In other words, there is no strong scarring (cf. [IJ]) of eigenmodes on closed geodesics.
In this Theorem, I' is a congruence subgroup of a discrete group derived from an indefinite
quaternion division algebra. By a quantum limit v we mean a probability measure on M such
that there exists a subsequence (pig;) ;. Of (fir),cn With fug, Pt

In [[], a congruence subgroup is implicitely used to get a free action on H2 Thus, the
canonical projection H? — T'\H? is a covering ; otherwise branching points would appear, at
which the projection of the canonical Poincaré metric would be singular.

In this work, we shall extend Theorem [.I] to the particular arithmetic congruence surface
X = I'(2)\H? where I'(2) is the congruence group I'(2) = {v € SL(2,Z) / v = L[2]}.
This space is not compact anymore, but it has finite measure. The extension is straight forward,
we just adapt the technics and ideas of [[. Note that, SL(2,7Z) being derived from the matrix
algebra M(2, Z), Theorem P-]] does not apply to the surface X.

Then we deal with the case of X, = I',\H?, where T, is a discrete group derived from a
class of division quaternions algebras explicitly defined in sections and . We show that a
non empty set A contained in a finite union of isolated points, closed geodesics and I',, - closed
(see section [ for definition) imbedded totally geodesic surfaces of X, (in this last case, we
shall assume that area(A) # 0) cannot be the singular support of a quantum limit on X,.

Before giving the proof, we shall recall some useful points of algebra and geometry
(cf. section B and f), and establish some arithmetical and geometrical Lemmas (cf. section B
and [). Contrary to the previous case, the proof is not a straight adaptation of [J] because
the algebraic formalism of binary quadratic forms used there does not apply to points or to
the imbedded surfaces anymore.



1 The case I'(2)\H?

Let us recall that

a b -
F(2)-{7—<C d)GSL(Z,Z)/7:I[2]} (1.1)
We define the same way I'(N) for N > 2. The result obtained is the following :

Theorem 1.1  If the singular support o of a quantum limit on X = T'(2)\H? is contained
in a finite union of isolated points and closed geodesics of X, then o = ().

1.1 Correspondences and separation

Definition A correspondence € of order r on a Riemannian manifold X is a mapping from
X to X"/6, such that €(x) = (Si(x),..., S (x)) with S € Is(X)
k=1...r. Here, &, 1is the symmetric group of order r.

T

We shall denote by T, the associated operator of .£?(X) defined by T..(f) : x — Z f(Sk(z)).

k=1

Definition Let A be a subset of X. We say that such a correspondence € separates A
if 3z€ X — A such that 3k € {1,...,r}, Sp(z) € A.

Then we have the following Proposition (proved in [H])

Proposition 1.1  Let A C X be a closed subset of zero volume and € be a correspondence
on X that separates A. Let (¢;),. be a sequence of eigenfunctions of T,
such that ¥Vj € N, [|¢;]|, =1 and that dv = jli_)nc}o|q5j(z)|2dvol(z) exists.
Then singsupp v # A.

Keep in mind than given any measure v on X, its singular support is a closed subset of X.

1.2 H?, the modular group and operators

In the sequel, we shall set I' = SL(2, Z) and deal with the hyperbolic space X = I'(2)\H?.

1.2.1 Some hyperbolic geometry

e The space H> = {2€ C /Im(z) >0} is provided with Poincaré hyperbolic metric
ds = |dz|/Im(z), which becomes in cartesian coordinates ds* = (dz® + dy*)/y?. As shown
on figure [, the geodesics of H? are the half-circles centered on the real axis (like y who is
connecting a to b) and the vertical straight half-lines (like 75 who is connecting ¢ to infinity).

The metric ds induces on H? the volume form do = dz dy/y?. Its curvature is K = —1,
and the Laplace-Beltrami operator on H? is given by

0? 0?
= (G b)
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Figure 1: H? and its geodesics
Definition A measure v on X is called a quantum limit if there exists a sequence (gbj)je]N

of eigenfunctions of A in L*(X), normalized by the condition ||¢;||, = 1, such

that the measures |p;(2)|° dz converge weakly towards dv.

e We know that Is(H?), the group isometries of H?, consists of the real linear fractional
transformations and fractional reflections. Moreover, PSL(2,R) = SL(2,R)/{£I} can be iden-
tified with Is™(H?), the subgroup of isometries preserving the orientation, by the action

2 2 b
SL(2,R) x H* — H where a b\ Lot (1.2)
(v,2) > 7v-z c d cz+d

The elements of Is™(H?) are characterized by their fixed points in H? U 9H? = H*> U R U oo.
Moreover -z = 2 <= c2*>+(d—a)z—"b : the discriminant of this equation is (d—a)?+4bc =
(d+ a)? — 4, so that

. if Tr(y)? € [0,4], the isometry v has a single fixed point (which is a center) in H? and
is called elliptic (we follow the classical terminology, see [H]).

. if Tr(y)? = 4 and ~y # +1, the isometry « has a single fixed point (which is attractive) in
R U oo and is called parabolic.

. if Tr(y)? ¢ [0, 4], the isometry v has a two distinct fixed points in R U co, one attractive
and the other repulsive, and is called hyperbolic. The geodesic L connecting this fixed
points is called the axis of v. The isometry v leaves L invariant and acts on it as a
translation of the curvilinear abscisse.

e Finally we recall the notion of binary quadratic form and its use in geometry (cf. [[]).
Set M = [a, b, c], with a, b, ¢ € R, the real binary quadratic form on C? defined by

V (z,y) € C? M (z,y) = azx® + 2bxy + cy

We shall identify M with its real symmetric matrix in the canonical basis, and we set
Mog= Mlg] ='gMg for g € M(2,R). Only non degenerate forms will be considered in the
sequel i.e. we suppose that det M # 0.



Let M be such a form : it has two distinct roots (z : y) in P!(C) ~ C U oo, the equation
M(z,y) = ax?® + 2bxy + cy® = 0 having discriminant * — ac = — det M # 0.

. if det M > 0, then M is anisotropic on R and M (z,1) = 0 has a single root z, € H?

. otherwise, M being isotropic on R, it has two distinct roots in P'(R) ~ R U oo and
we call v, the geodesic connecting them.
Therefore we associate to each non degenerate binary quadratic form M a point z,, or
a geodesic vy, of H2 Conversely, to each point or geodesic of H?, we associate a single
proportionality class of non degenerate real binary quadratic forms.

In this way, the action of g € SL(2,R) on H? translates into an action M —— M[g™!] on
the binary quadratic forms.

1.2.2 The quotient space X = I'(2)\H?

e Contrary to I, its subgroup I'(2) contains no elliptic element (this is a particular case
of a general property of the congruence subgroups I'(N) for N > 2 exposed in [{]) : it acts

therefore freely on H? (see [§]) and X = T'(2)\H? is a Riemannian manifold of Gaussian

curvature K = —1. We know (cf. [[]) that
I'(2)\SL(2,Z)={1, 0,1, To, TOT, TOTO} (1.3)

with o and 7 representing the classes modulo I'(2) of the transformations S : z+—— —1/z
and T : z+—— z+ 1. They verify 0> =72=1 and (o7)% = 1.

0 1

Figure 2: A fundamental domain for I'(2)\H?



The discrete group I'(2) acts moreover discontinuously on H? (cf. [J]) ; knowmg that I
admits the geodesic triangle % = (p, p + 1, 00) as a fundamental domain (where p = e'3"), we
deduce from ([) that .# = FyUSFUT.FUTSF UTST F,UTSTSF, is a fundamental
domain for the group I'(2) (cf. figure ).

. 1 1 1

On this figure, we have v = —— = — +

1—p 2 23
e Let us recall that the geodesics of T'(2)\H? are the projections of those of H?.

Definition A closed geodesic of a metric space (X, d) is the image of a periodic geodesic line
AR — X.

Proposition 1.2 Let £ be a closed geodesic of X = T'(2)\H2. There exists a hyperbolic
transformation v € I'(2) whose axis L projects onto £ .

The proof (see [§]) uses only the discontinuity of the action of T'(2) on H2. In particular, there
exists a compact segment [ of the geodesic L such that L =], ,7"-l and £ =7 (L) = n(l),
where 7 is the canonical projection = : H? — I'(2)\H?.

Lemma 1.1  Let F' and G be two closed geodesics of X. Then F =G or FNG is finite.

Proof : we shall use Proposition [[.. Let v; and 5 € T'(2) be two hyperbolic transforma-
tions whose axis L; and Lo project onto F' and G respectively. Let [; and [, be compact
segments of L; and Ly such that L; = UnGZ v7 -l and Lo = UneZ vy - ly. Then

FAG=n(l)Nr(l) =7 [(Uwem)fy-ll) N <U~/el"(2) yhﬂ :w[ (zlrw 12)]

because for pey- LNy lo, v ip € LN (y 1Y) Iy and w(y~t-

Since the segments [; and [, are compact subsets of H?, we deduce from the discontinuity
of the action of I'(2) on H? that the set To={~v€T(2) /l1Ny-lo#0 } is finite and that

FﬂG:TF(llﬁro'lg) (14)

Let us assume that F'N G is infinite : [; N[y - [y is infinite so that, 'y being finite, there
exists v € I'y such that [y Ny -l is infinite. Hence Ly N~y - Ly is infinite, L; and ~- Ly being

two geodesics of H? i.e. half-circles or half-lines : as a consequence, L; = - Ly and F = G.

1.2.3 Modular correspondences

e Let us set P(n {MEMQZ/detM—n}andR ={MePn)/M=1[2]}=
{MEMZ,Z/det ) =nand M =1[2] } forn € N. Note that I'(2) = R(1) and ' = P(1).

As is well-known, we have

Lemma P(l)\P(n)z{(S Z)EM(Q,Z) / ad:n,a>1,o<b<d}



Using the six representants for the cosets of R(1)\P(1) (cf. previous section), we show that

Lemma 1.2 R(l)\R(n)z{<g Z) eR(n)/a>1,o<b<d}

Obviously, R(n) # () if and only if n is odd. We denote by RP"(n) the set of the elements
of R(n) that are not integer multiples of matrices in M(2,Z) : these are the primitive elements.
We can now define the modular correspondence of order n € N for n odd.

X — X'/6,

Definition %, : ' ')z — {2 axz,...,I2)ax}

where R(1)\R(n) = {I'(2) ay,..., I'(2) a,.}. Let T,, be the associated operator, which we call
a modular operator

TN = Y,  [(I(2)d2) (1.5)

deR(1)\R(n)

e Because R(1)\R(n) is finite, the modular operators are defined on £*(X) : if f € £*(X)
and a € Is(X), then foa € Z%*(X). Moreover, || foall, = ||f||, : they are bounded operators
on Z%(X). They also operators satisfy the classical properties of the modular operators :

. T, is self adjoint and commutes with the Laplace-Beltrami operator A.

T T =Y AT
d/(n,m)

T, = Z Cnye where C,f(I'(2)z) = Z f(T'(2)dz2)

t2/n 0€R(1)\RP" (n)

Nota Bene : in the sequel, we shall only consider operators T, = C,, where p is an odd prime.
We shall also note %, = C,, for simplicity’s sake. Let & be the set of all prime numbers.

Lemma 1.3 Let pe & and R(1)\R(p) ={I'(2) ay,..., ['(2) o}
Then Vi, 31§ such that ooy € pT(2) and Yk # j, i € R (p?).

Proof : we just use the fact that for any odd m, the set R(m) is stable under passage to
the (transposite of the) comatrix

= (00 e rm) = Conty=my = (1)

—C a

) € R(m) (1.6)

which corresponds actually to the passage to the inverse in Is™(H?) ~ PGL"(2,7Z). Let us
take ¢ € {1,...,n} : we have Com(c;) € R(p) and Com(«;); = det(e;) s = pl,. Since
['(2) Com(cy;) is a coset of R(1)\R(p), there exists j € {1,...,n} such that T'(2) Com(a;) =
I'(2) oj. Therefore I'(2) a; o; = pI'(2) and o oy € pI'(2).

For all k # j, we have I'(2) ay # I'(2) a; whence I'(2) oy ; # I'(2) j oy = pI'(2) so that
apa; € RPT(p?) ¢ this ends the proof of the Lemma. We deduce easily the self adjointness of
T, from this Lemma.

We shall use in section an extension of this Lemma to an order of a quaternion algebra
(cf. Proposition B.7).



1.3 Results on binary quadratic forms
In this section, we adapt the Lemmas 2.2 and 2.3 of [g] to the discrete group I'(2).

Definition M = [a,b,c| is a Q-form if there exists A € R\{0} such that (Aa, \b, Ac) € Q3.

