On the scarring of eigenstates for some arithmetic hyperbolic manifolds in dimension 2 and 3

Tristan Poullaouec

To cite this version:

Tristan Poullaouec. On the scarring of eigenstates for some arithmetic hyperbolic manifolds in dimension 2 and 3. 2004. hal-00001491v2

HAL Id: hal-00001491
 https://hal.science/hal-00001491v2

Preprint submitted on 15 Jun 2004 (v2), last revised 8 Dec 2005 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the scarring of eigenstates for some arithmetic hyperbolic manifolds in dimension 2 and 3

Tristan POULLAOUEC

June 15, 2004

Abstract

In this paper, we shall deal with the so-called conjecture of Quantum Unique Ergodicity. In [9], Rudnick and Sarnak showed that there is no strong scarring (see definition page 2) on closed geodesics for compact arithmetic congruence surfaces derived from a quaternion division algebra (see Introduction and Theorem 0.1).

First we extend this Theorem to the congruence surface $X=\Gamma(2) \backslash \mathbb{H}^{2}$ (it is not compact but has finite measure), where $\Gamma(2)$ is the kernel of the projection of $\operatorname{SL}(2, \mathbb{Z})$ into $\mathrm{SL}\left(2, \mathbb{Z}_{2}\right)$. Then, after some algebraic and geometric preliminaries - and the establishment of useful technical Lemmas - we extend Theorem 0.1 to a class of Riemannian manifolds $X_{R}=\Gamma_{R} \backslash \mathbb{H}^{3}$, the so-called (K_{2}^{S}) class, that are again derived from quaternion division algebras. We show that there is no strong scarring on closed geodesics or on Γ_{R}-closed imbedded totally geodesic surfaces.

Introduction

A topic of great interest in quantum mechanics is the study of the limit of the quantized systems when $\hbar \longrightarrow 0$, which we call the semi-classical limit of quantum mechanics. The underlying purpose is to relate classical dynamics to the quantum one, in order to understand better the quantum mechanics. This is the path we follow to study quantum chaos : we consider a classicaly chaotic system, and we try to identify in the quantized system the influence of the chaotic nature of the classical dynamics.

For M a Riemannian manifold of negative sectional curvature in dimension 2 or 3 , it is well known (see [罒], [4], [5) that the geodesic flow on the unitary sphere tangent bundle $T^{1} M$ is ergodic and chaotic. After quantization, the wave functions of the stationary Schrödinger equation

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \Delta \phi+V(q) \phi=E \phi \quad \text { with } E \text { a constant } \tag{0.1}
\end{equation*}
$$

are the \mathscr{L}^{2} eigenfunctions or eigenmodes of $\frac{-\hbar^{2}}{2 m} \Delta+V(q)$, where Δ is the Laplace-Beltrami operator on M. The potential $V(q)$ is in fact related to the curvature of M. We suppose that this operator has a discrete spectrum $\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ with $\lambda_{k} \underset{k \rightarrow \infty}{\longrightarrow}$, which is true at least in the compact case.

We shall denote by $\left(\phi_{k}\right)_{k \in \mathbb{N}}$ the associated eigenfunctions－we assume that they are nor－ malized，so that $\left\|\phi_{k}\right\|_{2}=1$－and by $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ the corresponding measures given by

$$
\begin{equation*}
\mathrm{d} \mu_{k}(q)=\left|\phi_{k}(q)\right|^{2} \operatorname{dvol}(q) \tag{0.2}
\end{equation*}
$$

The measure μ_{k} is actually the probability of presence of a particle in the state ϕ_{k} at q ． Moreover the semi－classical limit is the limit at large energies i．e．when $k \longrightarrow \infty$ ．We shall now state the so－called Quantum Unique Ergodicity Conjecture（see［10］）：

Conjecture Let M be a Riemannian manifold of dimension 2 or 3 and of sectional curvature $K<0$ ．Then $\mathrm{d} \mu_{k} \underset{k \rightarrow \infty}{\longrightarrow} \frac{\mathrm{dvol}}{\operatorname{vol}(M)}$
For a compact surface M whose geodesic flow is ergodic，this result was established in ［12］for a subsequence of full density of $\left(\mu_{k}\right)$ ．More precisely，we shall consider here quotient manifolds $M=\Gamma \backslash \mathbb{H}^{n}(n=2,3)$ where Γ is a freely acting discrete subgroup of $\operatorname{Is}\left(\mathbb{H}^{n}\right)$ ，endowed with the projection of the canonical Poincaré metric on \mathbb{H}^{n} ．In particular（see 3］）all Riemann surfaces are of such a type，apart from $S^{2}, \mathbb{C}, \mathbb{C}^{*}$ and \mathbb{T}^{2} ．A first step towards this conjecture was realized in（9］with the following Theorem：

Theorem 0．1 Let $X=\Gamma \backslash \mathbb{H}^{2}$ be an arithmetic congruence surface derived from a quaternion algebra and ν a quantum limit on X ．If $\sigma=\operatorname{singsupp} \nu$ is contained in the union of a finite number of isolated points and closed geodesics，then $\sigma=\emptyset$ ．

In other words，there is no strong scarring（cf．10］）of eigenmodes on closed geodesics．Here Γ is a congruence subgroup of a discrete group derived from an indefinite quaternion division algebra．By a quantum limit ν we mean a probability measure on M such that there exists a subsequence $\left(\mu_{k j}\right)$ of $\left(\mu_{k}\right)$ with $\mu_{k_{j}} \underset{j \rightarrow \infty}{ } \nu$ ．All the quantum limits considered in the sequel will implicitely have singsupp $\nu \neq \emptyset$ ．

In（9］a congruence subgroup is implicitly used to get a free action on \mathbb{H}^{2} ．Thus the canonical projection $\mathbb{H}^{2} \longrightarrow \Gamma \backslash \mathbb{H}^{2}$ will be a covering ；otherwise branching points would appear，at which the projection of the canonical Poincaré metric would be singular．

In this work，we shall extend Theorem 0.1 to the particular arithmetic congruence surface $X=\Gamma(2) \backslash \mathbb{H}^{2}$ ，where $\Gamma(2)$ is the congruence group $\Gamma(2)=\left\{\gamma \in \operatorname{SL}(2, \mathbb{Z}) / \gamma \equiv I_{2}[2]\right\}$ ． This space is not compact anymore，but it has finite measure．The extension is straight forward， we just adapt the techniques and ideas of［9］．Note that $\operatorname{SL}(2, \mathbb{Z})$ being derived from the matrix algebra $\mathrm{M}(2, \mathbb{Z})$ ，Theorem 0.1 does not apply to the surface X ．

Then we deal with the case of $X_{R}=\Gamma_{R} \backslash \mathbb{H}^{3}$ ，where Γ_{R} is a discrete group derived from a class of division quaternions algebras explicitly defined in sections 3.2 and 7 ．We show that a non empty set Λ contained in a finite union of isolated points，closed geodesics and Γ_{R}－closed （see section $⿴ 囗 十 ⺝$ for definition）imbedded totally geodesic surfaces of X_{R}（in this last case，we shall assume that area $(\Lambda) \neq 0$ ）cannot be the singular support of a quantum limit on X_{R} ．

Before giving the proof，we shall recall some useful points of algebra and geometry （cf．section 2 and 3 ），and establish some arithmetical and geometrical Lemmas（cf．section 3 and（4）．Contrary to the previous case，the proof is not a straight adaptation of［9］because the algebraic formalism used there（binary quadratic forms）does not apply to points（or to the imbedded surfaces）anymore．

1 The case $\Gamma(2) \backslash \mathbb{H}^{2}$

Let us recall that

$$
\Gamma(2)=\left\{\gamma=\left(\begin{array}{ll}
a & b \tag{1.1}\\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{Z}) / \gamma \equiv I[2]\right\}
$$

We define the same way $\Gamma(N)$ for $N \geq 2$. The result obtained is the following :
Theorem 1.1 If the singular support σ of a quantum limit on $X=\Gamma(2) \backslash \mathbb{H}^{2}$ is contained in a finite union of isolated points and closed geodesics of X, then $\sigma=\emptyset$.

1.1 Correspondences and separation

Definition A correspondence \mathscr{C} of order r on a Riemannian manifold X is a mapping from X to X^{r} / \mathfrak{S}_{r} such that $\mathscr{C}(x)=\left(S_{1}(x), \ldots, S_{r}(x)\right)$ with $\forall k=1 \ldots r, S_{k} \in I s(X)$. Here \mathfrak{S}_{r} denote the symmetric group of order r.
We shall denote by T_{C} the associated operator of $\mathscr{L}^{2}(X)$ defined by $T_{C}(f): x \longmapsto \sum_{k=1}^{r} f\left(S_{k}(x)\right)$.
Definition Let Λ be a subset of X. We say that such a correspondence \mathscr{C} separates Λ if $\exists z \in X-\Lambda$ such that $\exists!k \in\{1, \ldots, r\}, S_{k}(z) \in \Lambda$.

Then we have the following Proposition (proved in [9])
Proposition 1.1 Let $\Lambda \subset X$ be a closed subset of zero volume and \mathscr{C} be a correspondence on X that separates Λ. Let $\left(\phi_{j}\right)_{j \in \mathbb{N}}$ be a sequence of eigenfunctions of T_{C} such that $\forall j \in \mathbb{N},\left\|\phi_{j}\right\|_{2}=1$ and that $\mathrm{d} \nu=\lim _{j \rightarrow \infty}\left|\phi_{j}(z)\right|^{2} \mathrm{dvol}(z)$ exists. Then singsupp $\nu \neq \Lambda$.

Keep in mind than given any measure ν on X, its singular support is a closed subset of X.

$1.2 \mathbb{H}^{2}$, the modular group and modular operators

In the sequel, we shall set $\Gamma=\operatorname{SL}(2, \mathbb{Z})$ and deal with the hyperbolic space $X=\Gamma(2) \backslash \mathbb{H}^{2}$.

1.2.1 Some hyperbolic geometry

- The space $\mathbb{H}^{2}=\{z \in \mathbb{C} / \operatorname{Im}(z)>0\}$ is provided with Poincaré hyperbolic metric $\mathrm{d} s=|\mathrm{d} z| / \operatorname{Im}(z)$ which becomes in cartesian coordinates $\mathrm{d} s^{2}=\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right) / y^{2}$. As shown on figure \mathbb{Z}, the geodesics of \mathbb{H}^{2} are half-circles centered on the real axis (like γ who is connecting a to b) or vertical straight half-lines (like γ_{2} who is connecting c to infinity).

The metric $\mathrm{d} s$ induces on \mathbb{H}^{2} the volume form $\mathrm{d} \sigma=\mathrm{d} x \mathrm{~d} y / y^{2}$. Its Gaussian curvature is $K=-1$, and the Laplace-Beltrami operator on \mathbb{H}^{2} is given by

$$
\Delta=y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)
$$

Figure 1: \mathbb{H}^{2} and its geodesics
Definition A measure ν on X is called a quantum limit if there exists a sequence $\left(\phi_{j}\right)$ of eigenfunctions of Δ in $\mathscr{L}^{2}(X)$ normalized by the condition $\left\|\phi_{j}\right\|_{2}=1$ such that the measures $\left|\phi_{j}(z)\right|^{2} \mathrm{~d} z$ converge weakly to $\mathrm{d} \nu$.

- We know that $\operatorname{Is}\left(\mathbb{H}^{2}\right)$, the group isometries of \mathbb{H}^{2}, consists of the real linear fractional transformations and fractional reflections. Moreover $\operatorname{PSL}(2, \mathbb{R})=\operatorname{SL}(2, \mathbb{R}) /\{ \pm I\}$ can be identified with $\mathrm{Is}^{+}\left(\mathbb{H}^{2}\right)$ (the subgroup of isometries preserving the orientation) via the action

$$
\begin{align*}
& \mathrm{SL}(2, \mathbb{R}) \times \mathbb{H}^{2} \longrightarrow \tag{1.2}\\
& \mathbb{H}^{2} \\
&(\gamma, z) \longmapsto
\end{align*} \quad \text {.z } \quad \text { where } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z=\frac{a z+b}{c z+d}
$$

The elements of $\mathrm{Is}^{+}\left(\mathbb{H}^{2}\right)$ are characterized by their fixed points in $\mathbb{H}^{2} \cup \partial \mathbb{H}^{2}=\mathbb{H}^{2} \cup \mathbb{R} \cup \infty$. Moreover $\gamma \cdot z=z \Longleftrightarrow c z^{2}+(d-a) z-b$ (discriminant $\left.(d-a)^{2}+4 b c=(d+a)^{2}-4\right)$ so that

- if $\operatorname{Tr}(\gamma)^{2} \in\left[0,4\left[\right.\right.$, the isometry γ has a single fixed point (which is a center) in \mathbb{H}^{2} and is called elliptic (we follow the classical terminology, see [8]).
- if $\operatorname{Tr}(\gamma)^{2}=4$ and $\gamma \neq \pm I$, the isometry γ has a single fixed point (which is attractive) in $\mathbb{R} \cup \infty$ and is called parabolic.
- if $\operatorname{Tr}(\gamma)^{2} \notin[0,4]$, the isometry γ has a two distinct fixed points in $\mathbb{R} \cup \infty$, one attractive and the other repulsive, and is called hyperbolic. The geodesic L connecting this fixed points is called the axis of γ. The isometry γ leaves L invariant and acts on it as a translation of the curvilinear abscisse.
- Finally we recall the notion of binary quadratic form and its use in geometry (cf. [9). Set $M=[a, b, c]$ (with $a, b, c \in \mathbb{R}$) the (real) binary quadratic form on \mathbb{C}^{2} defined by

$$
\forall(x, y) \in \mathbb{C}^{2} \quad M(x, y)=a x^{2}+2 b x y+c y^{2}
$$

We shall identify M with its (real symmetric) matrix in the canonical basis, and we set $M \circ g=M[g]={ }^{t} g M g$ for $g \in \mathrm{M}(2, \mathbb{R})$. Only non degenerate forms will be considered in the sequel i.e. we suppose that $\operatorname{det} M \neq 0$.