Proposition 1.3  Let M and M’ be two binary quadratic forms and py, po and p3 be three
distinct primes for which either :

. Jay € R(p;) such that Mo = M Vi=1...3.
. Ja; € RP"(p;?) such that M[o;] =AM’ Vi=1...3.
Then M and M’ are both Q-forms.
Proof : let us set M = [A, B,C] and M’ = [A’, B',C"]. M and M’ being non degenerate,
Mlon] = MM = X\ #0. As a; € GL(2,Q), M is a Q-form if and only if M" also is a Q-form.

Similarly, M and M’ are simultaneously isotropic or anisotropic over , Q.

If M is isotropic, it splits over @ : it is proportional to My[y]|, where My(x,y) = zy and
v € GL(2,Q). Thus, M and M’ are both Q-forms. Henceforth we assume that both M and
M’ are anisotropic over Q). Let us fix n € {1,2} and assume

Vi, M[oy] = \M'  with a; € R (p;") (1.7)
Taking the determinant of both sides of ([[7), we get p;?" det M = \;*det M, so that

det M
det M’

A = gikp;" with ¢, =41 and k=

Set a; = ( ZZ ZZ ) ;as M[ay] = "a;May, equation ([L7) can be written as

Vi )\M/ . Aaﬁ + 2 Baici + CCZ‘2 A(llbz + CCZdZ + B((lldz + b,c,) (1 8)
e The identification of the lower right terms in relation ([.§) gives
that we will write as
512 bid, d12 A e1pr”
by?  bods ds’ 2B | =rC' | eaps”
bs® bsdy ds’ C £3p3"
that is
A
V| 2B | =kC'N with U € M(3,2), det U =[] (bid; —b;d;) and N € Z°
C 1<i<j<3

If U is invertible, W=!N € @3 so that M and M’ are both @Q-forms. Otherwise
detU = 0 : we may assume without loss of generality that b;ds = bsd;. There exists

8



w € Q\{0}, p(by,dy) = (be,ds) because det(c;) # 0 implies (b;,d;) # (0,0). Substituting
into relation ([[.9), we find

keapa"C' = pPrep"C" = M(by, dy) # 0 from the anisotropy of M over Q

so that po™ = p?p™. If n =1, u® = po/p; is a square of @, which cannot happen for two
distinct primes p; and p,. As a consequence n = 2, p = +po/p; and po(by, dy) = £p1(ba, ds),
and we deduce from the Gauss Theorem that

by=di=0[p1] and by =dy=0][ps (1.10)

e The identification of the upper left terms in ([.§) provides

NA = eirp" A’ = Aa;? + 2 Baje;, + Ce;® fori=1...3 (1.11)
that we will write
fl12 apcy 012 A ep1”
s> a9Cy o> 2B | =rA | epa”
as® azcs ¢y C e3ps”
that is
A ~ ~
| 2B | =xkA'N with ® € M(3,7Z), det ® = H (aic; — ajc;) and N € 77
C 1<i<j<3

If @ is invertible, we show as before that M and M’ are both Q-forms. Otherwise, det ® = 0
sothat 3¢ # j € {1, 2, 3}, Ip' € Q\{0}, i'(a;,¢;) = (aj, ¢;). Substituting into relation ([.I1)),
we get j = 4p;/p; because A’ = \;"'M (a1, c;) # 0 by anisotropy of M over . Hence :

a;=¢=0[p;] and a;=c; =0]p] (1.12)

Since {i,j} C {1, 2, 3}, either ¢ € {1, 2} or j € {1, 2}. We may assume that ¢ = 1. From
the relations ([.I() and ([.IF) we deduce that a; € p;I'(2), which contradicts the assumption
oy € RP"(py™). This ends the proof of the Proposition.

Proposition 1.4  Let M, My, ..., M, be binary quadratic forms representing points or
closed geodesics of T'(2)\H?. Then there exists infinitely many primes p

h that
S e VaeRp)UR"(p?) Vji=1...r Mla]#NM, (1.13)

Proof : by Proposition [[.3, if the forms M and M’ are not (Q-forms, for all primes p except
at most 4, we have Va € R(p) U RF"(p*), Mla] # AM'. Hence, we just have to give the
proof for Q-forms. We shall set M = [A, B,C] with A, B and C € Z, and Vi =1...r,
M; = [A;, B;, C;] with A;, B; and C; € Z.

Let pe 2, j€{l,...r},n=1or 2 and o € R (p") such that M[a] = \;M;. Let us
note that A\; € Q\{0} because o € GL(2,Q) and M # 0. By taking the determinants of both
sides in relation M|a] = \;M;, we get

A =D"K; with  k; = :i:\/det M det M;7' € Q\{0}



We restrict ourselves in the sequel to primes p such that Vj, ord,(x;) =0. As a € GL(2,QQ),
the relation Ma] = A\;M; implies that M and M; are simultaneously isotropic or anisotropic
over (3. Thus we just have to investigate both cases.

o Anisotropic Case : the quadratic form M has for discriminant B* — AC = d(M) € 7Z,
so that M is anisotropic over a field K if and only if d(M) is not a square in K. As a
consequence d(M) is not a square in @) ; let us consider the primes p satisfying

Vij=1...r ord,(k;)=0 and <@) =-1 (1.14)

They form (cf. [II]]) a set of Dirichlet density 1/2 in &, therefore infinite. For such primes p,
the form M is still anisotropic over (@Q),.

It Jae R (p"), 3j €{1...r}, M[a] = A\;Mj, then for o= (Z Z)

Aa? 4+ 2 Bac+ Cc* = \jA; = k;p"A; = M(a,c)
Ab2 + 2 Bbd + Cd2 = )\jCj = ’%jpan = M(b, d)

and, because A;, C; € Z and ord,(k;) = 0, we get M(a,¢) = M(b,d) = 0[p]. Therefore,
by the anisotropy of M on ®),, a € pR(1) is not primitive, which contradicts the choice of a.
Thus in the anisotropic case, for all p € & satisfying the relation ([-14),

Va e R(p)URM(p*) Vi=1...r  Mla]#\M,

e [sotropic Case : we consider non degenerate quadratic forms with integer coefficients.
Thus they split over @ as a product of two linear forms that are independant by non-degeneracy.
Let M be such a form : it has two roots 21, 2z € QUoo ; let v, be the geodesic of H? connecting
these two points. We will show that v, cannot be a closed geodesic of X.

We look for v = ( CCL Z ) € I'(2) such that y(z1) = 21 and y(z2) = 2».

If 1 =00 and 2z, € Q : y(0) =00 = ¢ =0 = ad = 1. As a and d are integers,
a =d = +1 and 7 is not hyperbolic.

If 2y # 20 € Q : we have ¢ # 0 and v(z) =2 < c2®+ (d — a)r — b = 0. The two fixed

points of v are then
a—d=E/(a+d)?—4
2c

212 =

Thus 21, 22 € Q = (a+d)?2—4€eQ = JyeQ, y*=(a+d)*>—4 € 7Z so that
dJyeZ (a+d+y)latd—y)=4

The integers a + d + y and a + d — y being of same parity, necessarily a +d+y=a+d —y =
a+ d = 42 : v cannot be hyperbolic.

Hence, ~,; is not the axis of any hyperbolic element of T'(2) : owing to Proposition [.2,
we can state that the binary quadratic (Q-forms isotropic on Q) are not associated with closed
geodesics of X = I'(2)\H?. This ends the proof of the Proposition.
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1.4 Separation of points and geodesics

Proposition 1.5 Let A be a non-empty set contained in a finite union of closed geodesics
of X =T(2)\H?. There exists a modular correspondence ‘€, separating A.

Proof : given two points z, 2’ € H? and M, M’ the associated binary quadratic forms,
we have z =2 <= IX € R, M’ = AM. The same goes for two geodesics. We recall briefly
the proof presented in [[.

o A is finite : let us write A = {z,..., z}. We take Zzi,..., 7 liftings to H? and
My, ..., M; the associated binary quadratic forms. Proposition [[.4 applied to them gives
dpe P YacR(pP)UR"(p*) Vji=1...1 -z #Z (1.15)

We set R(1)\R(p) = {T'(2) ay,..., [(2)a,} and w = I'(2)ayz; € H2 Then, according to
relation ([L.I7), we have Vj =1...1, w # I'(2)Z; so that w ¢ A. Consider the correspondence
Gp(w) = {T(2) a1, ..., T'(2) apon Z; }. From Lemma [[3, we deduce

¢p(w) = {21} UB where BC {T'(2)aZ, a€ R"(p*)}=%e(x)

As €,2(z1) N A =0 by relation ([.13), then €,(w) N A = {z}. Hence, for this choice of w, we
have shown that %, separates A in the sense of section [[]].

o A isinfinite : A C FyU---UF,, where the F; are closed geodesics. Besides, at least one

of the sets ANF;, 1 < ¢ < r is infinite : we may assume AN F} is infinite. Let ﬁ’l, e F. be
liftings of those geodesics to H2. As before, we have according to Proposition
Ipe P YaeR(pP)UR"(P?) Vi=1...r a-F#E (1.16)

From Lemma [.1, 7' NG is finite for two distinct closed geodesics F' and G of X = I'(2)\H2.
Hence, p1y = 6,(Fi)N(FAU---UF,) and py = €,2(F1) N (FyU---UF,) are finite subsets of
X according to relation ([.L16). As a consequence

n={z€X/6)Nu#0} and 1n={2€ X /%G (z)Nu #0}

are finite subsets of X too and, A N F} being infinite, there exists z € AN Fi\ (1) N1y). Let
Z be a lifting of z to H? and w = T'(2)qz € %,(z) C %,(F1). Because z ¢ vy, we have
Cp(2) Mg = 0 so that €,(z2) NA =0 (cf. z € F}) and w ¢ A.

As before, €,(w) = {z} UB’" where B' C 6,2(z). Finally z ¢ v» implies €,2(z) N po = 0,
so that €,2(2) NA =0 and %,(w) N A = {z} : thus %, separates A. This ends the proof.

Conclusion : proof of Theorem [.]]

Let A be a non-empty closed set contained in such a finite union of closed geodesics of X,
and v a quantum limit on X. Let (¢;);en be the associated sequence of eigenfunctions of A.
We make the assumption — as in [[], where an orthonormal basis of common eigenfunctions of
the operators A and (T},), . is considered — that they’re also eigenfunctions of the modular
operators (that commute with A) as “all evidence points to the spectrum of A being simple
...7. We shall make a similar assumption in section P

So our quantum limit is associated to a sequence of eigenfunctions of T¢, where € = €,
is the modular correspondence separating A given by Proposition : owing to Proposition
1], we deduce that singsupp v # A. This proves Theorem [[]].
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2 Hyperbolic Geometry in dimension 3

2.1 Definition

e We take as model of hyperbolic space the upper half-space H* = { (z,y,t) e R* / t>0}.
Using the classical notation j =1 Ai€ R we get
H={z+tj / 2€C,t>0}

Therefore, we shall identify H? with the subset R ® R 7@ R.,j of the algebra of quaternions of
Hamilton H = R[1,1, j,k]. The space H? is provided with the Riemannian hyperbolic metric

o |dzP+dt® da® +dy? +df?
2 B £
It is of constant sectional curvature K = —1 and defines the volume form dvol = dz dy dz/t3.

Finally the associated Laplace-Beltrami operator is

A:t2<a_2+a_2+8_2) _tﬁ
ox® oyt ot ot

e We deduce easily the geodesics of H? from the ones of H?. They are the half-circles
centered on € and the half-lines orthogonal to C.

ds

Moreover they are uniquely defined by their ending points, two distinct points of P!(C) ~
C U oo that are the roots of a unique proportionality class of non-degenerate binary quadratic
form with coefficient in C : as in dimension 2, it is a bijection.

Rj

71
j ~

21

Figure 3: Geodesics of H?

Let us now turn to the imbedded totally geodesic submanifolds (abbreviated itgs) of H3.
By definition, an imbedded submanifold S in a manifold X is called totally geodesic if and
only if for all (M, ) € T'S, the geodesic of X tangent to @ at M is contained in S.

In H3, the geodesics being the half-lines and the half-circles orthogonal to €, the itgs are
the half-planes orthogonal to € and the half-spheres centered on C.
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2.2 Isometries of H?

We know (cf. [§] for results of inversive geometry) that Is(H?) consists of extensions to R?
of the Mobius transformations of C

az+b az +b a b
M(@)—{z»—>702+d,2|—>cz+d / <c d)ePSL(?,C)}

and IsT(H?), whose elements are extensions of the complex fractional linear transformations, is
isomorphic to PSL(2, C) : we shall make the identification implicitely in the sequel. More pre-
cisely (always identifying H? with a subset of H) we have the following action

d

This extension is also known as the Poincaré extension. The action on H? of an element

Vy= < CCL b ) € SL(2,C) VaecH? vz = (azx +b).(cx + d)™! (2.1)

’y:(i Z) € GL(2,C) with ad—bc=n#0

isfor c=0

az +b
z
d
g = (2.2)
t @ t
d
and for ¢ # 0
. a n cz+d
c ¢ lez+d? + |c]*t?
t nlt

lcz + d|? + |c[?t?