Let M be such a form : it has two distinct roots $(x: y)$ in $\mathbb{P}^{1}(\mathbb{C}) \simeq \mathbb{C} \cup \infty$, the equation $M(x, y)=a x^{2}+2 b x y+c y^{2}=0$ having discriminant $b^{2}-a c=-\operatorname{det} M \neq 0$.

- if $\operatorname{det} M>0$ then M is anisotropic on \mathbb{R} and $M(z, 1)=0$ has a single root $z_{M} \in \mathbb{H}^{2}$
. otherwise, M being isotropic on \mathbb{R}, it has two distinct roots in $\mathbb{P}^{1}(\mathbb{R}) \simeq \mathbb{R} \cup \infty$, and we call γ_{M} the geodesic connecting them.
Therefore we associate to each non degenerate binary quadratic form M a point z_{M} or a geodesic γ_{M} of \mathbb{H}^{2}. Conversely to each point or geodesic we associate a single proportionality class of non degenerate binary quadratic forms.

In this way the action of $g \in \mathrm{SL}(2, \mathbb{R})$ on \mathbb{H}^{2} translates into an action $M \longmapsto M\left[g^{-1}\right]$ on the binary quadratic forms.

1.2.2 The quotient space $X=\Gamma(2) \backslash \mathbb{H}^{2}$

- Contrary to Γ, its subgroup $\Gamma(2)$ contains no elliptic element (this is a particular case of a general property of the congruence subgroups $\Gamma(N)$ for $N \geq 2$ cf. [6]) : it acts therefore freely on \mathbb{H}^{2} and $X=\Gamma(2) \backslash \mathbb{H}^{2}$ is a Riemannian manifold of Gaussian curvature $K=-1$.

We see (cf. [6]) that

$$
\begin{equation*}
\Gamma(2) \backslash \mathrm{SL}(2, \mathbb{Z})=\{1, \sigma, \tau, \tau \sigma, \tau \sigma \tau, \tau \sigma \tau \sigma\} \tag{1.3}
\end{equation*}
$$

with σ and τ representing the classes modulo $\Gamma(2)$ of the transformations $S: z \longmapsto-1 / z$ and $T: z \longmapsto z+1$. They verify $\sigma^{2}=\tau^{2}=1$ and $(\sigma \tau)^{3}=1$.

Figure 2: A fundamental domain for $\Gamma(2) \backslash \mathbb{H}^{2}$

Moreover $\Gamma(2)$, being discrete, acts discontinuously on \mathbb{H}^{2} (cf. [B]) ; knowing that Γ admits the geodesic triangle $\mathscr{F}_{0}=(\rho, \rho+1, \infty)$ as a fundamental domain (where $\rho=e^{\frac{2 i \pi}{3}}$), we deduce from (1.3) that $\mathscr{F}=\mathscr{F}_{0} \cup S \mathscr{F}_{0} \cup T \mathscr{F}_{0} \cup T S \mathscr{F}_{0} \cup T S T \mathscr{F}_{0} \cup T S T S \mathscr{F}_{0}$ is a fundamental domain for the group $\Gamma(2)$ (cf. figure Z^{\square}).

On this figure, we have $\nu=\frac{1}{1-\rho}=\frac{1}{2}+\frac{i}{2 \sqrt{3}}$.

- Let us recall that the geodesics of $\Gamma(2) \backslash \mathbb{H}^{2}$ are the projections of those of \mathbb{H}^{2}.

Definition \quad A closed geodesic of a metric space (X, d) is the image of a periodic geodesic line $\lambda: \mathbb{R} \longrightarrow X$.

Proposition 1.2 Let \mathscr{L} be a closed geodesic of $X=\Gamma(2) \backslash \mathbb{H}^{2}$. There exists an hyperbolic transformation $\gamma \in \Gamma(2)$ whose axis L projects onto \mathscr{L}.

The proof (see [8]) uses only the discontinuity of the action of $\Gamma(2)$ on \mathbb{H}^{2}. In particular, there exists a compact segment l of the geodesic L such that $L=\bigcup_{n \in \mathbb{Z}} \gamma^{n} l$ and $\mathscr{L}=\pi(L)=\pi(l)$, where π is the canonical projection $\pi: \mathbb{H}^{2} \longrightarrow \Gamma(2) \backslash \mathbb{H}^{2}$.

Lemma 1.1 Let F and G be two closed geodesics of X. Then $F=G$ or $F \cap G$ is finite.
Proof: we shall use Proposition 1.2. Let γ_{1} and $\gamma_{2} \in \Gamma(2)$ be two hyperbolic transformations whose axis L_{1} and L_{2} project onto F and G respectively. Let l_{1} and l_{2} be compact segments of L_{1} and L_{2} such that $L_{1}=\bigcup_{n \in \mathbb{Z}} \gamma_{1}^{n} l_{1}$ and $L_{2}=\bigcup_{n \in \mathbb{Z}} \gamma_{2}^{n} l_{2}$. Then

$$
F \cap G=\pi\left(l_{1}\right) \cap \pi\left(l_{2}\right)=\pi\left[\left(\cup_{\gamma \in \Gamma(2)} \gamma l_{1}\right) \cap\left(\cup_{\gamma^{\prime} \in \Gamma(2)} \gamma^{\prime} l_{2}\right)\right]=\pi\left[\cup_{\gamma \in \Gamma_{2}}\left(l_{1} \cap \gamma l_{2}\right)\right]
$$

because for $p \in \gamma l_{1} \cap \gamma^{\prime} l_{2}, \gamma^{-1} p \in l_{1} \cap\left(\gamma^{-1} \gamma^{\prime}\right) l_{2}$ and $\pi\left(\gamma^{-1} p\right)=\pi(p)$.
Since the segments l_{1} and l_{2} are compact subsets of \mathbb{H}^{2}, we deduce from the discontinuity of the action of $\Gamma(2)$ on \mathbb{H}^{2} that the set $\Gamma_{0}=\left\{\gamma \in \Gamma(2) / l_{1} \cap \gamma l_{2} \neq \emptyset\right\}$ is finite and that

$$
\begin{equation*}
F \cap G=\pi\left[\cup_{\gamma \in \Gamma_{0}}\left(l_{1} \cap \gamma l_{2}\right)\right] \tag{1.4}
\end{equation*}
$$

Let us assume that $F \cap G$ is infinite : $\cup_{\gamma \in \Gamma_{0}}\left(l_{1} \cap \gamma l_{2}\right)$ is infinite so that, Γ_{0} being finite, there exists $\gamma \in \Gamma_{0}$ such that $l_{1} \cap \gamma l_{2}$ is infinite. Hence $L_{1} \cap \gamma L_{2}$ is infinite, L_{1} and γL_{2} being two geodesics of \mathbb{H}^{2} i.e. half-circles or half-lines : therefore $L_{1}=\gamma L_{2}$ and $F=G$.

1.2.3 Modular correspondences

- Let us set $P(n)=\{M \in \mathrm{M}(2, \mathbb{Z}) / \operatorname{det} M=n\}$ and $R(n)=\{M \in P(n) / M \equiv I[2]\}=$ $\{M \in \mathrm{M}(2, \mathbb{Z}) / \operatorname{det}(M)=n$ and $M \equiv I[2]\}$ for $n \in \mathbb{N}$. Note that $\Gamma(2)=R(1)$ and $\Gamma=P(1)$. As is well-known, we have

Lemma $P(1) \backslash P(n) \approx\left\{\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right) \in \mathrm{M}(2, \mathbb{Z}) / a d=n, a \geq 1,0 \leq b<d\right\}$

Using the six representants for the cosets of $R(1) \backslash P(1)$ (cf. previous section) we show that
Lemma $1.2 R(1) \backslash R(n) \approx\left\{\left(\begin{array}{cc}a & b \\ 0 & d\end{array}\right) \in R(n) / a \geq 1,0 \leq b<d\right\}$
Obviously $R(n) \neq \emptyset$ if and only if n is odd. We call $R^{p r}(n)$ the set of the elements of $R(n)$ that are not integer multiples of matrices in $\mathrm{M}(2, \mathbb{Z})$: these are the primitive elements. We can now define the modular correspondence of order $n \in \mathbb{N}$ for n odd.

Definition $\mathscr{C}_{n}: \left\lvert\, \begin{array}{cll}X & \longrightarrow & X^{r} / \mathfrak{S}_{r} \\ \Gamma(2) x & \longmapsto & \left\{\Gamma(2) \alpha_{1} x, \ldots, \Gamma(2) \alpha_{r} x\right\}\end{array}\right.$
where $R(1) \backslash R(n)=\left\{\Gamma(2) \alpha_{1}, \ldots, \Gamma(2) \alpha_{r}\right\}$. Let T_{n} be the associated operator, which we call a modular operator :

$$
\begin{equation*}
T_{n}(f)(\Gamma(2) z)=\sum_{\delta \in R(1) \backslash R(n)} f(\Gamma(2) \delta z) \tag{1.5}
\end{equation*}
$$

- Because $R(1) \backslash R(n)$ is finite, the modualr operators are defined on $\mathscr{L}^{2}(X)$: if $f \in \mathscr{L}^{2}(X)$ and $\alpha \in \operatorname{Is}(X)$, clearly $f \circ \alpha \in \mathscr{L}^{2}(X)$. Moreover $\|f \circ \alpha\|_{2}=\|f\|_{2}$: they are bounded operators on $\mathscr{L}^{2}(X)$. They also operators satisfy the classical properties of the modular operators :
- T_{n} is self adjoint and commutes with the Laplace-Beltrami operator Δ.

$$
T_{n}=\sum_{t^{2} / n} C_{n / t^{2}} \quad \text { where } \quad C_{n} f(\Gamma(2) z)=\sum_{\delta \in R(1) \backslash R^{p r}(n)} f(\Gamma(2) \delta z)
$$

Nota Bene : in the sequel we shall consider only operators $T_{p}=C_{p}$ where p is an odd prime. We shall also note $\mathscr{C}_{p}=C_{p}$ for simplicity's sake. Let us denote by \mathscr{P} the set of all prime numbers.

Lemma 1.3 Let $p \in \mathscr{P}$ and $R(1) \backslash R(p)=\left\{\Gamma(2) \alpha_{1}, \ldots, \Gamma(2) \alpha_{n}\right\}$.

$$
\text { Then } \forall i, \exists!j \text { such that } \alpha_{j} \alpha_{i} \in p \Gamma(2) \text { and } \forall k \neq j, \alpha_{k} \alpha_{i} \in R^{p r}\left(p^{2}\right)
$$

Proof: we just use the fact that for any odd m, the set $R(m)$ is stable under passage to the comatrix

$$
\gamma=\left(\begin{array}{ll}
a & b \tag{1.6}\\
c & d
\end{array}\right) \in R(m) \Longrightarrow \operatorname{Com}(\gamma)=m \gamma^{-1}=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \in R(m)
$$

which corresponds actually to the passage to the inverse in $\mathrm{Is}^{+}\left(\mathbb{H}^{2}\right) \simeq \operatorname{PGL}^{+}(2, \mathbb{Z})$. Let us take $i \in\{1, \ldots, n\}$: we have $\operatorname{Com}\left(\alpha_{i}\right) \in R(p)$ and $\operatorname{Com}\left(\alpha_{i}\right) \alpha_{i}=\operatorname{det}\left(\alpha_{i}\right) I_{2}=p I_{2}$. Since $\Gamma(2) \operatorname{Com}\left(\alpha_{i}\right)$ is a coset of $R(1) \backslash R(p)$, there exists $j \in\{1, \ldots, n\}$ such that $\Gamma(2) \operatorname{Com}\left(\alpha_{i}\right)=$ $\Gamma(2) \alpha_{j}$. Therefore $\Gamma(2) \alpha_{j} \alpha_{i}=p \Gamma(2)$ and $\alpha_{j} \alpha_{i} \in p \Gamma(2)$.

For all $k \neq j$, we have $\Gamma(2) \alpha_{k} \neq \Gamma(2) \alpha_{j}$ whence $\Gamma(2) \alpha_{k} \alpha_{i} \neq \Gamma(2) \alpha_{j} \alpha_{i}=p \Gamma(2)$ so that $\alpha_{k} \alpha_{i} \in R^{p r}\left(p^{2}\right)$: this ends the proof of the Lemma. We deduce easily the self adjointness of T_{p} from this Lemma.

We shall use in section 3.2 an extension of this Lemma to an order of a quaternion algebra (cf. Proposition 3.7).

1.3 Results on binary quadratic forms

In this section we adapt the Lemmas 2.2 and 2.3 of [9] to the discrete group $\Gamma(2)$.
Definition $\quad M=[a, b, c]$ is a \mathbb{Q}-form if there exists $\lambda \in \mathbb{R} \backslash\{0\}$ such that $(\lambda a, \lambda b, \lambda c) \in \mathbb{Q}^{3}$.
Then we have
Proposition 1.3 Let M and M^{\prime} be two binary quadratic forms and p_{1}, p_{2} and p_{3} distinct primes for which either :

- $\exists \alpha_{i} \in R\left(p_{i}\right)$ such that $M\left[\alpha_{i}\right]=\lambda_{i} M^{\prime} \quad \forall i=1 \ldots 3$.
- $\exists \alpha_{i} \in R^{p r}\left(p_{i}{ }^{2}\right)$ such that $M\left[\alpha_{i}\right]=\lambda_{i} M^{\prime} \quad \forall i=1 \ldots 3$.

Then M and M^{\prime} are both \mathbb{Q}-forms.
Proof: let us set $M=[A, B, C]$ and $M^{\prime}=\left[A^{\prime}, B^{\prime}, C^{\prime}\right] . M$ and M^{\prime} being non degenerate, $M\left[\alpha_{1}\right]=\lambda_{1} M^{\prime} \Rightarrow \lambda_{1} \neq 0$. As $\alpha_{1} \in \mathrm{GL}(2, \mathbb{Q}), M$ is a \mathbb{Q}-form if and only if M^{\prime} also is a \mathbb{Q}-form.

If M^{\prime} is isotropic over \mathbb{Q}, so is M and both split over \mathbb{Q} : they are proportional to $M_{0}[\gamma]$ and $M_{0}\left[\gamma^{\prime}\right]$, where $M_{0}(x, y)=x y$ and $\gamma, \gamma^{\prime} \in \mathrm{GL}(2, \mathbb{Q})$, thus they are both \mathbb{Q}-forms. Henceforth we assume that both M and M^{\prime} are anisotropic over \mathbb{Q}.

For a fixed $n \in\{1,2\}$

$$
\begin{equation*}
\forall i, M\left[\alpha_{i}\right]=\lambda_{i} M^{\prime} \quad \text { with } \alpha_{i} \in R^{p r}\left(p_{i}{ }^{n}\right) \tag{1.7}
\end{equation*}
$$

Taking the determinant of both sides of (1.7) we get $p_{i}{ }^{2 n} \operatorname{det} M=\lambda_{i}{ }^{2} \operatorname{det} M^{\prime}$, so that

$$
\begin{equation*}
\lambda_{i}=\varepsilon_{i} \kappa p_{i}^{n} \quad \text { with } \quad \varepsilon_{i}= \pm 1 \text { and } \kappa=\sqrt{\frac{\operatorname{det} M}{\operatorname{det} M^{\prime}}} \tag{1.8}
\end{equation*}
$$

Set $\alpha_{i}=\left(\begin{array}{cc}a_{i} & b_{i} \\ c_{i} & d_{i}\end{array}\right)$; as $M\left[\alpha_{i}\right]={ }^{t} \alpha_{i} M \alpha_{i}$ equation (1.7) can be written as

$$
\forall i \quad \lambda_{i} M^{\prime}=\left(\begin{array}{cc}
A a_{i}^{2}+2 B a_{i} c_{i}+C c_{i}^{2} & A a_{i} b_{i}+C c_{i} d_{i}+B\left(a_{i} d_{i}+b_{i} c_{i}\right) \tag{1.9}\\
A a_{i} b_{i}+C c_{i} d_{i}+B\left(a_{i} d_{i}+b_{i} c_{i}\right) & A b_{i}^{2}+2 B b_{i} d_{i}+C d_{i}^{2}
\end{array}\right)
$$

- The identification of the lower right terms in (1.9) gives

$$
\begin{equation*}
\lambda_{i} C^{\prime}=\varepsilon_{i} \kappa p_{i}{ }^{n} C^{\prime}=A b_{i}{ }^{2}+2 B b_{i} d_{i}+C d_{i}{ }^{2} \quad \text { for } i=1 \ldots 3 \tag{1.10}
\end{equation*}
$$

that we will write as

$$
\left(\begin{array}{lll}
b_{1}{ }^{2} & b_{1} d_{1} & d_{1}{ }^{2} \\
b_{2}{ }^{2} & b_{2} d_{2} & d_{2}{ }^{2} \\
b_{3}{ }^{2} & b_{3} d_{3} & d_{3}{ }^{2}
\end{array}\right)\left(\begin{array}{c}
A \\
2 B \\
C
\end{array}\right)=\kappa C^{\prime}\left(\begin{array}{l}
\varepsilon_{1} p_{1}{ }^{n} \\
\varepsilon_{2} p_{2}{ }^{n} \\
\varepsilon_{3} p_{3}{ }^{n}
\end{array}\right)
$$

that is

$$
\Psi\left(\begin{array}{c}
A \tag{1.11}\\
2 B \\
C
\end{array}\right)=\kappa C^{\prime} N \quad \text { with } \Psi \in \mathrm{M}(3, \mathbb{Z}), \operatorname{det} \Psi=\prod_{i<j}\left(b_{i} d_{j}-b_{j} d_{i}\right) \text { and } N \in \mathbb{Z}^{3}
$$

If Ψ is invertible, then $\Psi^{-1} N \in \mathbb{Q}^{3}$ so that M and M^{\prime} are both \mathbb{Q}-forms. Otherwise we have $\operatorname{det} \Psi=0$: we may assume without loss of generality that $b_{1} d_{2}=b_{2} d_{1}$. Therefore $\exists \mu \in \mathbb{Q} \backslash\{0\}, \mu\left(b_{1}, d_{1}\right)=\left(b_{2}, d_{2}\right)$ because $\operatorname{det}\left(\alpha_{i}\right) \neq 0$ implies $\left(b_{i}, d_{i}\right) \neq(0,0)$. Substituting into (1.10) we find

$$
\kappa \varepsilon_{2} p_{2}{ }^{n} C^{\prime}=\mu^{2} \kappa \varepsilon_{1} p_{1}{ }^{n} C^{\prime}=M\left(b_{2}, d_{2}\right) \neq 0 \quad \text { from the anisotropy of } M \text { over } \mathbb{Q}
$$

so that $p_{2}{ }^{n}=\mu^{2} p_{1}{ }^{n}$. If $n=1, \mu^{2}=p_{2} / p_{1}$ is a square of \mathbb{Q}, which cannot happen for two distinct primes p_{1} and p_{2}. Therefore $n=2, \mu= \pm p_{2} / p_{1}$ and $p_{2}\left(b_{1}, d_{1}\right)= \pm p_{1}\left(b_{2}, d_{2}\right)$, and we deduce from the Gauss Theorem that

$$
\begin{equation*}
b_{1} \equiv d_{1} \equiv 0\left[p_{1}\right] \quad \text { and } \quad b_{2} \equiv d_{2} \equiv 0\left[p_{2}\right] \tag{1.12}
\end{equation*}
$$

- The identification of the upper left terms in (1.9) gives

$$
\begin{equation*}
\lambda_{i} A^{\prime}=\varepsilon_{i} \kappa p_{i}{ }^{n} A^{\prime}=A a_{i}^{2}+2 B a_{i} c_{i}+C c_{i}{ }^{2} \text { for } i=1 \ldots 3 \tag{1.13}
\end{equation*}
$$

that we will write

$$
\left(\begin{array}{ccc}
a_{1}{ }^{2} & a_{1} c_{1} & c_{1}{ }^{2} \\
a_{2}{ }^{2} & a_{2} c_{2} & c_{2}{ }^{2} \\
a_{3}{ }^{2} & a_{3} c_{3} & c_{3}{ }^{2}
\end{array}\right)\left(\begin{array}{c}
A \\
2 B \\
C
\end{array}\right)=\kappa A^{\prime}\left(\begin{array}{l}
\varepsilon_{1} p_{1}{ }^{n} \\
\varepsilon_{2} p_{2}{ }^{n} \\
\varepsilon_{3} p_{3}{ }^{n}
\end{array}\right)
$$

that is

$$
\Phi\left(\begin{array}{c}
A \\
2 B \\
C
\end{array}\right)=\kappa A^{\prime} \tilde{N} \quad \text { with } \Phi \in \mathrm{M}(3, \mathbb{Z}), \operatorname{det} \Phi=\prod_{i<j}\left(a_{i} c_{j}-a_{j} c_{i}\right) \text { and } \tilde{N} \in \mathbb{Z}^{3}
$$

If Φ is invertible, as before we can show that M and M^{\prime} are both \mathbb{Q}-forms. Otherwise $\operatorname{det} \Phi=0$ so that $\exists i \neq j \in\{1,2,3\}, \exists \mu^{\prime} \in \mathbb{Q} \backslash\{0\}, \mu^{\prime}\left(a_{i}, c_{i}\right)=\left(a_{j}, c_{j}\right)$. Substituting into (1.13) we see that $\mu^{\prime}= \pm p_{j} / p_{i}$ because $A^{\prime}=\lambda_{1}^{-1} M\left(a_{1}, c_{1}\right) \neq 0$ by anisotropy of M. Hence :

$$
\begin{equation*}
a_{i} \equiv c_{i} \equiv 0\left[p_{i}\right] \quad \text { and } \quad a_{j} \equiv c_{j} \equiv 0\left[p_{j}\right] \tag{1.14}
\end{equation*}
$$

Because $\{i, j\} \subset\{1,2,3\}$, either $i \in\{1,2\}$ or $j \in\{1,2\}$. We may assume that $i=1$. From the relations (1.12) and (1.14) we deduce that $\alpha_{1} \in p_{1} \Gamma(2)$, which contradicts the assumption $\alpha_{1} \in R^{p r}\left(p_{1}{ }^{n}\right)$. This ends the proof of the Proposition.

Proposition 1.4 Let M, M_{1}, \ldots, M_{r} be binary quadratic forms representing points or closed geodesics of $\Gamma(2) \backslash \mathbb{H}^{2}$. Then there exists infinitely many primes p such that

$$
\begin{equation*}
\forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \forall j=1 \ldots r \quad M[\alpha] \neq \lambda_{j} M_{j} \tag{1.15}
\end{equation*}
$$

Proof: by Proposition 1.3 , if the forms M and M^{\prime} are not \mathbb{Q}-forms, then for all primes p except at most 4, we have $\forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right), M[\alpha] \neq \lambda M^{\prime}$. Hence we just have to give the proof for \mathbb{Q}-forms. We shall set $M=[A, B, C]$ with A, B and $C \in \mathbb{Z}$, and $\forall i=1 \ldots r$, $M_{i}=\left[A_{i}, B_{i}, C_{i}\right]$ with A_{i}, B_{i} and $C_{i} \in \mathbb{Z}$.

Let $p \in \mathscr{P}, j \in\{1, \ldots r\}, n=1$ or 2 and $\alpha \in R^{p r}\left(p^{n}\right)$ such that $M[\alpha]=\lambda_{j} M_{j}$. Let us note that because $\alpha \in \mathrm{GL}(2, \mathbb{Q})$ and $M \neq 0$, then $\lambda_{j} \in \mathbb{Q} \backslash\{0\}$. By taking the determinants of both sides in $M[\alpha]=\lambda_{j} M_{j}$, we get

$$
\begin{equation*}
\lambda_{j}=p^{n} \kappa_{j} \text { with } \kappa_{j}= \pm \sqrt{\operatorname{det} M \operatorname{det} M_{j}^{-1}} \in \mathbb{Q} \backslash\{0\} \tag{1.16}
\end{equation*}
$$

We restrict ourselves in the sequel to primes p such that $\forall j, \operatorname{ord}_{p}\left(\kappa_{j}\right)=0$. As $\alpha \in \operatorname{GL}(2, \mathbb{Q})$, the relation $M[\alpha]=\lambda_{j} M_{j}$ implies that M and M_{j} are simultaneously isotropic or anisotropic over \mathbb{Q}. Hence we just have to investigate both cases.

- Anisotropic Case : the quadratic form M has for discriminant $B^{2}-A C=d(M) \in \mathbb{Z}$, so that M is anisotropic over a field \mathbb{K} if and only if $d(M)$ is not a square in \mathbb{K}. Hence $d(M)$ is not a square in \mathbb{Q}; let us consider the primes p satisfying

$$
\begin{equation*}
\forall j=1 \ldots r \quad \operatorname{ord}_{p}\left(\kappa_{j}\right)=0 \quad \text { and } \quad\left(\frac{d(M)}{p}\right)=-1 \tag{1.17}
\end{equation*}
$$

They form (cf. [1]) a set of Dirichlet density $1 / 2$ in \mathscr{P} - therefore infinite. For such primes p, the form M is still anisotropic over \mathbb{Q}_{p}.

$$
\begin{align*}
& \text { If } \exists \alpha \in R^{p r}\left(p^{n}\right), \exists j, M[\alpha]=\lambda_{j} M_{j} \text {, then for } \alpha=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& \qquad\left\{\begin{array}{l}
A a^{2}+2 B a c+C c^{2}=\lambda_{j} A_{j}=\kappa_{j} p^{n} A_{j}=M(a, c) \\
A b^{2}+2 B b d+C d^{2}=\lambda_{j} C_{j}=\kappa_{j} p^{n} C_{j}=M(b, d)
\end{array}\right. \tag{1.18}
\end{align*}
$$

and, because $A_{j}, C_{j} \in \mathbb{Z}$ and $\operatorname{ord}_{p}\left(\kappa_{j}\right)=0$, we get $M(\bar{a}, \bar{c}) \equiv M(\bar{b}, \bar{d}) \equiv 0[p]$. Therefore, by the anisotropy of M on $\mathbb{Q}_{p}, \alpha \in p R(1)$ is not primitive, which contradicts the choice of α. Thus in the anisotropic case, for all $p \in \mathscr{P}$ satisfying the relation (1.17)

$$
\begin{equation*}
\forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \forall j=1 \ldots r \quad M[\alpha] \neq \lambda_{j} M_{j} \tag{1.19}
\end{equation*}
$$

- Isotropic Case : we consider non degenerate quadratic forms with integer coefficients. Thus they split over \mathbb{Q} as a product of two independent linear forms. Let M be such a form : it has two roots $z_{1}, z_{2} \in \mathbb{Q} \cup \infty$ and let γ_{M} be the geodesic of \mathbb{H}^{2} connecting these two points. We will show that γ_{M} cannot be a closed geodesic of X.

We look for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(2)$ such that $\gamma\left(z_{1}\right)=z_{1}$ and $\gamma\left(z_{2}\right)=z_{2}$.
If $z_{1}=\infty, z_{2} \in \mathbb{Q}: \gamma(\infty)=\infty \Longrightarrow c=0 \Longrightarrow a d=1$. As a and d are integers, $a=d= \pm 1$ and γ is not hyperbolic.

If $z_{1} \neq z_{2} \in \mathbb{Q}$: then $c \neq 0$ and $\gamma(x)=x \Longleftrightarrow c x^{2}+(d-a) x-b=0$. The two fixed points of γ are then

$$
z_{1,2}=\frac{a-d \pm \sqrt{(a+d)^{2}-4}}{2 c}
$$

Thus $z_{1}, z_{2} \in \mathbb{Q} \Longrightarrow \sqrt{(a+d)^{2}-4} \in \mathbb{Q} \Longrightarrow \exists y \in \mathbb{Q}, y^{2}=(a+d)^{2}-4 \in \mathbb{Z}$ so that

$$
y \in \mathbb{Z} \quad \text { and } \quad(a+d+y)(a+d-y)=4
$$

The integers $a+d+y$ and $a+d-y$ being of same parity, necessarily $a+d+y=a+d-y=$ $a+d= \pm 2: \gamma$ cannot be hyperbolic.