Finally, the classification of the elements of Is*(IH?) extends to Is*(H?) : they are elliptic,
parabolic or hyperbolic according to their trace. The notion of axis of a hyperbolic element is
the same. The main difference is that an elliptic element does not have a unique fixed point in
H3 but a whole geodesic of them. Indeed, for ¢ # 0,

(a b) z z a+d=Tr(y) = 2Re(cz + d)
= —
¢ d t t lez +d]? + |2 =1

and there exists solutions in H? (in fact an euclidean ellipse) iff Tr(y)? € [0,4] : we are in the
elliptic case. For ¢ = 0,

G90)-() = {2

and there exists one solution in H? for a # d € S*,whence Tr(y)*> =a?+2+ a2 € [0,4].

In the parabolic case — Tr(y)? = 4 with v # +1I, — or in the hyperbolic one — Tr(v)? & [0, 4],
the resolution of the equation +v-z =2z on C leads to the existence of a fixed attractive point
or two fixed (attractive and repulsive) points in € respectively. In both cases, the value of
¢ € C does not have any importance.

13



3 Algebraic complements

3.1 Number theory

We base on [ff] in this section.

3.1.1 Extensions and prime ideals

e Let K be a number field and IL a finite extension. We denote by 0k and O, their respective
rings of algebraic integers. Let B be a prime ideal of &p,. The prime ideal P = B N Ok of
Oy 1is called the underlying ideal to 6. Moreover, [@L/% : @K/P} < [IL : IK] < 00 ; we
denote this quantity by f,/k(B) : it is the degree of B over K.

Conversely, let us take a prime ideal P of Ok. We have POy, = 985, ...8B, where the
B, are prime ideals of 07,. The quantities e; are called ramification indices, and by setting

Vi, fi = frx(Bi), we get s

Zeifi = [IL ; IK] (3.1)

i=1
If ¢ with e; > 1, we say that P is ramified. There is only a finite number of such ones.

e Let K be a number field, P a prime ideal of Ok, pZ = P N Z the underlying prime
ideal and f = fx/q(P) its degree over Q. We define the norm of the ideal P by
de
N(P) < |ox/P| = pf
Given a set A of prime ideals of O, we shall say that A is reqular with density a in the set of
all prime ideals of Oy if 1

Z N(P)™® ~ alog

s—1+ S —
peEA

(3.2)

e Finally, let us take a finite extension LL/IK with normal closure M/K and Galois group
G = Gal(IM/]K). The set of the prime ideals P of Ok satisfying POp, = 9B;...9, with
Vi=1...r, B; prime ideal and fr,/x(%B;) = f; fixed, is regular and its density is the relative
frequence in G of the elements of G that, in the left translation representation considered as
a permutation group of the set G, are the products of r disjoints cycles of length fi,..., f..

3.1.2 Application to quadratic extensions

e Let K be a number field and take a € Ox\{1} square-free. The field L = K (y/a) ~
K[X]/(X?—a) is a quadratic (hence Galois) extension of IK, and its Galois group is G = {Id, 7}
where 72 = Id. Moreover 0y, = Oxk|a], with a = (1++/a)/2 if a = 1[4] and a = \/a otherwise
(we just use that an algebraic integer of I. must have trace and norm in O).

For a prime ideal P of Ok, we have L/(P) = K,p)[X]/(X? —a) and PO, = B, ...B,*
with > . e fi = []L : ]K} = 2, so that only three situations occur :

i) POy, = R, prime in Oy, is inert in iff a is not a square modulo P (density 1/2)
ii) P01, = RR, with R prime in Oy, splits iff a is a square modulo P (density 1/2)
iii) POy, = R? with R prime in 0y, is ramified iff a € P. (density 0)
e From now on, K = Q(v/d) where d € Z\{1} is square free, and we consider a € O that

is not a square. Let us denote by A the set {P primes of Ok / a is not a square modulo P},
that is of density 1/2, and by B the set {pZ = PNZ / P € A} of underlying ideals of Z.
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We shall divide B into three subsets B = By U By U Bs, respectively the sets of ideals that are
inert, ramified or split.

If PN7 =pZ € By . pOk = P € A so that N(P) = p? because fi q(P) = 2.
If PNZ =pZ € ByUBy: pOx = P?or PP with P € A, hence N(P) = p.

An ideal pZ of B either splits (pZ € Bs) and there are two prime ideals of A above it, or it is
inert or ramified (pZ € By U By) and there is only one above it. Therefore

DN =D p P+ > pt+2 ) pt= )Y NP)"<2) p*

PecA pZ.E€ By p7Z.E By pZEBs PcA pZEB
Since A is of density 1/2, B contains a subset of density greater than 1/4. This proves

Proposition 3.1  Let d € Z\{1} be square-free, K = (Q(\/E) a quadratic extension and
a € Oy that is not a square. There exists a reqular subset € C &2 of density
greater than 1/4 such that for any prime ideal P of Ok satisfying PNZ = pZ
with p € €, a is not a square modulo P.

3.1.3 A result on Legendre character

Definition Let p € & and K be a field number. Elements ay, as,..., a, of K are
called p-independent if, as soon as ai; ay™ ...a,* (with x; € 7 for all i)
is a p power in K, then x; =0[p] forall i=1...7.

Applied to quadratic characters, a Theorem from [[ states

Theorem 3.1  Let ay,..., a, € 7 be 2-independent integers and z,..., z, € {*1} fized.
There exists infinitely many p € & such that YVi=1...n, (%) = 2.

Proposition 3.2 Let ay,...,a, € Z\N. There exists infinitely many primes p such
that Yi=1...n, <;> _—

Proof : let ay,..., a, € Z\N. If they are 2-independent, the result is immediate by ap-
plication of Theorem B.]. Otherwise, let us take a maximal 2-independent subfamily, that we
may take up to a relabelling to be ay,..., a, with 1 < m < n. According to Theorem [B.1],
there exists infinitely many primes p such that a

Vi=1...m (—Z) =1

p
Let p be such a prime satisfying : Vi =m+1...n, a; Z0[p|, and let 1 < j < n —m.
Because the selected 2-independent family is maximal, the elements ai,..., a, and ap4;

are not 2-independent and, after simplification

dq € 7Z Hxl,...,xme{(],l} alxl...amxmam+j:q2>0

As a; < 0 for all 7, then Zazz is necessarily odd and

i=1
—x; (7o a; i o
Amyj = QQH% = (Tﬂ) = H (;) = (-1)=" = -1
i=1

i=1

We can take any j with 1 < j < n —m, which ends the proof.

15



3.2 Quaternion algebras

3.2.1 Definition

We base on [@] in this section.

Definition Let a, b € Q. We call quaternion algebra of type (a,b) on @ the Q-algebra
A =Q1,w, Q,wQ], with the multiplication table w? = a, Q* =b and WQ+Qw = 0.

Such an algebra will be denoted by 2 = (%’) We may assume without loss of generality that

a and b are square free integers. We shall also take a # 1 in the sequel.

e The center of A is Q. F={¢g+rw /g, r€Q} is asubfield of 2 isomorphic to Q(y/a).
We shall identify F to Q(y/a), and write any element of 2 as o = xg+ 21w+ 22 Q4+ x3WN =
E+nQ, with {E =29+ 21w, n =122 +230w0 € F . Note that V¢ € TF, fQ:QEF. We define :

A =129 — T1w— 2382 — x3wWS) :E]F —n ) the conjugate of a.

Tr(a) =a+a =Tr(f) =229 € Q the trace of a.

. N(a) =aa = fEF —bnn" = (20? — ax,?) — b(x2? — axs?) € Q its norm.
Proposition Vai, a, € 2 1.0y = 0g.007.
Theorem 2 has zero divisors <= 2A ~ M(2, Q)

In this case we shall speak of matriz algebra. Otherwise, we have a division algebra, as the one
considered here. But, after extending the scalars to IF, we have zero divisors and the mapping

¢:a=§+nQH<b§F gfp) (3.3)

provides the identification of A ® F with M(2,F). Let us note that ¢ leaves the trace and
the norm (as they are defined on ) invariant, the norm on Im(p) C M(2,F) being quite
simply the determinant.

Finally, we will call a quaternion algebra definite or indefinite whether its norm is definite
(a <0 and b < 0) or indefinite (a > 0 or b > 0) as a quaternary quadratic form on R.

e Going back to matrix algebras, we have the following characterization :

Proposition 3.3 Let be 2. If A= (%’) 1s a matriz algebra, then (%) = 1.

Proof : given a = xg + z1w + 120 + x3wl2 € A, its norm is
N(a) = (29 — az1?) — b(zy? — axs?) = (x0® — bry?) — a(z,® — brs?) (3.4)
If a € is a divisor of 0, we have o # 0 and N(«) = 0. Hence, by relation (B.4),
zo? —ax =0 (:L’22 — ax32) with Vi=0...3, z;€Q
After the multiplication by the least common multiple of the denominators of the x;, we obtain

Yol —ay P =b (y22 — ay32) where Vi=0...3, vy, €7
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Let us deal with this equation :

(i) If b does not divide y; : as yo> — ay,® = O[b}, then a = (
modulo b.

Yo

2
) ) [b} and a is a square
1

(ii) If b divides y; : then b divides yo® so that, b being prime, b divides 1. By noting
0 =1o/b and y; = 1y, /b, we get
Yo = Yo/ y1="u/ g o — ays? = b(y62 _ ayf)

We find in case (ii) an equation in ys, y3 of the same type as before. Therefore after a finite
number of simplifications by b, we are in case (i), unless y; = y3 = 0. In this last case, we have
Yol = byp? #0 as a # 0, so that b € Z is a square in @) i.e. in Z, which cannot happen for
be Z. So we have shown

For b e & 2l matrix algebra — (a is a square modulo b)

3.2.2 Definition of a discrete group of isometries associated to 2

Definition An order J in 2 is a subring of A such that
1)1e€73.
2)a€ed = Na)& Trla) € Z.

3) 3 has four linearly independent generators over Q.

Thus, J is a free Z-module of rank four in 2, that is besides stable under the conjugation.
For example, Jyg = Op G Or ) = { E4+nQ / & ne Oy } is a particular order for any quaternion

algebra A = (%’), and M(2,7Z) is an order for the matrix algebra 2A = M(2, Q).

Proposition 3.4  Let J be an order. Then 3D, D' € Z\{0} D'J C D3y, C7J.

Proof : the orders J and Jy being two free Z-modules of rank four in 2, their Z-bases
are two Q-bases of 2. Let us call M € GL(4,Q) any transition matrix from a basis of J
to a basis of Jo. We just have to take two integers D and D’ such that DM € M(4,7Z)
and D'D~'M~' € M(4,7) to satisfy the above property. Moreover, Op ~ 7% and J ~ Z* is
countable.

e Given n € Z, we define J(n) = {a €T / N(a) =n} and 37" (n) = I(n) NI the subset
of primitive elements, where the primitive elements are the ones that cannot be divided in J
by a non trivial integer.

,
Va=E4+nQe T, Na)=0[p] = ord, N(§) = ord, N(n) = 0.
In particular, £€n # 0 for such an «.

Proposition 3.5  Let p € & be a prime such that ord,(2abDD") = 0 and ( ) =—1.

Proof : let p € & and a = £ + n€) € J satisfy the above assumptions ; thus we have
N(a) = €€ — bn7¥ = N(€) — bN(y) = 0[p. As D'J € DIy C J, then D'¢ = D¢ and
D'n = Dny with &, m € Op. Besides, ord,(DD’) = 0 so that ord, N({) = ord,N(&§) > 0
and ord, N(n) = ord, N(n;) > 0 (we follow the classical convention ord,(0) = +00). By taking
the norm, we get

N(D'a) = N[D(& +m Q)] = D*[N(&) — bN(n1)| = 0p]
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hence, as ord,(D) =0, N(&) —bN(n) =0[p] and ord,(b) = 0 implies
ord, N(&) > 0 <= ord, N(1;) > 0

Let that
e s asstne Tha ord, N(€) = ord, N(&;) > 0 (3.5)

ord, N(n) = ord, N(n;) > 0 (3.6)

a # 1[4] : as a consequence, O = Z[\/a] and & = by + b1y/a with by, by € Z. Relation (B)

can be expressed as p/ bo® — aby®.
. If p/by, then p/by and & = p& with & € OF.
bo

2
. Otherwise a = (b_) [p] and (E) = 1, contradicting the assumption.
1 p

2 2 2
We have p/N(2¢;) thus p/ (2by + by)? — ab,*.