Hence γ_{M} is not the axis of any hyperbolic element of $\Gamma(2)$: owing to Proposition 1.2, we can state that the binary quadratic \mathbb{Q}-forms isotropic on \mathbb{Q} are not associated with closed geodesics of $X=\Gamma(2) \backslash \mathbb{H}^{2}$. This ends the proof of the Proposition.

1.4 Separation of points and geodesics

Proposition 1.5 Let Λ be a non-empty set contained in a finite union of closed geodesics

 of $X=\Gamma(2) \backslash \mathbb{H}^{2}$. There exists a modular correspondence \mathscr{C}_{p} separating Λ.Proof: given two points $z, z^{\prime} \in \mathbb{H}^{2}$ and M, M^{\prime} the associated binary quadratic forms, we have $z=z^{\prime} \Longleftrightarrow \exists \lambda \in \mathbb{R}, M^{\prime}=\lambda M$. The same goes for two geodesics. We recall briefly the proof presented in [9].

- Λ is finite : let us write $\Lambda=\left\{z_{1}, \ldots, z_{l}\right\}$. We take $\tilde{z}_{1}, \ldots, \tilde{z}_{l}$ liftings to \mathbb{H}^{2} and M_{1}, \ldots, M_{l} the associated binary quadratic forms. Proposition 1.4 applied to them gives

$$
\begin{equation*}
\exists p \in \mathscr{P} \quad \forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \forall j=1 \ldots l \quad \alpha \tilde{z}_{1} \neq \tilde{z}_{j} \tag{1.20}
\end{equation*}
$$

We set $R(1) \backslash R(p)=\left\{\Gamma(2) \alpha_{1}, \ldots, \Gamma(2) \alpha_{n}\right\}$ and $w=\Gamma(2) \alpha_{1} \tilde{z}_{1} \in \mathbb{H}^{2}$. Then, according to relation (1.20), we have $\forall j=1 \ldots l, w \neq \Gamma(2) \tilde{z}_{j}$ so that $w \notin \Lambda$. Consider the correspondence $\mathscr{C}_{p}(w)=\left\{\Gamma(2) \alpha_{1} \alpha_{1} \tilde{z}_{1}, \ldots, \Gamma(2) \alpha_{n} \alpha_{1} \tilde{z}_{1}\right\}$. From Lemma 1.3, we deduce

$$
\mathscr{C}_{p}(w)=\left\{z_{1}\right\} \cup B \quad \text { where } \quad B \subset\left\{\Gamma(2) \alpha \tilde{z}_{1}, \alpha \in R^{p r}\left(p^{2}\right)\right\}=\mathscr{C}_{p^{2}}\left(z_{1}\right)
$$

As $\mathscr{C}_{p^{2}}\left(z_{1}\right) \cap \Lambda=\emptyset-$ cf. (1.20) - then $\mathscr{C}_{p}(w) \cap \Lambda=\left\{z_{1}\right\}$. Hence for this choice of w, we have shown that \mathscr{C}_{p} separates Λ in the sense of section 1.1.

- Λ is infinite : $\Lambda \subset F_{1} \cup \cdots \cup F_{r}$, where the F_{i} are closed geodesics. Besides at least one of the sets $\Lambda \cap F_{i}, 1 \leq i \leq r$ is infinite : we can assume $\Lambda \cap F_{1}$ is infinite. Let $\tilde{F}_{1}, \ldots, \tilde{F}_{r}$ be liftings of those geodesics to \mathbb{H}^{2}. As before, we have according to Proposition 1.4

$$
\begin{equation*}
\exists p \in \mathscr{P} \quad \forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \forall j=1 \ldots r \quad \alpha \tilde{F}_{1} \neq \tilde{F}_{j} \tag{1.21}
\end{equation*}
$$

From Lemma 1.1, we know that for two distinct closed geodesics F and G of $X=\Gamma(2) \backslash \mathbb{H}^{2}$, necessarily $F \cap G$ is finite. Hence the relation (1.21) implies that $\mu_{1}=\mathscr{C}_{p}\left(F_{1}\right) \cap\left(F_{1} \cup \cdots \cup F_{r}\right)$ and $\mu_{2}=\mathscr{C}_{p^{2}}\left(F_{1}\right) \cap\left(F_{1} \cup \cdots \cup F_{r}\right)$ are finite subsets of X. It follows that

$$
\nu_{1}=\left\{z \in X / \mathscr{C}_{p}(z) \cap \mu_{1} \neq \emptyset\right\} \quad \text { and } \quad \nu_{2}=\left\{z \in X / \mathscr{C}_{p^{2}}(z) \cap \mu_{2} \neq \emptyset\right\}
$$

are finite subsets of X too and, $\Lambda \cap F_{1}$ being infinite, there exists $z \in \Lambda \cap F_{1} \backslash\left(\nu_{1} \cap \nu_{2}\right)$. Let \tilde{z} be a lifting to \mathbb{H}^{2} and $w=\Gamma(2) \alpha_{1} \tilde{z} \in \mathscr{C}_{p}(z) \subset \mathscr{C}_{p}\left(F_{1}\right)$. Because $z \notin \nu_{1}$, we have $\mathscr{C}_{p}(z) \cap \mu_{1}=\emptyset$ so that $\mathscr{C}_{p}(z) \cap \Lambda=\emptyset$ (cf. $z \in F_{1}$) and $w \notin \Lambda$.

As before $\mathscr{C}_{p}(w)=\{z\} \cup B^{\prime}$ where $B^{\prime} \subset \mathscr{C}_{p^{2}}(z)$. Hence $z \notin \nu_{2}$ implies $\mathscr{C}_{p^{2}}(z) \cap \mu_{2}=\emptyset$ so that $\mathscr{C}_{p^{2}}(z) \cap \Lambda=\emptyset$ and $\mathscr{C}_{p}(w) \cap \Lambda=\{z\}: \mathscr{C}_{p}$ separates Λ. This ends the proof.

Conclusion : proof of Theorem 1.1

Let Λ be a non-empty closed set contained in such a finite union of closed geodesics of X, and ν a quantum limit on X. Consider $\left(\phi_{j}\right)_{j}$ the associated sequence of eigenfunctions of Δ. We make the assumption - as in [G], where an orthonormal basis of common eigenfunctions of Δ and $\left\{T_{n}\right\}$ is considered - that they're also eigenfunctions of the modular operators (which commute with Δ) as "all evidence points to the spectrum of Δ being simple ...". We shall make a similar assumption in section 9 .

So our quantum limit is associated to a sequence of eigenfunctions of T_{C}, where $\mathscr{C}=\mathscr{C}_{p}$ is a modular correspondence separating Λ (cf. Proposition 1.5) : according to Proposition 1.1, we deduce that singsupp $\nu \neq \Lambda$. This proves Theorem 1.1.

2 Hyperbolic Geometry in dimension 3

2.1 Definition

- We take as model of hyperbolic space the upper half-space $\mathbb{H}^{3}=\left\{(x, y, t) \in \mathbb{R}^{3} / t>0\right\}$. Using the usual notation $\mathbf{j}=1 \wedge \mathbf{i} \in \mathbb{R}^{3}$ we have

$$
\mathbb{H}^{3}=\{z+t \mathbf{j} / z \in \mathbb{C}, t>0\}
$$

Therefore we shall identify \mathbb{H}^{3} with the subset $\mathbb{R} \oplus \mathbb{R} i \oplus \mathbb{R}_{+} \mathbf{j}$ of the algebra of quaternions of Hamilton $\mathbb{H}=\mathbb{R}[1, i, \mathbf{j}, \mathbf{k}]$. The space \mathbb{H}^{3} is provided with the Riemannian hyperbolic metric

$$
\mathrm{d} s^{2}=\frac{|\mathrm{d} z|^{2}+\mathrm{d} t^{2}}{t^{2}}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} t^{2}}{t^{2}}
$$

It is of constant sectional curvature $K=-1$ and defines the volume form d vol $=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z / t^{3}$. Finally the associated Laplace-Beltrami operator is

$$
\Delta=t^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial t^{2}}\right)-t \frac{\partial}{\partial t}
$$

- We deduce easily the geodesics of \mathbb{H}^{3} from the ones of \mathbb{H}^{2}. They are half-circles centered on \mathbb{C} and half-lines orthogonal to \mathbb{C}.

Moreover they are uniquely determined by their end points (possibly infinite) i.e. two distinct points of $\mathbb{P}^{1}(\mathbb{C}) \simeq \mathbb{C} \cup \infty$, that are the roots of a unique proportionality class of non-degenerate binary quadratic form with coefficient in \mathbb{C} : as in dimension 2 , it is a bijection.

Figure 3: Geodesics of \mathbb{H}^{3}

Let us now turn to the imbedded totally geodesic submanifolds (abbreviated itgs) of \mathbb{H}^{3}. By definition, an imbedded submanifold S in a manifold X is called totally geodesic if and only if for all $(M, \vec{u}) \in T S$, the geodesic of X tangent to \vec{u} at M is contained in S.

In \mathbb{H}^{3}, the geodesics being half-lines and half-circles orthogonal to \mathbb{C}, the itgs are half-planes orthogonal to \mathbb{C} and half-spheres centered on \mathbb{C}.

2.2 Isometries of \mathbb{H}^{3}

We know (cf. results of inversive geometry in [8]) that $\operatorname{Is}\left(\mathbb{H}^{3}\right)$ consists of extensions to \mathbb{R}^{3} of the Möbius transformations of \mathbb{C}

$$
M(\mathbb{C})=\left\{z \longmapsto \frac{a z+b}{c z+d}, z \longmapsto \frac{a \bar{z}+b}{c \bar{z}+d} /\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PSL}(2, \mathbb{C})\right\}
$$

and $\mathrm{Is}^{+}\left(\mathbb{H}^{3}\right)$, whose elements are extensions of the complex fractional linear transformations, is isomorphic to $\operatorname{PSL}(2, \mathbb{C})$: we shall make the identification implicitely in the sequel. More precisely (always identifying \mathbb{H}^{3} with a subset of \mathbb{H}) we have the following action

$$
\forall \gamma=\left(\begin{array}{ll}
a & b \tag{2.1}\\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{C}) \quad \forall x \in \mathbb{H}^{3} \quad \gamma \cdot x=(a x+b) \cdot(c x+d)^{-1}
$$

This extension is also known as the Poincaré extension. The action of

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{GL}(2, \mathbb{C}) \quad \text { with } a d-b c=n \neq 0
$$

is given by : if $c=0$

$$
\begin{equation*}
\gamma \cdot\binom{z}{t}=\binom{\frac{a z+b}{d}}{\left|\frac{a}{d}\right| t} \tag{2.2}
\end{equation*}
$$

and if $c \neq 0$

$$
\gamma \cdot\binom{z}{t}=\left(\begin{array}{c}
\frac{a}{c}-\frac{n}{c} \frac{\overline{c z+d}}{|c z+d|^{2}+|c|^{2} t^{2}} \tag{2.3}\\
\\
\frac{|n| t}{|c z+d|^{2}+|c|^{2} t^{2}}
\end{array}\right)
$$

Finally the classification of the elements of $\mathrm{Is}^{+}\left(\mathbb{H}^{2}\right)$ extends to $\mathrm{Is}^{+}\left(\mathbb{H}^{3}\right)$: they are elliptic, parabolic or hyperbolic according to their trace. The notion of axis of a hyperbolic element is the same. The only (subtle) difference is that an elliptic element does not have a unique fixed point in \mathbb{H}^{3} but a whole geodesic of them. Indeed for $c \neq 0$ we have

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{z}{t}=\binom{z}{t} \Longleftrightarrow\left\{\begin{aligned}
a+d=\operatorname{Tr}(\gamma) & =2 \operatorname{Re}(c z+d) \\
|c z+d|^{2}+|c|^{2} t^{2} & =1
\end{aligned}\right.
$$

and there exists solutions in \mathbb{H}^{3} (in fact an euclidean ellipse) iff $\operatorname{Tr}(\gamma)^{2} \in[0,4[$ (elliptic case). For $c=0$ we have

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\binom{z}{t}=\binom{z}{t} \Longleftrightarrow\left\{\begin{array}{r}
(a-d) z+b=1 \\
|a|=|d|=1
\end{array}\right.
$$

and there exists one solution in \mathbb{H}^{3} for $a \neq d \in S^{1}$ (whence $\operatorname{Tr}(\gamma)^{2}=a^{2}+2+a^{-2} \in[0,4[$).
In the parabolic case $\left(\operatorname{Tr}(\gamma)^{2}=4\right.$ with $\left.\gamma \neq \pm I_{2}\right)$ or in the hyperbolic case $\left(\operatorname{Tr}(\gamma)^{2} \notin[0,4]\right)$, the resolution of the equation $\gamma \cdot z=z$ on \mathbb{C} leads again to the existence of a fixed attractive point or two fixed (attractive and repulsive) points in \mathbb{C} respectively. In those cases the value of $c \in \mathbb{C}$ does not have any importance.

3 Algebraic complements

3.1 Number theory

We base on [7] in this section.

3.1.1 Extensions and prime ideals

- Let \mathbb{K} be a number field and \mathbb{L} a finite extension. We shall denote by $\mathscr{O}_{\mathbb{K}}$ and $\mathscr{O}_{\mathbb{L}}$ their rings of algebraic integers. Let \mathfrak{B} be a prime ideal of $\mathscr{O}_{\mathbb{L}}$. Then $P=\mathfrak{B} \cap \mathscr{O}_{\mathbb{K}}$ is a prime ideal of $\mathscr{O}_{\mathbb{K}}$ called the underlying ideal to \mathfrak{B}. Moreover $\left[\mathscr{O}_{\mathbb{L}} / \mathfrak{B}: \mathscr{O}_{\mathbb{K}} / P\right] \leq[\mathbb{L}: \mathbb{K}]<\infty$; we denote this quantity by $f_{\mathbb{L}} / \mathbb{K}(\mathfrak{B})$: it is the degree of \mathfrak{B} over \mathbb{K}.