1
a =1[4] : in this case, Op = Z[ +\/ﬂ and & = (bo+ﬁ) + biv/a with by, by € Z.

. If p/by, then p/2by + by and p /by, so that & = p& with & € OF.
2b ?
. Otherwise, a = (b_o + 1) [p] and (2) = 1, contradicting the assumption.
1 p

Therefore, relation (B) leads to 3& € O, & = p&s. In the same way, relation (B.9) leads
to dny € Op, my = pn. Thus D'a = D(& +m Q) :pD(§2 + 1 Q) =pDay where ay € Jy.
Because p A D' =1, there exists z, y € Z such that 2D’ + yp =1 (Bézout) and

a=xD'a+ pya = p(xDas + ya). (3.7)
As ag € Jy and DJg C J, we have Das € J and « € pJ : « is not primitive. This ends the

proof of the Proposition.

e Let A be an indefinite quaternion algebra of type (a,b) on Q) ; we shall consider in the
sequel orders of type (g1, ¢2) in 2 ; they are principal and we can use them to define modular
correspondences (cf. [F] §3). For ¢; = 1, these orders are simply the maximal ones.

Let J be such an order of type (q1,92) and R = ¢(J) its image in M(2,F), where ¢ is
defined by relation (B.J). We shall implicitely identify J with its image by ¢ and denote by
a=E+nQ any element of R. Via Poincaré extension, the set R* = {a € R/ det(a) # 0} is
identified with a subgroup of Is™(H?). For n A q1¢go = 1, we define

R(n)={a€ R /N(a)=n} (3.8)
RP"(n) ={ a € R/ a primitive and N(a) = n} (3.9)
which are infinite subsets of M(2,F). For example, let J be a maximal order containing J :

Pell-Fermat Theorem applied to the equation N(a) = z¢% — az,? — bro? + abws? = 1 implies
that J(1) is infinite because at least one of the square-free integers a, b is positive.

Let ', = R(1) be the discrete subgroup of SL(2, C) induced by R. We shall denote the
quotient space by X, = I',\H® and the canonical projection by m, : H?> — T, \H?.
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To insure that X, inherits the Riemannian structure of H?, the group I', must not contain
any elliptic element.

Proposition 3.6  Let us assume that b € 2\{3}. If I, contains an elliptic element,

one of the integers a, —a or —3a is a square modulo b.

Proff : if T, contains an elliptic element, there exists a = £+1n 2 € J such that |Tr(«)| < 2
and N(«a) = SE]F — by = 1. Since J is an order, we have Tr(a) = Tr(¢) € { —1,0,+1}.
Set £ =z +yy/a and n =z +t/a € F, where z, y, z and t € Q. Then N(a) = 2% —ay? —
b(z* —at?) =1 and Tr(a) =2z € { —1,0,+1}. We shall assume that a # 0[] (otherwise a
would automatically be a square modulo b).

If v =0 : then —ay? = 1+ b(z*> — at?) and after multiplication by the least common
multiple of the denominators of 3, z and t, we get —ay’®> = E? + b(2'* — at'*) with integers i/,
z" and t' such that ' A2/ At = 1.

LIy #£0[b], —a= E?/y*[b] and —a is a square modulo b.

CIf y = 0[b], bdivides E and 2% — at’? = 0[b] where 2’ # 0[b] and ' # 0[b] because
a#0[b] and ¢ A2 At' =1. Therefore a = 2/*/t”*[b] and a is a square modulo b.

If v = £1/2 : then —ay* = 3/4+0b(z* —at*) and after multiplication by the least common
multiple of the denominators of y, z and t, we get —ay’> = 3E2 + b(2'* — at’®) with integers
y', 2/ and t' such that y' Az’ At/ = 1. As in the case x = 0, we deduce that

Iy #0[b], —3a=9E2%/y? [b] and —3a is a square modulo b.

. If ¥ = 0[], b divides E because |b| # 3, and 2 — at’? = 0[b] where 2’ # 0[b] and
t' # 0[] because a Z 0[b] and o/ A2’ At' = 1. Thus a = 2*/t*[b] and a is a square
modulo b, which ends the proof of the Proposition.

e For all n € N such that nAqqge =1, R(1)\R(n) is finite (cf. [B] §7) : we may define (as
in section [.2.3) the modular correspondences on the quotient space X, = I',\H* by

T.fz)= Y  fla-z) Cuf(z)= Y, fla2) (3.10)

a€R(1)\R(n) a€R(1)\RPT (n)
We call these operators modular operators. They possess the classical properties of the modular
operators we have seen in dimension 2 (cf. section [.2.J) and they are bounded linear operators
of #?*(X,). Moreover, the proof of Lemma [[.3 can be adapted to an order R : for any n € N,
the set R(n) is stable under the passage to the comatrix, which corresponds to the conjugation

of the underlying element of J
dern)=( ) erm = o@-n=( §. P )erm G
7 b €
Adapting the proof of Lemma [[.3), we show that for p € & such that p A q1¢2 = 1 (only such
p will be considered thereafter)

Proposition 3.7 |R(1)\R(p)| = m. We shall denote R(1)\R(p) = {R(1)01,...,R(1) 0}
Vi,3!j such that o0, € pR(1) and Vk # j, oro; € R (p?).
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4 The quotient space X, =I,\H’

4.1 Definition of the studied class

We take an indefinite division algebra 21 = (%’) with @ < 0 and b > 0, and consider an

order J of type (q1,¢2), e.g. a maximal order containing the order Jo, such that I', acts freely
on H?. This way, we get a class (K 2) of quotient manifolds X, = I',\H? that are Riemannian
and of sectional curvature K = —1 when provided with the metric induced by H?.

This class (K5) is far from being empty. Indeed, take a € Z_\{—1, -3} and b € 2\{3}
such that a is not a square modulo b : 2l is an indefinite division quaternion algebra according
to Proposition B.3. For the action of T, to be free, we just have to impose that —1 and
—3 are squares modulo b, by Proposition B.f. Given a fixed, Theorem B.I] shows that these
three conditions modulo b are simultaneously satisfied by infinitely many primes b, because
the negative integers a, —1 and —3 are 2-independent.

Definition The infinite set of (KQ) - manifolds satisfying the conditions

weZ . be P (%) S (_71) _1, (%3) —1 (4.1)

is called the class (K3).

For example, we can take a = —2 and b= 13.

4.2 Properties of (Kég) - manifolds

e In the sequel of this work, we shall consider manifolds X, of the class (Kzs ) The conju-
gation in [F' ~ (Q(\/E) coincides with the complex conjugation because a < 0.

Lemma 4.1  Let £ € F\{0}. Then ordy |£]* is even.

Proof : let £ = 2’ +4'+/a be any element in . We can write
_p(z+yva)
q

with ¢, p, x, y €Z, * Ay=1 and pAq=1. Assume that |z +y+/a|> = 2> —ay®> =0[b).
If b divides y, then b divides z, which contradicts x Ay = 1. Therefore y % 0 [b] so that

= G)Q B e (%) —1

and X, cannot be of class (K3). Hence |z +y+/al> # 0[b] and, as |¢]* = p* ¢ % |z + y Va]%,
we deduce that ord, |¢]? = 2 [ord, (p) — ord, (¢)] is even. This ends the proof of the Lemma.

§

Proposition 4.1  Let X, be a (Kﬁg) -manifold. Then I, has no parabolic element.

Proof : let us take a parabolic element v = & + 712 in I',. By taking its opposite —v if
necessary, we may always assume that ¢ =1+ zv/a and n =y + zy/a with x, y and z € Q.

As N(v) =1, we have
0=g* =blnf* = 1= —az® - b(y* — az”)

20



Let us multiply x, y and 2z by the least common multiple of their denominators and divide the
obtained integers by their greatest common divisor ; we get

aX?+b(Y?—aZ*) =0 with X, Y, Z€7Z and XAYANZ=1 (4.2)
Because bAa =1, bdivides X. Setting Xy = X/b, we get after simplification
abXo? +Y? —aZ*=0 (4.3)

If b divides Z, b divides Y too, which contradicts the relation X AY A Z = 1. Therefore
Z #01[b] and we get by reduction of ([..J) modulo b

0= (%)2[6] e ($) =1

As a consequence, X, cannot be of class (Kﬁg )

e Two geometrical properties of the space I'(2)\H? stated in section [[2.7 extend directly
to the space X, because T, acts freely and discontinuously on H? cf. [§]. We have thus

Proposition 4.2  Let £ be a closed geodesic of X, = T,\H3. There exists an hyperbolic
transformation v € T,, whose aris L C H® projects onto £ in X,,.

In particular, there exists a compact portion [ of L such that £ =7, (L) = 7,(l) = mr(l).

Lemma 4.2  Let ' and G be two closed geodesics of X,,. Then F'=G or FNG is finite.

e We have similar properties for closed itgs, which are compact itgs of X,.

Definition An itgs S of H? is closed for T, if its projection . in X, is closed, that is
3F C S compact IT' C T, S:UV-ﬁ:F'.ﬂ (4.4)

~yel

Thus . =7.(S) = 7,(F). As the group I', is countable and the complete space S has non
empty interior, then % has non empty interior by Baire’s Lemma. More precisely

Proposition 4.3  Let . be a closed itgs of X, and S be a lifting to H3. There exists
a group T'o C I, and a compact subset % C S with non empty interior

such that
vyely <= ~v-5=8 and S= U’y~§:%~§

~v€lo

There exists moreover v =& +n€Q € Iy hyperbolic, with and n # 0.

Proof : let T'y denote the set
Ly={~vel, / »FcS} DI (4.5)

For v € Ty, the set v-S NS D ~.% has non zero area. As v-S and S are both itgs of H3
i.e. half-planes or half-spheres, v -5 = S. Conversely, the relation v -5 = S implies that
v.# CyS =S5 and v € I'g. Hence, I'y = {fy el, /v.5=S8 } That I'y is a group is obvious.
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From the definition of the class (KQS ) and Proposition [I.1), we know that the groups I'y and
[, contain only hyperbolic elements except for {+Id} . Now 'y # +Id otherwise S = #

R

would be a compact itgs in H3, and we can find a hyperbolic element v = £ +7Q € T'y. Then
(€] > Re?(§) > 1 and bn|* = [¢[* = N(v) = [¢]* =1 > 0, so that n # 0.

Lemma 4.3 Let S) and Sy be two distinct closed itgs of X,. Their intersection S1 NSy is
either the empty set or a closed geodesic of X,,.

Proof : in a Riemannian manifold, two distinct itgs intersect transversally, because an itgs
is entirely defined by a point and the tangent space at this point. Then their intersection has
dimension 1 if it is not empty.

Since S; and Sy are closed itgs of X, they are compact. Hence, L = 51N 5, is a compact
subset of X . If L # (), it is a complete geodesic because for (M, u) € T'L, the geodesic of X,
tangent to « at M is contained in both S; and S;. As L is compact, it is a closed geodesic
of X,.

4.3 The type 5° and I, - closed itgs

e The half-sphere S° = § (O, 1/ \/Z_)) is invariant under the action of all the isometries
induced by A®@ R : given v =¢ +7nQ € A® R such that N(y) = |£]* — b|n|? # 0, we have

e’ +nvb
nVb+ e

1
=7 49

whence v - (S°NC) = 5°NC and v-S5° = 5° We shall also denote by S° the projection
of this half-sphere in X . Unfortunately, we shall see in Appendix [] that S° is the only itgs
of H? that is closed for T, : indeed, the subgroup T'y of elements of T, leaving an itgs S
invariant is generically a one-parameter group (cf. J is a Z-modulus of rank 4) so that '\ S
cannot be compact.

§6i0671/2+77 _i

voeR bl = |l ——— | =
}’Y( € )’ bﬁeieb_1/2+§ \/Z;

e Lacking of closed itgs in X,,, we shall use instead the weaker notion of I, - closed itgs and
look for modular correspondances separating points, closed geodesics or I', - closed itgs.

Definition Anitgs S of H? is called T, -closed if there exists v = £+nQ € T, hyperbolic
such that v-S = S. Its projection . in X, is also called a T, -closed itgs.

There are infinitely many of them, as we shall see in Proposition B.3 section J.

Lemma 4.4  Let . and % be to distinct T',, - closed itgs of X,. Then area(.#1N.%,) = 0.

Proof : it is a straightforward corollary of the first part of the proof of Lemma [£.3, since
every l-dimensional set has zero area. Just be aware that the notion of area is here inherent
to the manifold »; (for example), which is provided with the Riemannian metric induced by
H3. That will be — and has been — always the case : we only mention the area of subsets of
two-dimensional imbedded manifolds of X, .

Definition We say that A C X, has type (S°) if A is contained in a finite union of
I, - closed itgs and area(A) = area(A N S°) # 0.
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5 Statement of the result in dimension 3

Theorem 5.1 Let X, =T, \H? be a 3-dimensional manifold, T, being a discrete subgroup
of Is*(H?) derived from an indefinite quaternion algebra 2A = (%’)
We shall assume moreover that X, is a manifold of class (KQS)
Let A C X, be a non empty set contained in a finite union of isolated points,
closed geodesics and T, - closed itgs of X, (we assume in that area(A) # 0 in
this last case) that has not type (S°). Then A cannot be the singular support

of a quantum limit on X,,.

First we prove a separation result on such a subset A :

Proposition 5.1  Let X, be a manifold of class (Kf) For all non-empty subset A C X,
contained in a finite union of isolated points, closed geodesics and T',, - closed
itgs (with area(A) # 0 in this last case) that has not type (S°), there exists

a correspondence T separating A.

We shall distinguish three cases and treat them separately in sections [ to j :
1) A is finite
2) AC FyU---UF, a finite union of closed geodesics
3) ACSiU---US; afinite union of I, - closed itgs.

and complete the proof in section fJ. Let us first state a proposition that will simplify the
calculations in the sequel. We call objects of the same type of X, a set of points, a set of
closed geodesics or a set of T, -closed itgs of X, =T, \H?.

Proposition 5.2 Let Fy, ..., F. be objects of the same type of X, and G, ..., G, fived
liftings of these objects to H®. There exists a finite subset of prime numbers
F C P such that, given p € P\.Z, the relation

Ja € R(p)UR"(p*) Jic{l...r} a- -G =G,

leads to

INc€.F FacR"(Np)UR"(N**) a -G =G (5.1)

Proof : let us fix n =1 or 2 and assume that 3¢ € {1,...,r}, Ip; € £, Ja; € R"(p;"),
a; - G1 = G;. As a consequence G; = Com(«;) - G;. Take p # p; € & and «a € RP'(p") :
a -G =G = a-G; = Gy where @ = Com(oy;) a € R(p"p") = R(N"p"). This element is
primitive : otherwise, n =2 and & € pR or & € p;R as p and p; are both primes, whence
.if @ € pR then o;a = o;Com(a;) a = pi?a € pR and o € pR as pged(p;,p) = 1,
a contradiction with a € RP"(p?).

.if @ € p;R then & Com(a) = Com(a;) aCom(a) = p*Com(c;) € p;R and «; € pR,
a similar contradiction.

Proceeding the same way with all the indices i € {1...r}, we get to relation (5.])) after exclusion
of at most r values of p € &, the forementionned set % = {p1,...,p.}.
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6 Case of the points

o Let A = {fl, o fl} be a set of points of X, and z; = (2;,t;) € H? liftings of the
points x; for ¢ =1...[. Let us apply Proposition to those points : for n=1 or 2, N € &
and p € Z\.Z a prime satisfying the assumptions of Proposition B i.e.

ord,(2abDD’) =0 and (E) =-1 (6.1)
p
we take a = &+nQ € RP"(N"p™) such that a-z; = z;. In that case, ord, |£]* = ord, |n]* =0 ;
in particular £ # 0 and 71 # 0. By relation (R.3), the action of « as an isometry of H? is

& Ny ¢ + bz
N b |§ + bnz|? + b%{n)2t?
)T Nt

&+ bnz|? + b?|n|t2

It is well defined for any ¢t > 0 because n # 0. The relation « - x; = z; implies
N™p" =€ +bnzl* + b [n* t.* = [¢* — bInl” (6.2)
Nz +nz =0 (6.3)

Note that 2z; # 0, otherwise relation (§3) gives |£|*+b%|n|? 12 = |£]*—b|n|? so that || = 0,
a contradiction. As a consequence, we deduce from relation (£.3) that
2T~ constant el
1 T]

Fix 19 € Op such that 75/ny = —%1/2z1. We have
DM Shence EzgeRﬂF:Q (because a < 0)
no o Mo Mo

so that 3m € Q, n = mmny. As D'n € OF by Proposition B4, we get by taking the norm
m? D" |no|* € Z, with D" |no|* fixed in Z. Thus, there exists E € N fixed (i.e. only depending
on 1)) such that Em € Z*. The expansion of relation (f.2) provides

N"p" = [€]* +2bmRe (&7 21) + 0> m? [io[* (11* + |21]*) = [€[* — bm? [npo?
and we get after simplification by bm # 0, we get
2 Re (f%zl)+m|no|2 [1+b(t12+ |zl|2)} =0 (6.4)

As D'¢ € Of by Proposition B.4, we have 2 D'¢ = X +Y/a with X, Y € Z. The coefficient
of m in relation (p.4) being strictly positive because b > 0, then m is a linear function of X
and Y. Hence the middle term of (p.2) is a definite positive quadratic form of the two integer
variables X and Y, which we will write

N"p" =1 X2+ o XY + c3Y? (6.5)
A priori c1, ¢a, cg € R ; moreover co? —4cic3 < 0 since the quadratic form is definite positive.

e Let us suppose that for all N € .#, there are at most two primes p € Z\.Z satisfying
both relations (B.I]) and (B.§) ; let A € N be the product of all those primes p. For all
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p € P\.Z satistying relation (B.]]) and such that ord,(A) = 0, for all N € .# and for all
a € RP"(N?p?) U R(Np), we have a - x; # x1. We deduce from Proposition f.3 that

Vpe P\Z such that ord,(2abDD’'A) =0 and (E) =-1
p
Va € R(p) U R (p?) Vie{l...l} «a x #u

(6.6)

We know that there are infinitely many convenient primes p ; they even form a regular subset
of & of density 1/2.

e Now assume that for some N € Z, equation (6.]) is solvable for at least three distinct
primes pi, pa, p3 satisfying relation (B-]) : we have three points (X; : Y;)i—123 € PY(Q)

such that
Vi=1...3 N"p" =cXi* + 2 X;Y; + 3V (6.7)

Using these three relations, we shall show that ¢y, ¢z, c5 € Q. If (X; :Y;) = (X, :Y;) for
i# 7, n=2 and p;j(X;:Y;) = pi(X;:Y;) ;since pged(pi,pj) = 1, a; € p;R, a contradiction
with relation (F.J]) and Proposition B3 Thus (X; : Y1), (X3 : Y2) and (X3 : Y3) are three
distinct points of P1(@Q). By relation (B.7), we can write

X2 X170 Y2 c1 "
X XoYo V9P o | =N"| p" |7
X5? X3Y; V5P C3 ps"

The above Vandermonde matrix has a non-zero determinant [],_ (Y5 Xi —YiX;) € Q" so that
c1, Co, c3 € QQ after inversion of the linear system. Thus, relation (B.5) becomes

kp" = aX?+ XY +4Y? with pe 2\ X, Y eZ (6.8)

with &k, a, 3, v € Z. Besides, § = 3> —4avy < 0 as the quadratic form in the previous relation
is positive definite. By reduction modulo p of relation (b.§), we finally get

J is a square modulo p (6.9)

Therefore, if p € P\.Z satisfies

ord,(2abDD’) = 0 <%) — -1  and <g) =1 (6.10)

we have according to relations (6.]]) and (B.9)
VN €.% Vac& R(Np)URP(N*p? a.r # 11
whence, by Proposition p.2
Va € R(p)UR(p?) Vie{l,...,lI}  ax #x; (6.11)

By Proposition .4, @ and ¢ being strictly negative integers, there exists infinitely many primes
p ¢ .F satisfying relations (p.10) and — as a consequence — (p.17]). Together with relation (p.G),
this leads to

Proposition 6.1 Let x1,...,x; be points of H®. There exists infinitely many primes p

such that
Va e R(p)URP(p?) Vie{l,...,1} -z # x4 (hN))
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7 The geodesics

The proof presented in [[] still holds ; we associate to any geodesic of H? a proportionality
class of complex binary quadratic and, using Proposition B.J], we obtain

Proposition 7.1 Let Ly, ..., L, be geodesics of H3. There exists infinitely many primes p

such that
Vae R(p)URF(p?) Vie{l...r}  «a L #L (7.1)

8 Case of the [, -closed Itgs

Keep in mind that the itgs of H? are the half-spheres centered on C and the half-planes
orthogonal to C. Only such half-spheres and half-planes will be considered in the sequel of this
section, without need for us to mention it.

Definition Let .7 be an itgs of H3. Its trace € on C is the set of its limit points in C,
that is € = . NC in R>.

The trace of an itgs of H? is then either a circle, either a straight line of C — id est a circle
of P1(C). Moreover, each itgs its uniquely defined by its trace on C, whence

Proposition  There is a bijection between the itgs of H® and the circles of PY(C).

As a consequence, the action of an isometry on an itgs in H? is entirely determinated by the
former’s action on the latter’s trace in C, much more easy to deal with. In particular

Proposition 8.1  Let . and % be two itgs of H? whose traces on C are €, and 6,
respectively. Then

\V/’}/GSL(Z,(D) ’7'5/1:5”2 < ’7(%1):%2

To obtain a separation result on a finite set of T, -closed itgs of H?, we shall deal with
isometries leaving such an itgs invariant, and then apply Proposition f.3. We shall prove by
the way the existence of infinitely many I', - closed itgs in a manifold X, of class (Kﬁg )

8.1 Of the half-planes

Proposition 8.2  Let the half-plane &2 be an itgs of H3, and 2 be its trace. Consider an

elementh(i Z) € SL(2,C) with a+d#0 and c#0 :

—d
VP =P = %6977693 2 is given by relation (B.])

(a+d)?eR

Proof : we have by Proposition B.]
v P =D = vD)=9
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If 9(2)= 92, then y(o0o) =a/c€ P and v ' (o0) = —d/c# a/c € D ; so

J— _1 o
2€9 — HAER,z:)\(%>+(1_)\) <7d):)\a+(i\ )d:A(a+Cd) d

cz+d cz—a
eER «—
a-+d a+d

7= { 2t / tm (acfd) = lm (aj—d) = lm (a_—irdd) } (81)

Moreover, a/c € 2 =~v(2) so that

a a® + be
7(;)6.@ = c(a+d)6‘@

= () -m(ete) ()

= (%) :Im(<a+1d>2)

<~ (a+d)?eR

cR

whence

Reciprocally, assume that a/c = v(00) € Z, —d/c = 77} (o0) € Z and (a+d)*> € R : by
relation (B.]), we still have v(a/c) € Z ; besides

a a’+bc a .
7<E>_c(a+d)7éz since ad —bc=1%#0

Therefore, the isometry 7 takes the three distinct points oo, a/c, —d/c of & into a/c, v(a/c)
and oo, which also are distinct points of 2 : any circle of P!(C) being uniquely defined by
three points, we have de facto v(2) = 2, which ends the proof.

Keep in mind that for any hyperbolic element v = {+nQ € I',,, we have Tr(y) = Tr(£) # 0
and 1 # 0 (cf. proof of Proposition .J) : those elements, which are the only interesting ones
for us, will satisfy the hypothesis of the above Proposition.

e We are now able to show easily the existence of infinitely many T, -closed itgs in H?.
Take any hyperbolic element v = ¢{4+nQ €T, : z; =7 '(00) and 2z, = y(00) are two distinct
points of C, since Tr(y) # 0. Let us define the itgs &2, by &2, = 2, ® R%]j, where

D = (2, 2) = { 2eC / Im(b7 2) = Im(£) } (8.2)

Since Tr(y) € Z C R, we have y(%,) = %, and - &, = &, by Proposition . the
half-plane 22, is a T, -closed itgs of H?. Furthermore :

Proposition 8.3  There exist infinitely many T, - closed itgs in H3, e.g. the half-planes
2t) =2t eRij=R(1+t/a) ®R j for t € 7.

Proof : let us fix t € Z and look for an element v, = £ + n{2 € I', having the form
v =z +y(l+ty/a)Q, with z, y € Z* ; v, is hyperbolic as y # 0, and relation (B.9) provides
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2y, =R (1 +ty/a) = 2(t). For such a v,
Ny) =1+ 2> —-b(1l—at?)y* =1 (8.3)

and, by Fermat’s Theorem on the Equation of Pell, we can solve this equation for non-trivial
integers x, y as soon as d = b (1 — at?) is not a square in Z. But

b(1—at®) is asquarein Z = 1—at* =0y :>(%):1

a contradiction with the definition of the (Kﬁg) -manifolds. So, for each t € Z, the natural
integer d = b(1 — at?) is not a square and we can find v = & + 7, Q € [, such that
2, = 2(t) = R (1 +ty/a). This fullfills the proof.

Let us take for example a = —2 and b= 13:

for t =0, d=13, 7 =649+ 1802 € I, and Z(0) = R® R j.

cfor t=1,d=39, 1 =25+4(1+ivV2)Q €T, and 2(1) =R(1+iv2) & R%j.