Conversely let us take a prime ideal P of $\mathscr{O}_{\mathbb{K}}$. Then we have $P \mathscr{O}_{\mathbb{L}}=\mathfrak{B}_{1}{ }^{e_{1}} \ldots \mathfrak{B}_{s}{ }^{e_{s}}$, where the \mathfrak{B}_{i} are prime ideals of $\mathscr{O}_{\mathbb{L}}$. The quantities e_{i} are called ramification indices, and setting $\forall i, f_{i}=f_{\mathbb{L} / \mathbb{K}}\left(\mathfrak{B}_{i}\right)$ we get

$$
\begin{equation*}
\sum_{i=1}^{s} e_{i} f_{i}=[\mathbb{L}: \mathbb{K}] \tag{3.1}
\end{equation*}
$$

If $\exists i$ with $e_{i}>1$, we say that P is ramified (there is only a finite number of such ones).

- Let \mathbb{K} be a number field, P a prime ideal of $\mathscr{O}_{\mathbb{K}}, p \mathbb{Z}=P \cap \mathbb{Z}$ its underlying ideal and $f=f_{\mathbb{K} / \mathbb{Q}}(P)$. We define the norm of the ideal P by

$$
\mathrm{N}(P) \stackrel{\text { def }}{=}\left|\mathscr{O}_{\mathbb{K}} / P\right|=p^{f}
$$

Given a set A of prime ideals of $\mathscr{O}_{\mathbb{K}}$, we shall say that A is regular with density a in the set of all prime ideals of $\mathscr{O}_{\mathbb{K}}$ if

$$
\begin{equation*}
\sum_{p \in A} \mathrm{~N}(P)^{-s} \underset{s \rightarrow 1^{+}}{\sim} a \log \frac{1}{s-1} \tag{3.2}
\end{equation*}
$$

- Finally let us take a finite extension \mathbb{L} / \mathbb{K} with normal closure \mathbb{M} / \mathbb{K} and Galois group $G=\operatorname{Gal}(\mathbb{M} / \mathbb{K})$. The set of the prime ideals P of $\mathscr{O}_{\mathbb{K}}$ satisfying $P \mathscr{O}_{\mathbb{L}}=\mathfrak{B}_{1} \ldots \mathfrak{B}_{r}$ with $\forall i=1 \ldots r, \mathfrak{B}_{i}$ prime ideal and $f_{\mathbb{L} / \mathbb{K}}\left(\mathfrak{B}_{i}\right)=f_{i}$ fixed, is regular and its density is the relative frequence in G of the elements of G that, in the left translation representation considered as a permutation group of the set G, are the products of r disjoints cycles of length f_{1}, \ldots, f_{r}.

3.1.2 Application to quadratic extensions

- Let \mathbb{K} be a number field and take $a \in \mathscr{O}_{\mathbb{K}} \backslash\{1\}$ that is square-free. Then $\mathbb{L}=\mathbb{K}(\sqrt{a}) \simeq$ $\mathbb{K}[X] /\left(X^{2}-a\right)$ is a quadratic (hence Galois) extension of \mathbb{K} and its Galois group is $G=\{\operatorname{Id}, \tau\}$ where $\tau^{2}=$ Id. Moreover $\mathscr{O}_{\mathbb{L}}=\mathscr{O}_{\mathbb{K}}[\alpha]$ with $\alpha=(1+\sqrt{a}) / 2$ if $a \equiv 1[4]$ and $\alpha=\sqrt{a}$ otherwise (we just use that an algebraic integer of \mathbb{L} must have trace and norm in $\mathscr{O}_{\mathbb{K}}$).

For a prime ideal P of $\mathscr{O}_{\mathbb{K}}$, we have $\mathbb{L} /(P)=\mathbb{K}_{/(P)}[X] /\left(X^{2}-a\right)$ and $P \mathscr{O}_{\mathbb{L}}=\mathfrak{B}_{1}{ }^{e_{1}} \ldots \mathfrak{B}_{s}{ }^{e_{s}}$ with $\sum_{i} e_{i} f_{i}=[\mathbb{L}: \mathbb{K}]=2$, so that only three situations occur :
i) $P \mathscr{O}_{\mathbb{L}}=R$, prime in $\mathscr{O}_{\mathbb{L}}$, is inert in iff a is not a square modulo $P \quad$ (density $1 / 2$)
ii) $P \mathscr{O}_{\mathbb{L}}=R \bar{R}$, with R prime in $\mathscr{O}_{\mathbb{I}}$, splits iff a is a square modulo P
(density $1 / 2$)
iii) $P \mathscr{O}_{\mathbb{L}}=R^{2}$, with R prime in $\mathscr{O}_{\mathbb{L}}$, is ramified iff $a \in P$.
(density 0)

- From now on, $\mathbb{K}=\mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z} \backslash\{1\}$ is square free, and we consider $a \in \mathscr{O}_{\mathbb{K}}$ that is not a square. Let us denote by A the set $\left\{P\right.$ primes of $\mathscr{O}_{\mathbb{K}} / a$ is not a square modulo $\left.P\right\}$ (that is of density $1 / 2$) and by B the set $\{p \mathbb{Z}=P \cap \mathbb{Z} / P \in A\}$ of underlying ideals of \mathbb{Z}.

We shall divide B into three subsets $B=B_{1} \cup B_{2} \cup B_{3}$ respectively the sets of ideals that are inert, ramified or split.

If $P \cap \mathbb{Z}=p \mathbb{Z} \in B_{1} \quad: \quad p \mathscr{O}_{\mathbb{K}}=P \in A$ so that $N(P)=p^{2}$ because $f_{\mathbb{K} / \mathbb{Q}}(P)=2$.
If $P \cap \mathbb{Z}=p \mathbb{Z} \in B_{2} \cup B_{3}: \quad p \mathscr{O}_{\mathbb{K}}=P^{2}$ or $P \bar{P}$ with $P \in A$, hence $\mathrm{N}(P)=p$.
An ideal $p \mathbb{Z}$ of B either splits $\left(p \mathbb{Z} \in B_{3}\right)$ and there are two prime ideals of A above it, or it is inert or ramified $\left(p \mathbb{Z} \in B_{1} \cup B_{2}\right)$ and there is only one above it. Therefore

$$
\sum_{P \in A} \mathrm{~N}(P)^{-s}=\sum_{p \mathbb{Z} \in B_{1}} p^{-2 s}+\sum_{p \mathbb{Z} \in B_{2}} p^{-s}+2 \sum_{p \mathbb{Z} \in B_{3}} p^{-s} \Longrightarrow \sum_{P \in A} \mathrm{~N}(P)^{-s} \leq 2 \sum_{p \mathbb{Z} \in B} p^{-s}
$$

Because A is of density $1 / 2, B$ contains a subset of density greater than $1 / 4$. This proves
Proposition 3.1 Let $d \in \mathbb{Z} \backslash\{1\}$ be square-free, $\mathbb{K}=\mathbb{Q}(\sqrt{d})$ a quadratic extension and $a \in \mathscr{O}_{\mathbb{K}}$ that is not a square. Then there exists a subset $\mathscr{C} \subset \mathscr{P}$ of density greater than $1 / 4$ such that for any prime ideal P of $\mathscr{O}_{\mathbb{K}}$ satisfying $P \cap \mathbb{Z}=p \mathbb{Z}$ with $p \in \mathscr{C}$, a is not a square modulo P.

3.1.3 A result on Legendre character

Definition Let $p \in \mathscr{P}$ and \mathbb{K} be a field number. Elements $a_{1}, a_{2}, \ldots, a_{n}$ of \mathbb{K} are called p-independent if and only if as soon as $a_{1}^{x_{1}} a_{2}{ }^{x_{2}} \ldots a_{n}{ }^{x_{n}}$ (with $x_{i} \in \mathbb{Z}$) is a $p^{\text {th }}$ power in \mathbb{K}, necessarily $\forall i=1 \ldots n, x_{i} \equiv 0[p]$.

Applied to quadratic characters, a Theorem from (7] states
Theorem 3.1 Let $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ be 2-independent integers and $z_{1}, \ldots, z_{n} \in\{ \pm 1\}$ fixed. There exists infinitely many $p \in \mathscr{P}$ such that $\forall i=1 \ldots n,\left(\frac{a_{i}}{p}\right)=z_{i}$.

Proposition 3.2 Let $a_{1}, \ldots, a_{n} \in \mathbb{Z} \backslash \mathbb{N}$. There exists infinitely many primes p such that $\forall i=1 \ldots n, \quad\left(\frac{a_{i}}{p}\right)=-1$.
Proof: let $a_{1}, \ldots, a_{n} \in \mathbb{Z} \backslash \mathbb{N}$. If they are 2-independent, the result is immediate by application of Theorem 3.1. Otherwise, let us take a maximal 2-independent subfamily, that - up to relabelling - we may take to be a_{1}, \ldots, a_{m} with $1 \leq m<n$. According to Theorem 3.1, there exists infinitely many primes p such that

$$
\forall i=1 \ldots m \quad\left(\frac{a_{i}}{p}\right)=-1
$$

Let p be such a prime satisfying : $\forall i=m+1 \ldots n, a_{i} \not \equiv 0[p]$, and let $1 \leq j \leq n-m$. Because the selected 2-independent family is maximal, the elements a_{1}, \ldots, a_{m} and a_{m+j} are not 2-independent and, after simplification

$$
\exists q \in \mathbb{Z} \quad \exists x_{1}, \ldots, x_{m} \in\{0,1\} \quad a_{1}{ }^{x_{1}} \ldots a_{m}^{x_{m}} a_{m+j}=q^{2}>0
$$

As $a_{i}<0$ for all i, then $\sum_{i=1}^{m} x_{i}$ is necessarily odd and

$$
a_{m+j}=q^{2} \prod_{i=1}^{m} a_{i}^{-x_{i}} \Longrightarrow\left(\frac{a_{m+j}}{p}\right)=\prod_{i=1}^{m}\left(\frac{a_{i}}{p}\right)^{x_{i}}=(-1)^{\sum x_{i}}=-1
$$

We can take any j with $1 \leq j \leq n-m$, which ends the proof.

3.2 Quaternion algebras

3.2.1 Definition

We base on [2] in this section.
Definition Let $a, b \in \mathbb{Q}$. We call quaternion algebra of type (a, b) on \mathbb{Q} the \mathbb{Q}-algebra $\mathfrak{A}=\mathbb{Q}[1, \omega, \Omega, \omega \Omega]$, with the multiplication table $\omega^{2}=a, \Omega^{2}=b$ and $\omega \Omega+\Omega \omega=0$. Such an algebra will be denoted by $\mathfrak{A}=\left(\frac{a, b}{\mathbb{Q}}\right)$. We may assume without loss of generality that a and b are square free integers. We shall also take $a \neq 1$ in the sequel.

- The center of \mathfrak{A} is $\mathbb{Q} . \mathbb{F}=\{q+r \omega / q, r \in \mathbb{Q}\}$ is a subfield of \mathfrak{A} isomorphic to $\mathbb{Q}(\sqrt{a})$. We shall identify \mathbb{F} to $\mathbb{Q}(\sqrt{a})$, and write any element of \mathfrak{A} as $\alpha=x_{0}+x_{1} \omega+x_{2} \Omega+x_{3} \omega \Omega=$ $\xi+\eta \Omega$, with $\xi=x_{0}+x_{1} \omega, \eta=x_{2}+x_{3} \omega \in \mathbb{F}$. Note that $\forall \xi \in \mathbb{F}, \xi \Omega=\Omega \bar{\xi}^{\mathbb{F}}$. We define :
. $\bar{\alpha}=x_{0}-x_{1} \omega-x_{2} \Omega-x_{3} \omega \Omega=\bar{\xi}^{\mathbb{F}}-\eta \Omega$ the conjugate of α.
- $\operatorname{Tr}(\alpha)=\alpha+\bar{\alpha}=\operatorname{Tr}(\xi)=2 x_{0} \in \mathbb{Q}$ the trace of α.
- $\mathrm{N}(\alpha)=\alpha \bar{\alpha}=\xi \bar{\xi}^{\mathbb{F}}-b \eta \bar{\eta}^{\mathbb{F}}=\left(x_{0}{ }^{2}-a x_{1}{ }^{2}\right)-b\left(x_{2}{ }^{2}-a x_{3}{ }^{2}\right) \in \mathbb{Q}$ its norm.

Proposition $\quad \forall \alpha_{1}, \alpha_{2} \in \mathfrak{A}, \overline{\alpha_{1} \cdot \alpha_{2}}=\overline{\alpha_{2}} \cdot \overline{\alpha_{1}}$.
Theorem \mathfrak{A} has zero divisors $\Longleftrightarrow \mathfrak{A} \simeq \mathrm{M}(2, \mathbb{Q})$
In this case we shall speak of matrix algebra. Otherwise, we have a division algebra, as the one considered here. But after extending the scalars to \mathbb{F}, we have zero divisors and the mapping

$$
\varphi: \alpha=\xi+\eta \Omega \longmapsto\left(\begin{array}{cc}
\xi & \eta \tag{3.3}\\
b \bar{\eta}^{\mathbb{F}} & \bar{\xi}^{\mathbb{F}}
\end{array}\right)
$$

provides the identification of $\mathfrak{A} \otimes \mathbb{F}$ with $\mathrm{M}(2, \mathbb{F})$. Let us note that φ leaves the trace and the norm (as they are defined on \mathfrak{A}) invariant, the norm on $\operatorname{Im}(\varphi) \subset \mathrm{M}(2, \mathbb{F})$ being quite simply the determinant.

Finally, we will call a quaternion algebra definite or indefinite whether its norm is definite $(a<0$ and $b<0)$ or indefinite $(a>0$ or $b>0)$ as a quaternary quadratic form on \mathbb{R}.