Cfor t =2, d =117, 75 = 649 + 60(1 + 2iv/2)Q € T, and £ (2) = R(l + 22\/5) O RLj.

We shall see other examples of T, -closed itgs in Appendix [B], half-planes that do not contain
R%j and miscellaneous half-spheres. Moreover, we shall prove that

Proposition 8.4  There exist infinitely many T, - closed itgs in X ,.

e Let us finally state the main result of this section :

Proposition 8.5  Let &, be a T}, - closed half-plane of H* and F a finite subset of 2.
There exists infinitely many primes p € P\.F such that

VN €.Z Vac R (Np)URP(N*p?) o P+ P (8.4)

Proof : let 2, be the trace of &7 on C. As & is I, -closed, there exists a hyperbolic
element 1 =& +m Q €I, such that v, - & = &, whence v - %, = %,. Moreover 1, # 0,
Tr(y1) # 0 and we can apply Proposition B : we deduce from relation (B-J]) that

9, = { 2eC / (b7 2) = Im(£;) } (8.5)

Let us take a prime number p € Z\.% satisfying the assumptions of Proposition B

ord,(2abDD’) =0  and (%) =—1
and assume that for n =1 or 2,
ANeZF Ja=&+nQe RFM(N™) a(P) =D (8.6)

Then 71 # 0 and relation (B:@) implies that a~'(c0) = —£/b € 2, which means that

—Im (@) = Im (E) =Im(&§) and 3INER, §: M
' ! N m

In fact, A € Q = RN F because all the complex numbers considered belong to the number
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field F. From the norm equation N(«a) = N"p", we deduce that

non o _ |12 2 02 |f|2_ _|77|2 2 2 2
7| ||
From [&|* —b|m|?> = N(71) = 1, we get Im(&;)? — b|m|*> =1 — Re(&1)? so that
|77|2 2 2
N"":—[él)\ FA—Ty ] 8.7
P = o) 7)

By Proposition B3, ord,|n|> = 0 ; we shall moreover impose ord,|n;|> = 0. As Tr(y,) € 7,
relation (B77) provides ord,(4A?) > 0 whence 4\* +4 — Tr(y1)? = 0 [p], so that Tr(y;)? — 4 is
a square modulo p.

Assume that the integer Tr(y,)? — 4 is a square : Tr(y) = m € Z and In € Z such
that m? —4 = n? whence m? —n? = (Jm| + |n|) x (Jm| — |n|) =4 =2 x 2 =4 x 1. Because
|m| + |n| = |m| — |n| > 0, we have the following alternative :

. either |m|+ |n| = |m| — |n| = 2, so that n =0 and m = Tr(y;) = £2, a contradiction
with +; hyperbolic.

.or |m|+|n| =4 and |m| — |n| =1, so that |m| =5/2 € N, a contradiction.
Hence, ¢ = Tr(v;)? — 4 is not a square. Since 7; is hyperbolic, ¢ > 0.

Finally, we see that V (z,y) € Z*, a*¢V squarein Z = a* >0 = z=0[2] as a <0,
whence ¢¥ is a square in Z and y = 0[2] because ¢ is not a square in Z. Thus, a and ¢ are
2-independent and there exists by Theorem B.J] infinitely many primes p € & such that

(©)- (2=

If we restrict to the primes p € ZP\.Z such that ord,(2abDD’) = 0 = ord,|n;|?, we obtain by
relation (B.7) infinitely many primes for which relation (B.G) can’t be satisfied. They satisfy
therefore relation (B.4), which ends the proof of the Proposition.

8.2 Of the half-spheres

e We shall begin with a characterization of the half-spheres of H? that are T, -closed
itgs. Let . = S(ay,r) be such an itgs and ¢ = C(aq,7) be its trace on C : there exists a
hyperbolic element v € T', such that 7. = .7, whence (%) = €. Using this relation, we
obtain a system of three algebraic equations that lead to

Proposition 8.6 Let S(ay,r) # S° be a T, - closed itgs : ay # 0. If ¢ = 1+b(|a1|>*—7r?) # 0,
then ¢ = 2 € F* and 3(X,Y) € Zx Q, a(l—4b|C|?) = (X2 —4)Y? > 0.
q

Applying Proposition B.G to ., we obtain relations on a; and r (the same notations ¢
and ( are used). Let % be a finite subset of & and n =1 or 2. Then, for N € F# and
p € P\F, consider a« = £ + 1 € RP(N"p") such that o - . = #. The case n =0 is
straightforward. If n # 0, we proceed as in the proof of Proposition B.f and obtain a similar
system of three algebraic equations. From this system we deduce that except for finitely many
primes p: if ¢ # 0 then a (1 —4b]|¢|?) is a square modulo p ; if ¢ =0 then b|n;|? is a square
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modulo p, where 7, is a fixed non nul integer of ' that depends only on a;. Therefore, after
proving that the above quantites are not squares in @Q, we deduce from Theorem B.1] that

Proposition 8.7  Let . = S(ay,r) # S° be a T, -closed itgs of H* and F be a finite
subset of 2. There exists infinitely many primes p € P\F such that

VNeF YacR'(Np)UR'(N*p?) oS+ (8.8)

e First we need a technical lemma for both Propositions :

Lemma 8.1 Let € = C(ay,m) and € = Cl(ag,r9) be two circles of C, N € 7 and
a=E6+nQ e RM(N) with n#0. If a(6)) = 6>, then

de ==+1 b(rlﬁa&_&"f’zna_l) = (T-l,_ri_g,rz)g ( )
212 Inf? — ¢ + by ar? = Ne -t D)

2
|£|2 - b\ﬁ\Q =N ( )

Proof : assume the hypothesis of the Lemma. We have
_ Gt _ & bnP—leP € N

VzeC, oz)= - == L A
(2) z+&  n bp(bmz+¢&)  bn o b (bgz +€)
so that
k N _
VzeC, a(z):%jtz_g where k:_bQ—ﬁQ and ¢ =-£/bm (8.9)
| &'
| )
C I/ 1 B/
i :a/
I QR
A
a
B,

s

Figure 4: Action of a on 4}

Note that ¢ ¢ €1 otherwise a(() = 0o € 63, and that cannot happen. Relation (B.9) implies
that @ = ag o ay, where a; : z —— (+ |k|/(Z — () is an inversion of center ¢ and ap is
an orientation reversing euclidean isometry of C.
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First we assume that ( # a;. We denote by Inveg, the inversion of circle 47 and we set
¢ =Inv, (¢) = ay 4+ 12/(C — @;). All the circles passing through ¢ and ¢ are orthogonal to
%) because they are invariant under Invy,. Let %, be such a circle : «;.%; is a line and it
is orthogonal to «;.%, = %’, hence it is a diameter. As a consequence, Oq(f) = a — the

intersection of all the diameters of ¢” — is the center of ¢”, and «({) = agroa;(() = ay is the

center of %». We set
(C,al) Ne = {Al,Bl} (C,fll) Ne¢ = {AlaB/}

We take here as a convention that the points A; and ( are on the same side of a; on the line
(C,ay), and that By and ¢ are on opposite sides. We have A" = ay(B;), B’ = a;(A;) and

M= (== (=), Bi—C(= =t (a—cl+n)  (810)
whence
A,:C+ |CL1—<‘ |k| and B,:C+ |a1_<‘ ‘k‘

ar—C lai— ¢+ a—C lan—¢|—m

Therefore 2ry = |A' — B'| = 2|k|r1/|a1 — ¢|* —m?. We set € = 1 if ¢ is inside of %7 and

€ = —1 otherwise, so that
Ty elk|

i 2 —|a; — (|2 (8.11)
As (—¢ = —(+r?/(C—a) = (% —|ar = ¢*)/((—a1) = elk|r1/r2({ — @), we deduce
from relation (B.9) that -
g €(§ - 0,1) k?TQ

O

Besides, |k| = N/b*|n|? so that k/|k| = —|n|*/7* = —n/7 and

N § nre — _\
a(Q) —%—5%71@—(11) = ay (8.12)
whence
b(rlﬁag — z—:rgna_l) = (T1 + z—:rg)f (8.13)

Injecting ¢ = —&/b and | k| = N/b*n|? in relation (BIT]), we get

Fri?lnl? — |€ + byl = Ne (8.14)

Finally, the computation of the norm of a provides the relation

€]? = bln|* = N (8.15)

In the case ( = a; = —&/bn, we have ¢ = 1, ¢ = 0o and a(f) = £/by = ay so that
the relation (B.13) is still satisfied. Moreover, ' = C(ay,r3) : a;.C(ay,r1) = C(ay,r9) so that
|k| = rira = N/b?|n|*> whence relation (B.14). Hence, in each case, we obtain the system of
three equations (B:13), (BI4) and (B-13), which ends the proof of the Lemma. We shall prove
a converse in Appendix B

e Proof of Proposition 8.4 : let us take a hyperbolic element v = ¢ +nQ € ', such that
Y(€) =% = Clay,r). If a =0, then v-C(0,7) = C(0,r) id est VO € R, |[y(re?)| =r.
Thus

Vo eR ‘§r6i9+n‘:r‘bﬁrew+a = ‘&rew—l—ern‘ (8.16)
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By taking the maxima of both sides of this equality considered as functions of ¥ € S, we get
r&| + || = 7|&] + br? |n|. As n # 0 by hyperbolicity of v, 1 = br? and r = 1/v/b whence
& = 5° a contradiction with the definition of .. As a consequence, a; # 0. We shall assume
in the sequel that ¢ =1+ 0 (|a;|* —r?) # 0. By Lemma 1], the relation (%) = € leads to

Je =+1 b(ﬁal —577a_1) = (1+€)§ (BIF)
02yl 6+ byl = < EDD)
€7 = bl =1 (B-15)

If ¢ =1, we deduce from (B.I3) that & = ibIm(77a) and Re(§) = 0, which contradicts
the hyperbolicity of «. Therefore ¢ = —1, and relation (B.13) implies that Re(77a;) = 0.
From relations (B.I4) and (B-13’), we deduce that

€+ bnai]” — *r?n)> =1 =[] — bln|?
and

€] +20Re(§ T ar) + b (|aa|* — 12) [nl* =[] = 0 [n]”
As 2bRe({Tar) = b(ETar +Ena) = b(E— &) Ta; and n # 0, we deduce from the above
equation that B ) )
E—8a+ [1+b(a]*=7*)]n=0

q

De facto € —€ #0 and ¢ = a1/q = n/(€ =€) € F*, that is n = (£ — ) ¢ = —2ilm(£) .
Injecting this in relation (B.13’), we obtain

1= Re(£)>+ (1 —40[¢[?) Im(¢)?

Setting 2Re({) = X € Z and 2Im(¢)/vV/—a=Y 1 € Q*, we get X? —a (1 —4b[|())Y 2=4
whence

X, Y)eZxQ a(l—4b[()=Y*(X*—4)>0

because Y # 0 and X? = Tr?*(y) > 4 as v is hyperbolic. This ends the proof.

e Proof of Proposition [8.] : we fix n =1 or 2 ; let us consider a prime p € £\.Z# such
that ord,(2abDD’) =0 and

ANeZF Ja=&+nQe RPF(N"P") a- S = =S(a,r) (8.17)

Keep in mind that . being a T, -closed itgs of H3 a; # 0 by Proposition . If n = 0,
a-(z,t) = (€z/&t) for any (z,t) € H? : the transformation a acts as an euclidean rotation of
the space R®. The relation a -.7 = .7 implies then a; = a-a; = €£a;/E #0 and £/ =1
(e R and a =& =+Np € pR cannot be primitive in R, a contradiction.

Since 7 # 0, we can proceed as in the proof of Proposition B.q : let us set ¢ = C(ay,r) ;
relation (B.I7) provides a(%) = ¢ whence, by Lemma B.1],

de = +1 b(ﬁal—gna_l) = (1+5)§ BT
Rl — 6+ bnalt =N (EIT)

(€7 = bln[* = N"p" BI1F)
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Af e = —1, we get Tay +na; = 2Re(nar) =0 and na; € ¢ R\{0} from relation (BI3").
We proceed as with relation (p.3) : there exists 7, € Of fixed (depending on ay) such that
INe n=Am
Using the relations (B14) and (B13"), we get [ + bnay]® — b*r?|n)*> = |£]* — b|n|*> whence
20Re(EMar) +b[n*[1+b(Jar > —7*)] =0 ie. 2Re(Ear) +¢|n/*> =0 and

2Re (M1 ay) = —Aq|m|? where qg=1+b(a|* =1 (8.18)

Let us assume for the moment that ¢ # 0. By Proposition B.6, ¢ = a1/¢ € F and
EMi¢ € F,sothat dp € Q, 2¢Im(E7¢) = p+/a. Therefore, 267 ¢ = =X |m|* + p+/a and
41Em C]* = Nm|* — a p®. Injecting this in relation (B13”), we get

AN p" Im?[C]? = 41&m C* — 40 |nIm]?|¢)
= —ap® + Nm|*(1—4b|¢P)

For A =1/r, p=m/r € Q with integers [, m,r satisfying [ Am Ar = 1, this relation becomes
after multiplication of both sides by a2

a (1= 40IC7) (U m[?)? = 4a IR N*p" + a*m? (8.19)

We know by Proposition B.§ that 1 —4b|¢|? # 0. For p € & such that ord,(1 —4b|(]?) =
ord,|¢|* = ordy|m|* = 0, we see from relation (BI9) that I = 0[p] if and only if m = 0[p].
Ifi=0[p, Qrm¢)&=(—1nf*+mya) € pOp with r # 0[p] because LAm Ar =1, and
rn=1n € pOr : thus a =&+ 1 € pR, which contradicts the choice of « primitive. As a
consequence, [ # 0 [p] and relation (BT9) implies that a (1 —4b|¢|?) is a square modulo p.