- Going back to matrix algebras, we have the following characterization :

Proposition 3.3 Let $b \in \mathscr{P}$. If $\mathfrak{A}=\left(\frac{a, b}{\mathbb{Q}}\right)$ is a matrix algebra, then $\left(\frac{a}{b}\right)=1$.
Proof: given $\alpha=x_{0}+x_{1} \omega+x_{2} \Omega+x_{3} \omega \Omega \in \mathfrak{A}$, its norm is

$$
\begin{equation*}
\mathrm{N}(\alpha)=\left(x_{0}^{2}-a x_{1}^{2}\right)-b\left(x_{2}^{2}-a x_{3}^{2}\right)=\left(x_{0}^{2}-b x_{2}^{2}\right)-a\left(x_{1}^{2}-b x_{3}^{2}\right) \tag{3.4}
\end{equation*}
$$

If $\alpha \in \mathfrak{A}$ is a divisor of 0 , we have $\alpha \neq 0$ and $\mathrm{N}(\alpha)=0$. Hence by (3.4)

$$
x_{0}^{2}-a x_{1}^{2}=b\left(x_{2}^{2}-a x_{3}^{2}\right) \quad \text { with } \quad \forall i=0 \ldots 3, \quad x_{i} \in \mathbb{Q}
$$

After the multiplication by the least common multiple of the denominators of the x_{i}, we obtain

$$
y_{0}^{2}-a y_{1}^{2}=b\left(y_{2}^{2}-a y_{3}^{2}\right) \quad \text { where } \quad \forall i=0 \ldots 3, \quad y_{i} \in \mathbb{Z}
$$

Let us deal with this equation :
(i) If b does not divide y_{1} : as $y_{0}{ }^{2}-a y_{1}{ }^{2} \equiv 0[b]$ then $a \equiv\left(\frac{y_{0}}{y_{1}}\right)^{2}[b]$ and a is a square modulo b.
(ii) If b divides y_{1} : then b divides $y_{0}{ }^{2}$ so that, b being prime, b divides y_{0}. By noting $y_{0}^{\prime}=y_{0} / b$ and $y_{1}^{\prime}=y_{1} / b$, we get

$$
y_{2}^{2}-a y_{3}^{2}=b\left(y_{0}^{\prime 2}-a y_{1}^{\prime 2}\right)
$$

We find in case (ii) an equation in y_{2}, y_{3} of the same type as before. Therefore after a finite number of simplifications by b, we are in case (i), unless $y_{1}=y_{3}=0$. In this last case, we have $y_{0}{ }^{2}=b y_{2}{ }^{2} \neq 0$ as $\alpha \neq 0$, so that $b \in \mathbb{Z}$ is a square in \mathbb{Q} i.e. in \mathbb{Z}, which cannot happen for $b \in \mathscr{P}$. So we have shown

For $b \in \mathscr{P} \quad \mathfrak{A}$ matrix algebra $\Longrightarrow(a$ is a square modulo $b)$

3.2.2 Definition of a discrete group of isometries associated to \mathfrak{A}

Definition $\quad A n$ order \mathfrak{I} in \mathfrak{A} is a subring of \mathfrak{A} such that

1) $1 \in \mathfrak{I}$.
2) $\alpha \in \mathfrak{I} \Longrightarrow N(\alpha) \& \operatorname{Tr}(\alpha) \in \mathbb{Z}$.
3) \mathfrak{I} has four linearly independent generators over \mathbb{Q}.

Thus \mathfrak{I} is a free \mathbb{Z}-module of rank four in \mathfrak{A}, that is besides stable under the conjugation. For example, $\mathfrak{I}_{0}=\mathscr{O}_{\mathbb{F}} \oplus \mathscr{O}_{\mathbb{F}} \Omega=\left\{\xi+\eta \Omega / \xi, \eta \in \mathscr{O}_{\mathbb{F}}\right\}$ is a particular order for any quaternion algebra $\mathfrak{A}=\left(\frac{a, b}{\mathbb{Q}}\right)$, and $\mathrm{M}(2, \mathbb{Z})$ is an order for the matrix algebra $\mathfrak{A}=\mathrm{M}(2, \mathbb{Q})$.

Proposition 3.4 Let \mathfrak{I} be an order. Then $\exists D, D^{\prime} \in \mathbb{Z} \backslash\{0\} \quad D^{\prime} \mathfrak{I} \subset D \mathfrak{I}_{0} \subset \mathfrak{I}$.
Proof: the orders \mathfrak{I} and \mathfrak{I}_{0} being two free \mathbb{Z}-modules of rank four in \mathfrak{A}, their \mathbb{Z}-bases are two \mathbb{Q}-bases of \mathfrak{A}. Let us call $M \in \mathrm{GL}(4, \mathbb{Q})$ any transition matrix from a basis of \mathfrak{I} to a basis of \mathfrak{I}_{0}. We just have to take two integers D and D^{\prime} such that $D M \in \mathrm{M}(4, \mathbb{Z})$ and $D^{\prime} D^{-1} M^{-1} \in \mathrm{M}(4, \mathbb{Z})$ to satisfy the above property. Moreover $\mathscr{O}_{\mathbb{F}} \simeq \mathbb{Z}^{2}$ and $\mathfrak{I} \simeq \mathbb{Z}^{4}$ is countable.

- Given $n \in \mathbb{Z}$ we define $\mathfrak{I}(n)=\{\alpha \in \mathfrak{I} / \mathrm{N}(\alpha)=n\}$ and $\mathfrak{I}^{p r}(n)=\mathfrak{I}(n) \cap \mathfrak{I}^{p r}$ the subset of primitive elements, where the primitive elements are the ones that cannot be divided in \mathfrak{I} by a non unit rational integer. Then we have

Proposition 3.5 Let $p \in \mathscr{P}$ be a prime such that $\operatorname{ord}_{p}\left(2 a b D D^{\prime}\right)=0$ and $\left(\frac{a}{p}\right)=-1$.

$$
\forall \alpha=\xi+\eta \Omega \in \mathfrak{I}^{p r}, \quad N(\alpha) \equiv 0[p] \Longrightarrow \operatorname{ord}_{p} N(\xi)=\operatorname{ord}_{p} N(\eta)=0 .
$$

In particular, $\xi \eta \neq 0$ for such an α.
Proof : let $p \in \mathscr{P}$ and $\alpha=\xi+\eta \Omega \in \mathfrak{I}$ satisfy the above assumptions; thus we have $\mathrm{N}(\alpha)=\xi \bar{\xi}^{\mathbb{F}}-b \eta \bar{\eta}^{\mathbb{F}}=\mathrm{N}(\xi)-b \mathrm{~N}(\eta) \equiv 0[p]$. As $D^{\prime} \mathfrak{I} \subset D \mathfrak{I}_{0} \subset \mathfrak{I}$, then $D^{\prime} \xi=D \xi_{1}$ and $D^{\prime} \eta=D \eta_{1}$ with $\xi_{1}, \eta_{1} \in \mathscr{O}_{\mathbb{F}}$. Besides $\operatorname{ord}_{p}\left(D D^{\prime}\right)=0$ so that $\operatorname{ord}_{p} \mathrm{~N}(\xi)=\operatorname{ord}_{p} \mathrm{~N}\left(\xi_{1}\right) \geq 0$ and $\operatorname{ord}_{p} \mathrm{~N}(\eta)=\operatorname{ord}_{p} \mathrm{~N}\left(\eta_{1}\right) \geq 0$ (we follow the classical convention $\operatorname{ord}_{p}(0)=+\infty$). By taking the norm we get

$$
\begin{equation*}
\mathrm{N}\left(D^{\prime} \alpha\right)=\mathrm{N}\left[D\left(\xi_{1}+\eta_{1} \Omega\right)\right]=D^{2}\left[\mathrm{~N}\left(\xi_{1}\right)-b \mathrm{~N}\left(\eta_{1}\right)\right] \equiv 0[p] \tag{3.5}
\end{equation*}
$$

hence, as $\operatorname{ord}_{p}(D)=0, \mathrm{~N}\left(\xi_{1}\right)-b \mathrm{~N}\left(\eta_{1}\right) \equiv 0[p]$ and $\operatorname{ord}_{p}(b)=0$ implies

$$
\operatorname{ord}_{p} \mathrm{~N}\left(\xi_{1}\right)>0 \Longleftrightarrow \operatorname{ord}_{p} \mathrm{~N}\left(\eta_{1}\right)>0
$$

Let us assume

$$
\begin{align*}
& \operatorname{ord}_{p} \mathrm{~N}(\xi)=\operatorname{ord}_{p} \mathrm{~N}\left(\xi_{1}\right)>0 \tag{3.6}\\
& \operatorname{ord}_{p} \mathrm{~N}(\eta)=\operatorname{ord}_{p} \mathrm{~N}\left(\eta_{1}\right)>0 \tag{3.7}
\end{align*}
$$

$a \not \equiv 1[4]$: therefore $\mathscr{O}_{\mathbb{F}}=\mathbb{Z}[\sqrt{a}]$ and $\xi_{1}=b_{0}+b_{1} \sqrt{a}$ with $b_{0}, b_{1} \in \mathbb{Z}$. The relation (3.6) can be expressed as $p / b_{0}{ }^{2}-a b_{1}{ }^{2}$.
. If p / b_{1} then p / b_{0} and $\xi_{1}=p \xi_{2}$, with $\xi_{2} \in \mathscr{O}_{\mathbb{F}}$.
. Otherwise $a \equiv\left(\frac{b_{0}}{b_{1}}\right)^{2}[p]$ and $\left(\frac{a}{p}\right)=1$, contradicting the assumption.
$\underline{a \equiv 1[4]}$: in this case $\mathscr{O}_{\mathbb{F}}=\mathbb{Z}\left[\frac{1+\sqrt{a}}{2}\right]$ and $\xi_{1}=\left(b_{0}+\frac{b_{1}}{2}\right)+\frac{b_{1} \sqrt{a}}{2}$ with $b_{0}, b_{1} \in \mathbb{Z}$.
We have $p / \mathrm{N}\left(2 \xi_{1}\right)$ thus $p /\left(2 b_{0}+b_{1}\right)^{2}-a b_{1}{ }^{2}$.
. If p / b_{1} then $p / 2 b_{0}+b_{1}$ and p / b_{0}, so that $\xi_{1}=p \xi_{2}$ with $\xi_{2} \in \mathscr{O}_{\mathbb{F}}$.
. Otherwise $a \equiv\left(\frac{2 b_{0}}{b_{1}}+1\right)^{2}[p]$ and $\left(\frac{a}{p}\right)=1$, contradicting the assumption.
Therefore relation (3.6) leads to $\exists \xi_{2} \in \mathscr{O}_{\mathbb{F}}, \xi_{1}=p \xi_{2}$. In the same way, relation (3.7) leads to $\exists \eta_{2} \in \mathscr{O}_{\mathbb{F}}, \eta_{1}=p \eta_{2}$. Thus $D^{\prime} \alpha=D\left(\xi_{1}+\eta_{1} \Omega\right)=p D\left(\xi_{2}+\eta_{2} \Omega\right)=p D \alpha_{2}$ where $\alpha_{2} \in \mathfrak{I}_{0}$. Because $p \wedge D^{\prime}=1, \exists x, y \in \mathbb{Z}$ such that $x D^{\prime}+y p=1$ (Bézout) and

$$
\begin{equation*}
\alpha=x D^{\prime} \alpha+p y \alpha=p\left(x D \alpha_{2}+y \alpha\right) . \tag{3.8}
\end{equation*}
$$

As $\alpha_{2} \in \mathfrak{I}_{0}$ and $D \mathfrak{I}_{0} \subset \mathfrak{I}$, then $D \alpha_{2} \in \mathfrak{I}$ and $\alpha \in p \mathfrak{I}: \alpha$ is not primitive. This ends the proof of the Proposition.

- Let \mathfrak{A} be an indefinite quaternion algebra of type (a, b) on \mathbb{Q}; we shall consider in the sequel orders of type $\left(q_{1}, q_{2}\right)$ in \mathfrak{A}, that are principal so that we can us them to define modular correspondences (cf. [2] §3). For $q_{1}=1$, these orders are simply the maximal ones.

Let \mathfrak{I} be such an order of type $\left(q_{1}, q_{2}\right)$ and $R=\varphi(\mathfrak{I})$ its image in $\mathrm{M}(2, \mathbb{F})$, where φ is defined by (3.3). Implicitely we shall identify \mathfrak{I} with its image by φ, and denote by $\alpha=\xi+\eta \Omega$ any element of R. Via Poincaré extension the set $R^{*}=\{\alpha \in R / \operatorname{det}(\alpha) \neq 0\}$ is identified with a subgroup of $\mathrm{Is}^{+}\left(\mathbb{H}^{3}\right)$. For $n \wedge q_{1} q_{2}=1$ we define

$$
\begin{gather*}
R(n)=\{\alpha \in R / \mathrm{N}(\alpha)=n\} \tag{3.9}\\
R^{p r}(n)=\{\alpha \in R / \alpha \text { primitive } \mathrm{N}(\alpha)=n\} \tag{3.10}
\end{gather*}
$$

which are infinite subsets of $\mathrm{M}(2, \mathbb{F})$. Consider for example \mathfrak{I} a maximal order containing \mathfrak{I}_{0} : the Pell-Fermat Theorem applied to the equation $\mathrm{N}(\alpha)=1$ implies that $\mathfrak{I}(1)$ is infinite because \mathfrak{A} is indefinite and at least one of the square-free integers a, b is positive.

Let $\Gamma_{R}=R(1)$ be the discrete subgroup of $\operatorname{SL}(2, \mathbb{C})$ induced by R. We shall denote the quotient space by $X_{R}=\Gamma_{R} \backslash \mathbb{H}^{3}$ and the canonical projection by $\pi_{R}: \mathbb{H}^{3} \longrightarrow \Gamma_{R} \backslash \mathbb{H}^{3}$.

To insure that X_{R} inherits the Riemannian structure of \mathbb{H}^{3}, the group Γ_{R} may not contain any elliptic element.

Proposition 3.6 Let us assume that $b \in \mathscr{P} \backslash\{3\}$. If Γ_{R} contains an elliptic element, then necessarily one of the integers $a,-a$ or $-3 a$ is a square modulo b.

Proff : if Γ_{R} contains an elliptic element, there exists $\alpha=\xi+\eta \Omega \in \mathfrak{I}$ such that $|\operatorname{Tr}(\alpha)|<2$ and $\mathrm{N}(\alpha)=\xi \bar{\xi}^{\mathbb{F}}-b \eta \bar{\eta}^{\mathbb{F}}=1$. Because \mathfrak{I} is an order, we have $\operatorname{Tr}(\alpha)=\operatorname{Tr}(\xi) \in\{-1,0,+1\}$. Set $\xi=x+y \sqrt{a}$ and $\eta=z+t \sqrt{a} \in \mathbb{F}$, where x, y, z and $t \in \mathbb{Q}$. Then $\mathrm{N}(\alpha)=x^{2}-a y^{2}-$ $b\left(z^{2}-a t^{2}\right)=1$ and $\operatorname{Tr}(\alpha)=2 x \in\{-1,0,+1\}$. We shall assume that $a \not \equiv 0[b]$ (otherwise a would be a square modulo b).

If $x=0$: then $-a y^{2}=1+b\left(z^{2}-a t^{2}\right)$ and after multiplication by the least common multiple of the denominators of y, z and t, we get $-a y^{\prime 2}=E^{2}+b\left(z^{\prime 2}-a t^{\prime 2}\right)$ with integers y^{\prime}, z^{\prime} and t^{\prime} such that $y^{\prime} \wedge z^{\prime} \wedge t^{\prime}=1$.
. If $y^{\prime} \not \equiv 0[b]$ then $-a \equiv E^{2} / y^{\prime 2}[b]:-a$ is a square modulo b.
. If $y^{\prime} \equiv 0[b]$ then b divides E and $z^{\prime 2}-a t^{\prime 2} \equiv 0[b]$ where $z^{\prime} \not \equiv 0[b]$ and $t^{\prime} \not \equiv 0[b]$ because $a \not \equiv 0[b]$ and $y^{\prime} \wedge z^{\prime} \wedge t^{\prime}=1$. Therefore $a \equiv{z^{\prime}}^{2} / t^{\prime 2}[b]: a$ is a square modulo b.

If $x= \pm 1 / 2$: then $-a y^{2}=3 / 4+b\left(z^{2}-a t^{2}\right)$ and after multiplication by the least common multiple of the denominators of y, z and t, we get $-a y^{\prime 2}=3 E^{2}+b\left(z^{\prime 2}-a t^{\prime 2}\right)$ with integers y^{\prime}, z^{\prime} and t^{\prime} such that $y^{\prime} \wedge z^{\prime} \wedge t^{\prime}=1$. As in the case $x=0$ we deduce that
. If $y^{\prime} \not \equiv 0[b]$ then $-3 a \equiv 9 E^{2} / y^{\prime 2}[b]$ and $-3 a$ is a square modulo b.
. If $y^{\prime} \equiv 0[b]$ then b divides E because $|b| \neq 3$, and $z^{\prime 2}-a t^{\prime 2} \equiv 0[b]$ where $z^{\prime} \not \equiv 0[b]$ and $t^{\prime} \not \equiv 0[b]$ because $a \not \equiv 0[b]$ and $y^{\prime} \wedge z^{\prime} \wedge t^{\prime}=1$. Therefore $a \equiv z^{\prime 2} / t^{\prime 2}[b]$ and a is a square modulo b, which ends the proof of the Proposition.

- $\forall n \in \mathbb{N}$ such that $n \wedge q_{1} q_{2}=1, R(1) \backslash R(n)$ is finite (cf. [2] §7) : we may consequently define (as in section 1.2.3) the modular correspondences on the quotient space $X_{R}=\Gamma_{R} \backslash \mathbb{H}^{3}$ by

$$
\begin{equation*}
T_{n} f(z)=\sum_{\alpha \in R(1) \backslash R(n)} f(\alpha . z) \quad C_{n} f(z)=\sum_{\alpha \in R(1) \backslash R^{p r}(n)} f(\alpha . z) \tag{3.11}
\end{equation*}
$$

We call these operators modular operators. They possess the classical properties of the modular operators we have seen in dimension 2 (cf. section 1.2.3) : they are bounded linear operators of $\mathscr{L}^{2}\left(X_{R}\right)$. Moreover the proof of Lemma 1.3 can be adapted to an order R : for any $n \in \mathbb{N}$ the set $R(n)$ is stable under the passage to the comatrix, which corresponds to the conjugation of the underlying element of \mathfrak{I}

$$
\varphi(\xi+\eta \Omega)=\left(\begin{array}{cc}
\xi & \eta \tag{3.12}\\
b \bar{\eta}^{\mathbb{F}} & \bar{\xi}^{\mathbb{F}}
\end{array}\right) \in R(n) \Longrightarrow \varphi\left(\bar{\xi}^{\mathbb{F}}-\eta \Omega\right)=\left(\begin{array}{cc}
\bar{\xi}^{\mathbb{F}} & -\eta \\
-b \bar{\eta}^{\mathbb{F}} & \xi
\end{array}\right) \in R(n)
$$

Then we can prove (exactly as in proof of Lemma 1.3) that for $p \in \mathscr{P}$ such that $p \wedge q_{1} q_{2}=1$ (only such p will be considered thereafter)

Proposition 3.7 $|R(1) \backslash R(p)|=m$. We shall denote $R(1) \backslash R(p)=\left\{R(1) \sigma_{1}, \ldots, R(1) \sigma_{m}\right\}$. $\forall i, \exists!j$ such that $\sigma_{j} \sigma_{i} \in p R(1)$ and $\forall k \neq j, \sigma_{k} \sigma_{i} \in R^{p r}\left(p^{2}\right)$.

4 The quotient space $X_{R}=\Gamma_{R} \backslash \mathbb{H}^{3}$

4.1 Definition of the studied class

We take an indefinite division algebra $\mathfrak{A}=\left(\frac{a, b}{\mathbb{Q}}\right)$ with $a<0$ (for technical reasons), and consider an order \mathfrak{I} of type $\left(q_{1}, q_{2}\right)$ - e.g. a maximal order containing the order \mathfrak{I}_{0} - such that Γ_{R} acts freely on \mathbb{H}^{3}. This way we get a class $\left(K_{2}\right)$ of quotient manifolds X_{R}, that are Riemannian and of sectional curvature $K=-1$ when provided with the metric induced by \mathbb{H}^{3}.

This class $\left(K_{2}\right)$ is far from being empty. Indeed take $a \in \mathbb{Z}_{-} \backslash\{-1,-3\}$ and $b \in \mathscr{P} \backslash\{3\}$ such that a is not a square modulo b : then \mathfrak{A} is an indefinite division quaternion algebra according to Proposition 3.3. For the action of Γ_{R} to be free, we just have to impose that -1 and -3 are squares modulo b by Proposition 3.6. Theorem 3.1 shows that, given a fixed, these three conditions modulo b are simultaneously satisfied by infinitely many primes b because the negative integers $a,-1$ and -3 are obviously 2 -independent.

Definition The infinite set of $\left(K_{2}\right)$-manifolds satisfying the conditions

$$
\begin{equation*}
a \in \mathbb{Z}_{-}, b \in \mathscr{P},\left(\frac{a}{b}\right)=-1,\left(\frac{-1}{b}\right)=1,\left(\frac{-3}{b}\right)=1 \tag{4.1}
\end{equation*}
$$

will be called the class $\left(K_{2}^{S}\right)$.
For example, we can take $a=-2$ and $b=13$.

4.2 Properties of $\left(K_{2}^{S}\right)$ - manifolds

- In the sequel of this work we shall consider manifolds X_{R} of the class $\left(K_{2}^{S}\right)$. The conjugation in $\mathbb{F} \simeq \mathbb{Q}(\sqrt{a})$ coincides with the complex conjugation because $a<0$.

Lemma 4.1 Let $\xi \in \mathbb{F} \backslash\{0\}$. Then $\operatorname{ord}_{b}|\xi|^{2}$ is even.
Proof : let $\xi=x^{\prime}+y^{\prime} \sqrt{a}$ be any element in \mathbb{F}. We can write

$$
\xi=\frac{p(x+y \sqrt{a})}{q}
$$

with $q, p, x, y \in \mathbb{Z}, x \wedge y=1$ and $p \wedge q=1$. Assume that $|x+y \sqrt{a}|^{2}=x^{2}-a y^{2} \equiv 0[b]$. If b divides y, then b divides x, which contradicts $x \wedge y=1$. Therefore $y \not \equiv 0[b]$ so that

$$
a \equiv\left(\frac{x}{y}\right)^{2}[b] \quad \text { i.e } \quad\left(\frac{a}{b}\right)=1
$$

and X_{R} cannot be of class $\left(K_{2}^{S}\right)$. Hence $|x+y \sqrt{a}|^{2} \not \equiv 0[b]$ and as $|\xi|^{2}=p^{2} q^{-2}|x+y \sqrt{a}|^{2}$, we deduce that $\operatorname{ord}_{b}|\xi|^{2}=2\left(\operatorname{ord}_{b}(p)-\operatorname{ord}_{b}(q)\right)$ is even. This ends the proof of the Lemma.

Proposition 4.1 Let X_{R} be a $\left(K_{2}^{S}\right)$-manifold. Then Γ_{R} has no parabolic element.
Proof: let us take a parabolic element $\gamma=\xi+\eta \Omega$ in Γ_{R}. By taking its opposite $-\gamma$ if necessary, we may always assume that $\xi=1+x \sqrt{a}$ and $\eta=y+z \sqrt{a}$ with x, y and $z \in \mathbb{Q}$. As $n(\gamma)=1$ we have

$$
0=|\xi|^{2}-b|\eta|^{2}-1=-a x^{2}-b\left(y^{2}-a z^{2}\right)
$$

and after multiplication of x, y and z by the least common multiple of their denominators, and after division of the integers obtained by their greatest common divisor, we get

$$
\begin{equation*}
a X^{2}+b\left(Y^{2}-a Z^{2}\right)=0 \quad \text { with } \quad X, Y, Z \in \mathbb{Z} \quad \text { and } \quad X \wedge Y \wedge Z=1 \tag{4.2}
\end{equation*}
$$

Because $b \wedge a=1, b$ divides X. Setting $X_{0}=X / b$ we get after simplification $a b X_{0}{ }^{2}+Y^{2}-$ $a Z^{2}=0$ so that a divides Y. Setting $Y_{0}=Y / a, Z_{0}=Z$ we finally get

$$
\begin{equation*}
b X_{0}^{2}+a Y_{0}^{2}-Z_{0}^{2}=0 \quad \text { with } \quad X_{0}, Y_{0}, Z_{0} \in \mathbb{Z} \quad \text { and } \quad X_{0} \wedge Y_{0} \wedge Z_{0}=1 \tag{4.3}
\end{equation*}
$$

Thus if b divides Y_{0}, b divides Z_{0} hence b^{2} divides $b X_{0}^{2}$ and b divides X_{0}, which contradicts $X_{0} \wedge Y_{0} \wedge Z_{0}=1$. Therefore $Y_{0} \not \equiv 0[b]$ so that, by reduction of (4.3) modulo b, we have

$$
a \equiv\left(\frac{Z_{0}}{Y_{0}}\right)^{2}[b] \text { i.e. }\left(\frac{a}{b}\right)=1
$$

and X_{R} cannot be of class $\left(K_{2}^{S}\right)$.

- Two geometrical properties of the space $\Gamma(2) \backslash \mathbb{H}^{2}$ stated in section 1.2 .2 extend directly to the space X_{R}, because Γ_{R} acts freely and discontinuously on \mathbb{H}^{3}. Therefore we have

Proposition 4.2 Let \mathscr{L} be a closed geodesic of $X_{R}=\Gamma_{R} \backslash \mathbb{H}^{3}$. There exists an hyperbolic transformation $\gamma \in \Gamma_{R}$ whose axis L projects on \mathscr{L}.

In particular, there exists a compact portion l of L such that $\mathscr{L}=\pi_{R}(L)=\pi_{R}(l)$.
Lemma 4.2 Let F and G be two closed geodesics of X_{R}. Then $F=G$ or $F \cap G$ is finite.

- We have similar properties for closed itgs, which are compact itgs of X_{R}.

Definition An itgs S of \mathbb{H}^{3} is closed for Γ_{R} if its projection \mathscr{S} in X_{R} is closed, that is

$$
\begin{equation*}
\exists \mathscr{F} \subset S \text { compact } \exists \Gamma^{\prime} \subset \Gamma_{R} \quad S=\bigcup_{\gamma \in \Gamma^{\prime}} \gamma \cdot \mathscr{F}=\Gamma^{\prime} . \mathscr{F} \tag{4.4}
\end{equation*}
$$

Thus $\mathscr{S}=\pi_{R}(S)=\pi_{R}(\mathscr{F})$. Moreover, as the group Γ_{R} is countable and the complete space S has non empty interior, then by Baire's Lemma \mathscr{F} has non empty interior. More precisely

Proposition 4.3 Let \mathscr{S} be a closed itgs of X_{R} and S be a lifting to \mathbb{H}^{3}. There exists a subgroup Γ_{0} of Γ_{R} and a compact subset $\mathscr{F} \subset S$ with non empty interior such that

$$
\gamma \in \Gamma_{0} \Longleftrightarrow \gamma . S=S \quad \text { and } \quad S=\bigcup_{\gamma \in \Gamma_{0}} \gamma . \mathscr{F}=\Gamma_{0} . \mathscr{F}
$$

Moreover $\exists \gamma=\xi+\eta \Omega \in \Gamma_{0}$ hyperbolic (and $\eta \neq 0$).
Proof: let Γ_{0} denote the set

$$
\begin{equation*}
\Gamma_{0}=\left\{\gamma \in \Gamma_{R} / \gamma \cdot \mathscr{F} \subset S\right\} \supset \Gamma^{\prime} \tag{4.5}
\end{equation*}
$$

Hence for $\gamma \in \Gamma_{0}$, we have $\gamma \cdot S \cap S \supset \gamma \mathscr{F}$ which has non zero area. As $\gamma . S$ and S are both itgs of \mathbb{H}^{3} i.e. half-planes or half-spheres, then $\gamma \cdot S=S$. Conversely $\gamma \cdot S=S$ implies that $\gamma . \mathscr{F} \subset \gamma S=S$ and $\gamma \in \Gamma_{0}$. Hence $\Gamma_{0}=\left\{\gamma \in \Gamma_{R} / \gamma \cdot S=S\right\}$. That Γ_{0} is a group is obvious.