If ¢ =0, we deduce from relation (B.1§) that Re((71a1) = 0 = —Im(&) Im(71 a;), and
Im(§) = 0, because Mya; € iR\{0}. Then £ = p € Q@ and n = Any, so that N"p" =
p? —b|m|* A? by relation (B.13"), whence

I{,m,r) €7, IAmAr=1 and r*N"p" =m>—b|my|*? (8.20)

Let p € & such that ord,|m|> =0 : we have | = 0[p] <= m =0[p] < «a € pR as in
the case ¢ # 0, a contradiction with the primitivity of «. Thus [ # 0[p] and relation (B:20)
implies that the integer b|n;|? is a square modulo p.

.If € =1, relation (B1F) leads to £ =b(ay —na;)/2 =ibIm(a;) € iR and +bna; =
b(Ma; +nay)/2 = bRe(fa;) € R. Using relations (B.14”) and (B.1T°), we get N"p" =
b2 ri? n|? — b* Re’(na@y) = b* Im*(nay) — b|n|% so that b* |n|?(r1? — |a1]?) = —b|n|* # 0. Hence

b(laf*—m?) =1 and ¢=2

So a; =2( € F* (cf. Proposition B.g). We can set na; = X +Y /a with X, Y € Q. After
multiplication of both sides by |a;|?, relation (B:IF’) becomes

a1 N™"p" = —ab®*|a1?Y? —b (X* —aY?) =0 [a (1—bla|*) Y? —Xz}

Let p € & such that ordy|a;|? = 0 = ord,(1—b|as|?) : as before, a (1-b|a;]?) = a (1-4b[¢[?)
is a square modulo p.
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. We can now end the proof of the Proposition : if ¢ =0, n; € F* and ordy(|n:]?) is even
by Lemma [[], so that b|n;|? is not a square in @. Therefore, there exists infinitely many
primes p such that b|n;|? is not a square modulo p (cf. section B.1.9).

If ¢ # 0, we know that a (1 —4b[¢]?) = (X*—4)Y? > 0 with (X,Y) € Z x Q, from
Proposition B.0. As we saw in the proof of Proposition B.H, X? — 4 is a square in Z if and
only if X =42 i.e. X?—4 =0, which cannot happen here. Hence, a (1 —4b[¢|?) is not a
square in @, and there exists once again infinitely many primes p such that a (1 —40b]C |2) is
not a square modulo p.

As a consequence, after the exclusion of the prime factors of a finite set of rational numbers,
we still have infinitely many primes p for which relation (8I7) cannot be satisfied, whence
VN eZF Yae R(N"), a- # .. This ends the proof of the Proposition.

8.3 Synthesis

Let us take .7, ..., S T, -closed itgs of H? with . # S°, to which we apply Proposition
b9 Let .Z be the finite subset of &2 given by this Proposition ; we know by Propositions B.3
and B.7 that there are infinitely many primes p € &\.% such that

VNeZF Va=£6+nQe R (Np)URP(N"p™) a- S # S (8.21)
whence, by Proposition (.3

Proposition 8.8 Let SA,...,. S be T, -closed itgs of H?, with % # S°. There exists
infinitely many primes p € & such that

Va € R(p)UR(p*) Vie{l...l} o S #. (8.22)

9 Conclusion

Proof of Proposition B.1]

We consider a manifold X, of class (K5) and A C X, a non-empty set that has not type

(S°) such that
ACxnU...UzULU...UL U U...UX%,

where the z; are points, the L, are closed geodesics and the X are I',-closed itgs of X .
We assume moreover that area(A) # 0 if s > 1. We look for a modular correspondence %,
separating A (see section [ for definitions) ; to this end, we shall adapt the method borrowed
from [f] and exposed in section [[4]

e A is finite : we have A = {z,..., z;}. Let us take by Z,..., 2 liftings of these points
of X, to H3. By Proposition [.1],

dpe P YacR(P)UR"(p*) Vi=1... aZZ #3 (9.1)

As in section [[.4, we show that there exists a prime p such that the modular correspondence
¢, separates A.
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e A is infinite and contained in a finite union of closed geodesics : then we shall write
A C Ly U...U L, where the L; are closed geodesics, and assume that A N L; is infinite.
Let the geodesics Ly, ..., L, be liftings to H? of the L;. By Proposition [.],

Ipe P VYacR(pP)UR"(p®) Vji=1...r «a-Li#IL; (9.2)
As in section [[.4, we deduce that there exists a prime p such that %, separates A.

e A is contained in a finite union of I, -closed itgs and area(A) # 0 : as A has not
type (S°), we can write A C 3y U ... UX, where the ¥, are I',-closed itgs, ¥; # 5° and
area(X; NA) # 0. Let the itgs .7,..., %, be liftings of the ¥, to H? : . # S° and we
deduce from Proposition that

dpe P YacRP)UR"(p*) Vk=1...r o S #% (9.3)

Let p € & be such a prime : %,(X;) and %,2(X;) consist of [, - closed itgs all distinct from
the Xj. By Lemma [L£.3, the sets

[25% :‘Kp(El)ﬁ(Elu UE;) and 2 :(gp2<21)ﬂ(zlu UE[)
have zero area. As a consequence,
n={ze€X,/6eNm#0} and w={z€X,/Ce(z)Np#0}

have zero area, so that there exists z € AN X \(v; Uwy). Let Z be a lifting of 2z to H* and
w="T,01Z € €,(z) C 6,(X1). Proceeding as in section [[.4 (infinite case), we show that w ¢ A

and ¢,(w) N A = {z} : the modular correspondence %, separates A. This ends the proof of
Proposition B1].

Proof of Theorem p-]]

Let A C X, be a set satisfying the statement of Proposition f.J] : there is a modular
correspondence ¢ separating A. Let v be a quantum limit on X, which is — we make the
same assumption as in section [[.4 — associated to a sequence of eigenfunctions of A and
(T},),,en» hence of T = Ty, From Proposition [T, we deduce that singsupp v # A, which
finally proves Theorem p.T].
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A Of closed itgs in X,

Let . # S° be an itgs of H* closed for T, : by Proposition [[.3, there exists a compact
subset .# C . and a group I'y C I, such that ./ =T - %, id est

Vees dvyely v-x €F (1.1)
We set to=inf{t/(z,t) € Z} =min{t/(z,t) € F} >0 since F is compact in H®.

A.1 The half-spheres
We shall write . = S(ay,r) with a; € C and r > 0. By Proposition B.@, a; # 0 ; we fix

r2 —t

(2,t) = <a1 {1 +

Let y=¢4+nQ ey If n#0, v is hyperbolic and we deduce from relation (B.13") — see the
proof of Proposition B.§ — that 7ja; € iR* ; moreover

v =0 = ! ) (12)

* —
€+ bnz|* + 2|y 2

2
],t)e&” with 0 <t <ty

|ay |

by relation (B3). As 7z € iR, |£+bnz|? = Re(€)? > 1 by hyperbolicity of 7 : hence t < t < tg
and v (z,t) = (3,t) ¢ Z. If n=0, y==4I, and - (2,t) = (2,t) ¢ .F. Therefore

Jer e Vvyely vox & F

a contradiction with relation ([2]).

A.2 The half-planes

We shall write . = 2 @ R j. Let v9 = & + 10§ € I'y with 7y # 0 : by relation (B.2)
we have _
& &

9={:eC [mbiz) =) | - <% b%)

We set —& )\
vielR Z)\:é+—€@

Let y=&+nQ el If n#0,

A A
€+bn27:§—&)—77+—n=n[§—5—°+—} (1.3)
Tlo "o o o
Since v € J, D”?|n|?> € N whence D"?|n|> > 1 : as a consequence,
¢[° 1
NG =g =i =1 = |£] —b+ L <o 0
U 7]
and ¢ &l
Vyer, > 20 <2 (b+ D7) (1.4)
7o

Fix A > [/2(b+ D)+ D']|no| and t €]0, o[ ; from relations ([4) and ([3), we deduce that
E+tnza)? > D> > 1 : v-(2x,t) € F by relation (TQ) . If n=0, v- (2, 1) = (2, 1) € F
and we get the same contradiction with relation ([L.1]) as before.
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A.3 Synthesis

So we have just shown that for any (KJ)-manifold X, there is only one possible closed
itgs, the projection of S° = S(0,1/v/b) in X,. We shall prove now that this itgs is actually
closed : T, acts on the hyperbolic surface S° — which is equivalent to H? — as a subgroup of
its direct isometries ; we proceed exactly the same way as in [[] to prove that I',\\S° is compact
for a maximal order R in an indefinite division quaternion algebra over @©.

e Set J = Zli1,1s,13,14) and J = R [i1,19,13,04) = TR = A ® R ; for the mapping ¢
defined by relation (B-3), we have I, £ J(1) and G, Ly (1), where

Gi={ (5 L)eneo) /- -1} 19

is the group of isometries induced by 2 ® R. We already know from relation ([.f) that
Vyel,, v-5°=5° whence 7 - (O, 1/\/5) € S°. Further :

Lemma 1.1 The mapping

V|G, — S

v — (0, 1/\/5>

defines a continuous surjection. Set M, ={E+nQe G, /€ <¢, n|<c} -
for every ¢ > 0, the set V(. #,) is compact.

Proof : For v=¢+nQ € G, such that 1 # 0, we have |£[>=1+b|n|* so that

0 é _ i # é (1 _ 1 )
b on [§12 + blnl? bij 14+ 2b[nf?
v 1/\/{_) = 1 = ]
Vo (€[> + bln|?) Vo (1+20b[n?)
if n # 0, whence

B 257] 1 o
Vv eQq, ¢(7)—<1+26|n|2’\/l_)(l+2b|n|2))es

If n =0, (y) = (0,1/vb) and we find again the same expression. We obtain this way all
the points of S° when (|n|, Arg&n) runs [0, +oo[x] — m, 7| and @ is a surjection. From its
above expression, 1 is moreover continuous on G,. For all ¢ > 0, .Z. is a compact subset of

M(2,C) so that ¢(4.) is compact.

Note that V1, 72 € G, ¥(71.72) = 71 - ¥(72) from the definition of .

e Let us consider elements & = 10y + 22l +23i3+2474 with Vj, z; € R such that N(§) = 1,
and set M, = {{€ARR /Vj, |r;| <c}n{& : N(¢) =1} for ¢ > 0. We have (see [J])

Lemma 1.2 Let A be an indefinite division algebra over @Q and T = Z[iy,i,13,14]
a mazimal order of A. There exists ¢ > 0 fized such that

VEe AR with N(§) =1 deeJ(1) e =ne M.
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By application of the mapping ¢, we obtain from the above relation

Jde>0 VvyeaG, dy el Yoy =" € M,
so that

Je>0 VyeG, dwely, - v()=vM0y) € ()
By Proposition [[.]]
VeSS dy e G, x =Y(y)
and the set . = ¢)(#,) is a compact subset of S° such that
VaeS® dvel, YT EF i.e. S=T,7
which leads to

Proposition 1.1 Let X, be a (KJ)-manifold. The half-sphere S° = S(0,1/V/b) is the
only
itgs of H? closed for T, ; its projection in X, is then compact.

A.4 Complement : the case a > 0

e One could think that the arbitrary choice of a < 0 is the cause of the lack of closed itgs
in the (K3)-manifolds. Thus, we define a class (K7') of quotients manifolds X, by taking

a€Z beP (%):—1 (%):1 (?):1 (1.6)

For example, a = 2 and b = 13 zre convenient, since we just have to take the opposite of «a
to get from the (K3)-manifolds to the (K¢) ones. We have the same properties as in section [l
— they are consequences of relation ([[.G) — except that the conjugation in F does not coincide
with the complex conjugation anymore. For the definition of the I',-closed itgs, we shall
moreover impose that the considered hyperbolic elements v = £ + n ) satisfy n # 0.

e This time, the itgs that is left invariant under the action of all the isometries induced by

AR is P°=R® R} j~ H Indeed, A ® R induces the group SL(2,R) since v/a € R.

The action of b
y = ( . d) € SL(2,R)
on P? is given by ar +b
x ] T
V(z,t) e R xR} v = = € P
t at t
d
if ¢ =0. Then
- it) + b
F i = % = oz +it)

and we recognize the fractional linear action of SL(2,R) on H2 If ¢ # 0

a 1 cr+d -
¢ ¢ (cx+d)?+ct?
V(z,t) € R x R v - = . = S

(cx + d)? + 22
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whence
.-G clr —it)+d a 1
T+t =—— - 3 = — — -
¢ cle(z+it) +d| ¢ cle(x+it)+d]

:a[c(x+zt)+d]—1 = ac(z +1it) + be since ad—1 = bc

c [c(z +it) + d] ¢ [e(z +it) +d]
_a(w+it)+b :
= i d alx + it)

and we recognize once again the fractional linear action of SL(2,R) on H2. Therefore the
discrete group T, C SL(2,R) has the same action on P° and on H? : we deduce [J]) that,
for a maximal order R in an indefinite division quaternion algebra 21 over @, the quotient
[, \P° is compact : the itgs P° is closed for T,. Let us verify that it is the only one H?.

oelet y=E+nQel, and z = (z,t) € H®:

z €22
(1)-(&)-(
¢ 1 & + iz
01 T b2 + ()
t ~
(€ + b 2[2 + b(7) 282

SRS
N~

it n =20, and

if n# 0. Since &, n € F C R, we easily compute that in each case

Im(2) Im(z) def

- = (x) (1.7)

t t

Let us consider an itgs ./ # P° that is closed for I', : there exists a compact subset
F C .7 and a group I'g CI', such that ./ =T -.% id est

Ve dy el vox €F

As Z is a compact set of H? and f is continous on H?3, this function is bounded on .Z ; we
deduce from both previous relations that

IM>0 Vees |f(x)|<M (1.8)

We can now get to the desired contradiction :

. If .7 is a half-plane — whose trace is denoted by & — different from P°, there exists
z0€ Z\R : forall t >0, z; = (2,t) € . and |f(z:)| — o0 as t — 0, a contradiction
with relation ([[.§).

. If 7 = S(a,r) is a half-sphere, we have 7 # 0 and a+ir ¢ R or a —ir ¢ R : we
may assume wlog that a +ir ¢ R. Set =, = (a + ivr2 —12t) for t €]0,r] : then
f(z¢) ~ |Im(a) +r| /t — oo as t — 0, a contradiction again.
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Hence we have established

Proposition 1.2 Let X, be a (K7)-manifold. The half-plane P° =R ® R’ j is the only
closed itgs of H® for T, ; its projection in X, is thus compact.

De facto, the lack of closed itgs is not specific to the (K5)-manifolds, as we could have
thought a priori. Moreover, for any (K7 )-manifold, we see from (BF) that there is only one
I, - closed half-plane, P°. The closed geodesics are particular too, since they link two points of
P'(R). We shall also have restrictions on the T, - closed half-spheres. All those considerations
justify a posteriori our choice to deal with the (K5)-manifolds rather with the (K?)-ones.

B Of I, -closed itgs

B.1 Proof of Proposition

Let us consider the infinite family (@(t)) e of T, -closed half-planes of H? given by
Proposition B3J. To prove Proposition .4, we must verify that the set of their projections in
X is still infinite.

R

Let us take ¢; and ¢, € N ; the half-planes Z(t;) and Z(t3) have for traces on C
respectively 2 = (1 + t14/a) R and % = (1 + tay/a) R. A circle of P!(C) being entirely
defined by three distinct points, we have for v =¢ +nQ € I',\{£Id} (so that n # 0)

W)= € ()

V- PM)=P() = (D) =% = y0)=2L e (2

M3

\ V(1 +tiva) € Dy (3)

The relations (1) and (2) are equivalent since n/& = (b|n|?/|£|?) x £/b7. By relation (1),
we have £n € %, and

INeQ  E=X2b7(1 +tv/a)

Relation (3) provides
((1+tva)+n

b7 (1 +tiv/a) +¢€
— [E(1+tva)+n [+bn(l—tia)] € P

— E(1+tva)+bn* (1 —t1\/a) € Py since &n € Dy

2

1—tva
MN2h(1 4+t 14+t (VT 2
= ) ( +2\/5)( +1\/5)7]1+<1+t2\/5)77 e R

z2

-~

21 N

Note that the complex numbers 2z; and 29 € ' have opposite arguments : as a consequence,
either they have the same module, either they are both reals. In the first case,

1—a

t 2
A (1= aty?) (1 —ats®) In|* = 1 t12 In|*  ddest bA(1—aty?) =1
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whence ord,(1 — aty?) = ordy|1 + t24/al? is odd, a contradiction with Lemma [ Thus, z
and 2y are real hence rational numbers — even rational numbers since FNR = @ — and

JpeQ 7' =p+hva)(1+1t2v/a)
By taking the square of the module, we get |n|* = (|n?)* = p2(1 — at;2) (1 — at»?) with
In]? € @, so that (1 — at;?) (1 — aty?) is a square in @. We have hence proved that
(Elfy el, v Zt)= ,@(tQ)) = (1 —at,?) (1 — aty?) is a square in N
The first condition means that the itgs &(t;) and Z(ty) have the same projection in X,.

To fullfill the proof of Proposition B4, we have to find an infinite subset .# C N such that

Vi, #ty € I (1 —at;?) (1 — aty?) is not a square in N (2.1)

and it seems reasonable to think that it is possible for every negative integer a. Take a = —2
for instance : we verify that all numbers between 0 and 24000 statisfy this relation, except from
2, 11, 12, 70, 109, 225, 408, 524, 1015, 1079, 1746, 2378, 2765, 4120, 5859, 8030, 10681, 13860,
16647, 17615 and 21994. More generally, a conjectural Theorem states

Conjecture Let A, B, C beintegers relatively primes such that A is positive, A+B and
C' are not both even and B* — 4AC is not a perfect square. Then there are
infinitely many primes of the form An? + Bn + C with n € 7.

So, according to this highly probable Conjecture, there are for all negative integer a infinitely
many primes of the form 1—at? with ¢ € N, whence the existence of an infinite set of integers
4 satisfying relation (B.1)).

B.2 Of families of I, - closed half-planes

We have seen in Proposition B-] the existence of infinitely many T, - closed half-planes in H?,
denoted by 2(t) = R(1 + ty/a) ® R% j for ¢ € Z. They all contain the half-line R j. But
it is easy to find other I, -closed half-planes : indeed, for v = £ + {2 hyperbolic, we have
0€ 2, < Im(§) =0, by relation (B.3). Given ¢ € Z, we shall then look for an hyperbolic
element in T, of the form v =z + yv/a+ z(1 + t/a) Q with x, y, z € Z*. For such a 7,

N(y) =1 <= 2° —ay® — b(1 —at?)z* =1 (2.2)
Let us fix u € Z and set y = uz : then v =y, =z + zuy/a+ z(1 + ty/a) Q and

N(%u) =1 << 2°— [au2 +b(1 — (1152)}22 =1 (2.3)

d

As d = au?[b] and @ is not a square modulo b, since X, is a manifold of class (K5), d
cannot be a square in Z. Moreover, d = b — a(bt* — u?) > 0 as soon as |¢| is big enough : in
that case (cf. Pell-Fermat), we can solve the above equation for non-trivial integers z, z. We

deduce finally from relation (8.9)
Dy = D(u,t) = <R + z’Im(f)) n= <]R+ b(ufﬁ) (1+ty/a)

blnf? [—aP)

which proves the following extension of Proposition B.J :
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Proposition 2.1  There are infinitely many T, - closed half-planes in H? that do not
contain R j, the half-planes P (t,u) = <R - M%%) (1+ tv/a) @ R j
for t, w € Z such that d =b— a(bt* —u?) > 0.

For a = -2 and b= 13 again :
S 901 =10+ 3V2 = 30 leaves 2(0,1) = (R +32) @ Ry invariant.
Y = 8+12iv243(14+0v/2) Q leaves P(1,4) = (R + %}?) (1+iv2)®RYj invariant.

a3 = 10+ 3iv2+ (1+2iv/2) Q leaves 9%13%:(Rf%%§)(L+%v@y9Rijimmﬂmm

B.3 Families of half-spheres
e We shall first complete Lemma B.1] to obtain

Proposition 2.2 Let 41 = C(ay, 1) and 65 = C(ag,r3) be two circles of C, N € Z and
a=¢6+nQ e RM(N) with n#0. Then «(%61) = 6> if and only if

b(rimas —erana) = (r1+er)é (B-13)
r
P — ¢+ bna? = Ne— (B.19)

9 m
ET9)

E17 =blnl* = N (
Proof : we just have to prove the backward implication to fullfill the proof. Keep the
notations of Lemma B.]. Relation (B:I4) provides

= 2
§

b7 +a
Therefore, a;(%1) = €' is a circle and «(%)) = ar(€¢’) = ¢" = C(a”,r"). We still have, by
relation (B.14)), e = 1 iff ¢ is inside of 4. Applying the Lemma to 4, and %", we deduce

from relation (B11]) o |kl B eN T

r_l_r12—|a1—é\2 P2 n)2— €+ bnag)? o

Jde = +1

— 7240 whence (= —bi_ ¢ 6,
n

~ ~

since |k| = N/b*|n|* : then " = ry. Finally, a;(C) is the center of €” so that a(() = a” ;
as (B13) «— (BI1d) < «(() = as, then a” = ay so that a(€) = .

e Now we can use of the above Proposition in our quest for T, -closed half-spheres in H3.
Let . be an half-sphere of H?, ¢ = C(ay,r) its trace on C and v = £ +7nQ € T, a
hyperbolic element ; then v-.% = .¥ <= ~(%) = ¥ and we apply Proposition R.3 to
the circle ¥ = C(ay, ). Necessarily, as we already saw in the proof of Proposition .6, ¢ = —1
by hyperbolicity of v. As a consequence,

nay+mna; =0
VS = = E+bnag]? —br?|n)* =1
€17 = bn® =1
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whence

nay +na; =0
VoS =S = (f—g)al—i-[1—|—b(|a1|2—r2)]n:0 (E)
P —bn* =

Let us fix a; € F = Q[/a], set r = \/|a1|* +1/b € R* and consider . = S(ay,r). For
§=X€Z and n=a,Ya with Y € Z, we have 7a; +na; =0 and £ =¢ (cf. a € iR),
so that

v =S = P —bnf =X +abla)PYi=1

From Lemma [, we know that ord,(|a;|?) is even as a; € T, so that the natural integer
d = —abla;|* cannot be a square in Q. Therefore, the previous Pell equation is solvable for
non-trivial integers X and Y. We have proved

Lemma 2.1 For all ay € F = Q[v/al, the half-sphere S (al, lay|? + %) is I, - closed.

Here are some examples for a = —2 and b =13 :

.y = 64425 + 1666iv/2(2 + 5iv/2) Q leaves S (2 4 5iv/2, (/54 + 1—13> invariant.

.y = 96747 4 2318iv/2(7 + 3iv/2) Q leaves S (7 + 3iv/2, /67 + 1—13> invariant.
.y = 561835 + 11074iv/2(7 + 5iv/2) Q leaves S (% + 52\ + 1%) invariant.

More generally, for a; € F* and r € R* such that r? € @Q, the resolution of the system
(E) leads to
=X —5[+b(laf —r*)] Yva
n=Yaa

and the norm equation provides

with X, YV € Z

1= X2 %{[1+b(\a1|2 — )] —4b\a1\2}Y2

o S/

M
For 72 € © close enough to |ai|?, we have 4blay|? > [1+b(Jay|? —r?)]° and the rational
number d is non negative. Assume moreover that ordb|a1|2 > 0 and ordyr? > 0 : then

d = a/4[b] is not a square modulo b for X, a (K5)-manifold, so that d is not a square in
(. Hence, the above Pell equation is solvable for non-trivial X, Y € Z, which proves

Proposition 2.3  Let a1 € F = Q[y/a] and r* € Q such that ordy|ai]* = 0, ordyr* >0
and 4blay|? = [1+b(|ay|? — r2)]?. The half-sphere S(ay,r) is a T, - closed
itgs of H3.

Let us give some examples for a = —2 and b= 13 :

.y =359+ 168iv/2 + 18iv2(2 + 3iv/2) Q leaves S (2 +iv/2,1/3) invariant.
.y = 19603 — 51480iv/2 + 2574iv/2(5 + 2iv/2) Q leaves S (5 + 2iv/2,1/30) invariant.
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