From the definition of the class $\left(K_{2}^{S}\right)$ and Proposition 4.1, we know that except for $\{ \pm \operatorname{Id}\}$ the groups Γ_{0} and Γ_{R} contain only hyperbolic elements. As $\Gamma_{0} \neq \pm \mathrm{Id}$ (otherwise $S=\mathscr{F}$ would be a compact itgs in \mathbb{H}^{3}), we can find a hyperbolic element $\gamma=\xi+\eta \Omega \in \Gamma_{0}$. Then $|\xi|^{2} \geq \operatorname{Re}^{2}(\xi)>1$ and $b|\eta|^{2}=|\xi|^{2}-\mathrm{N}(\gamma)=|\xi|^{2}-1>0$ so that $\eta \neq 0$.

Lemma 4.3 Let S_{1} and S_{2} be two distinct closed itgs of X_{R} : then either $S_{1} \cap S_{2}$ is empty or it has dimension 1. In this last case, it is a closed geodesic of X_{R}.

Proof : from the definition of an itgs, it is clear that two distinct itgs with non-empty intersection must intersect transversally, because an itgs is entirely defined by a point and the tangent space at this point. Then the intersection is either empty or of dimension 1.

Since S_{1} and S_{2} are closed itgs, they are compact. Hence $L=S_{1} \cap S_{2}$ is a compact subset of X_{R}. If $L \neq \emptyset$, then it is a complete geodesic because for $(M, \vec{u}) \in T L$, the geodesic of X_{R} tangent to \vec{u} at M is contained in both S_{1} and S_{2}. Moreover L being compact, it is a closed geodesic of X_{R}.

4.3 The type S° and Γ_{R} - closed itgs

- There is a particular itgs of \mathbb{H}^{3} that is invariant under the action of the isometries induced by $\mathfrak{A} \otimes \mathbb{R}$: it is the half-sphere $S^{o}=S(\mathrm{O}, 1 / \sqrt{b})$. Given $\gamma=\xi+\eta \Omega \in \mathfrak{A} \otimes \mathbb{R}$ such that $\mathrm{N}(\gamma)=|\xi|^{2}-b|\eta|^{2} \neq 0$, we have indeed

$$
\begin{equation*}
\forall \theta \in \mathbb{R} \quad\left|\gamma\left(b^{-1 / 2} e^{i \theta}\right)\right|=\left|\frac{\xi e^{i \theta} b^{-1 / 2}+\eta}{b \bar{\eta} e^{i \theta} b^{-1 / 2}+\bar{\xi}}\right|=\frac{1}{\sqrt{b}}\left|\frac{\xi e^{i \theta}+\eta \sqrt{b}}{\bar{\eta} \sqrt{b}+\bar{\xi} e^{-i \theta}}\right|=\frac{1}{\sqrt{b}} \tag{4.6}
\end{equation*}
$$

i.e. $\gamma \cdot\left(S^{o} \cap \mathbb{C}\right)=S^{o} \cap \mathbb{C}$ whence $\gamma \cdot S^{o}=S^{o}$. We shall also denote by S^{o} the projection of this half-sphere in X_{R}. Unfortunately, S^{o} is the only itgs in \mathbb{H}^{3} that is closed for Γ_{R} : indeed, the subgroup Γ_{0} of elements of Γ_{R} leaving an itgs S invariant is generically a one-parameter group (cf. \mathfrak{I} is a \mathbb{Z}-modulus of rank 4) so that $\Gamma_{0} \backslash S$ cannot be compact (for further details, see Appendix A).

- Lacking of closed itgs in X_{R}, we shall use instead the weaker notion of Γ_{R}-closed itgs and look for modular correspondances separating points, closed geodesics or Γ_{R}-closed itgs.

Definition An itgs S of \mathbb{H}^{3} is called Γ_{R} - closed if there exists $\gamma=\xi+\eta \Omega \in \Gamma_{R}$ hyperbolic such that $\gamma . S=S$. Its projection in X_{R} is also called a Γ_{R}-closed itgs.
There are infinitely many of them, as we shall see in Proposition 8.3 section 8.
Lemma 4.4 Let Σ_{1} and Σ_{2} be to distinct Γ_{R}-closed itgs of X_{R}. Then area $\left(\Sigma_{1} \cap \Sigma_{2}\right)=0$.
Proof: it is a straightforward corollary of the first part of the proof of Lemma 4.3, since every 1-dimensional set has zero area. Just be aware that the notion of area is here inherent to the manifold Σ_{1} (for example), which is provided with the Riemannian metrics induced by \mathbb{H}^{3}. That will be - and has been - always the case : we only mention the area of subsets of two-dimensional manifolds of X_{R}.

Definition We say that $\Lambda \subset X_{R}$ has type $\left(S^{o}\right)$ if Λ is contained in a finite union of Γ_{R} - closed itgs and $\operatorname{area}(\Lambda)=\operatorname{area}\left(\Lambda \cap S^{o}\right) \neq 0$.

5 Statement of the result in dimension 3

Theorem 5.1 Let $X_{R}=\Gamma_{R} \backslash \mathbb{H}^{3}$ be a 3-dimensional manifold, Γ_{R} being a discrete subgroup of $I s^{+}\left(\mathbb{H}^{3}\right)$ derived from an indefinite quaternion algebra $\mathfrak{A}=\left(\frac{a, b}{\mathbb{Q}}\right)$. We shall assume moreover that X_{R} is a manifold of class $\left(K_{2}^{S}\right)$.
If the singular σ of a quantum limit on X_{R} is contained in a finite union of isolated points, closed geodesics and Γ_{R}-closed itgs of X_{R} (we assume in this last case that area $(\sigma) \neq 0)$ and has not type $\left(S^{o}\right)$, then it is the empty set.

First we prove a separation result on such a subset Λ :
Proposition 5.1 Let X_{R} be a manifold of class $\left(K_{2}^{S}\right)$. For all non-empty subset $\Lambda \subset X_{R}$ contained in a finite union of isolated points, closed geodesics and Γ_{R}-closed itgs (with area $(\Lambda) \neq 0$ in this last case) that has not type (S^{o}), there exists a correspondence T separating Λ.

We shall distinguish three cases and treat them separately in sections 国 to 8 :

1) Λ is finite
2) $\Lambda \subset F_{1} \cup \cdots \cup F_{r}$ a finite union of closed geodesics
3) $\Lambda \subset S_{1} \cup \cdots \cup S_{l}$ a finite union of Γ_{R} - closed itgs.
and complete the proof in section 5 .
Before that, let us state a Proposition that will spare us lots of efforts in the following sections, by simplifying the calculations. By a set of objects of the same type of X_{R} we mean a set of points, a set of closed geodesics or a set of Γ_{R}-closed itgs of $X_{R}=\Gamma_{R} \backslash \mathbb{H}^{3}$.

Proposition 5.2 Let F_{1}, \ldots, F_{r} be objects of the same type of X_{R} and consider fixed liftings G_{1}, \ldots, G_{r} of these objects to \mathbb{H}^{3}. There exists a finite subset of prime numbers $\mathscr{F} \subset \mathscr{P}$ such that, given $p \in \mathscr{P} \backslash \mathscr{F}$, the relation

$$
\begin{equation*}
\exists \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \exists i \in\{1 \ldots r\}, \quad \alpha \cdot G_{1}=G_{i} \tag{5.1}
\end{equation*}
$$

leads to

$$
\begin{equation*}
\exists N \in \mathscr{F} \quad \exists \tilde{\alpha} \in R^{p r}(N p) \cup R^{p r}\left(N^{2} p^{2}\right), \quad \tilde{\alpha} \cdot G_{1}=G_{1} \tag{5.2}
\end{equation*}
$$

Proof: let us fix $n=1$ or 2 and assume that $\exists i \in\{1, \ldots, r\}, \exists p_{i} \in \mathscr{P}, \exists \alpha_{i} \in R^{p r}\left(p_{i}{ }^{n}\right)$, $\alpha_{i} \cdot G_{1}=G_{i}$. As a consequence $G_{1}=\operatorname{Com}\left(\alpha_{i}\right) . G_{i}$. Take $p \neq p_{i} \in \mathscr{P}$ and $\alpha \in R^{p r}\left(p^{n}\right)$: $\alpha \cdot G_{1}=G_{i} \Longrightarrow \tilde{\alpha} \cdot G_{1}=G_{1}$ where $\tilde{\alpha}=\operatorname{Com}\left(\alpha_{i}\right) \alpha \in R\left(p_{i}{ }^{n} p^{n}\right)=R\left(N^{n} p^{n}\right)$. This element is primitive : otherwise $n=2$ et $\tilde{\alpha} \in p R$ or $\tilde{\alpha} \in p_{i} R$ as p and p_{i} are both primes, whence
. if $\tilde{\alpha} \in p R$ then $\alpha_{i} \tilde{\alpha}=\alpha_{i} \operatorname{Com}\left(\alpha_{i}\right) \alpha=p_{i}^{2} \alpha \in p R$ and $\alpha \in p R$ as $\operatorname{pgcd}\left(p_{i}, p\right)=1$, a contradiction with $\alpha \in R^{p r}\left(p^{2}\right)$.
. if $\tilde{\alpha} \in p_{i} R$ then $\tilde{\alpha} \operatorname{Com}(\alpha)=\operatorname{Com}\left(\alpha_{i}\right) \alpha \operatorname{Com}(\alpha)=p^{2} \operatorname{Com}\left(\alpha_{i}\right) \in p_{i} R$ and $\alpha_{i} \in p_{i} R$, a similar contradiction.

Proceeding the same way with all the indices $i \in\{1 \ldots r\}$ we get to relation (5.2) after exclusion of at most r values of $p \in \mathscr{P}$, the forementionned set \mathscr{F} (here $N \in \mathscr{F}$ is one of the p_{i}).

6 Case of the points

- Let $\Lambda=\left\{\tilde{x}_{1}, \ldots, \tilde{x}_{l}\right\}$ be a set of points of X_{R}. We shall denote by $x_{i}=\left(z_{i}, t_{i}\right) \in \mathbb{H}^{3}$ liftings of the \tilde{x}_{i} for $i=1 \ldots l$ and apply Proposition 5.2 to those points: for $n=1$ or 2 , $N \in \mathscr{F}$ and $p \in \mathscr{P} \backslash \mathscr{F}$ a prime satisfying the assumptions of Proposition 3.5 i.e.

$$
\begin{equation*}
\operatorname{ord}_{p}\left(2 a b D D^{\prime}\right)=0 \text { and }\left(\frac{a}{p}\right)=-1 \tag{6.1}
\end{equation*}
$$

we consider $\alpha=\xi+\eta \Omega \in R^{p r}\left(N^{n} p^{n}\right)$ such that $\alpha . x_{1}=x_{1}$. In that case, $\operatorname{ord}_{p}|\xi|^{2}=\operatorname{ord}_{p}|\eta|^{2}=$ 0 ; in particular $\xi \neq 0$ and $\eta \neq 0$. By relation (2.3), the action of α as an isometry of \mathbb{H}^{3} is

$$
\alpha .\binom{z}{t}=\binom{\frac{\xi}{b \bar{\eta}}-\frac{N^{n} p^{n}}{b \bar{\eta}} \frac{\xi+b \eta \bar{z}}{|\xi+b \eta \bar{z}|^{2}+b^{2}|\eta|^{2} t^{2}}}{\frac{N^{n} p^{n} t}{|\xi+b \eta \bar{z}|^{2}+b^{2}|\eta|^{2} t^{2}}}
$$

that is well defined for any $t>0$ because $\eta \neq 0$. The relation $\alpha . x_{1}=x_{1}$ implies

$$
\begin{align*}
N^{n} p^{n} & =\left|\xi+b \eta \overline{z_{1}}\right|^{2}+b^{2}|\eta|^{2} t_{1}^{2}=|\xi|^{2}-b|\eta|^{2} \tag{6.2}\\
\bar{\eta} z_{1} & +\eta \overline{z_{1}}=0 \tag{6.3}
\end{align*}
$$

Note that $z_{1} \neq 0$, otherwise relation (6.2) gives $|\xi|^{2}+b^{2}|\eta|^{2} t_{1}^{2}=|\xi|^{2}-b|\eta|^{2}$ so that $|\eta|=0$, a contradiction. Therefore

$$
-\frac{\overline{z_{1}}}{z_{1}}=\frac{\bar{\eta}}{\eta}=\text { constant } \in \mathbb{F}
$$

Fix $\eta_{0} \in \mathscr{O}_{\mathbb{F}}$ such that $\overline{\eta_{0}} / \eta_{0}=-\overline{z_{1}} / z_{i}$. Then we have

$$
\frac{\bar{\eta}}{\eta}=\frac{\overline{\eta_{0}}}{\eta_{0}} \quad \text { hence } \quad \frac{\eta}{\eta_{0}}=\frac{\bar{\eta}}{\overline{\eta_{0}}} \in \mathbb{R} \cap \mathbb{F}=\mathbb{Q} \quad(\text { because } a<0)
$$

so that $\exists m \in \mathbb{Q}, \eta=m \eta_{0}$. As $D^{\prime} \eta \in \mathscr{O}_{\mathbb{F}}$ by Proposition 3.4, we get by taking the norm $m^{2} D^{\prime 2}\left|\eta_{0}\right|^{2} \in \mathbb{Z}$, with $D^{\prime 2}\left|\eta_{0}\right|^{2}$ fixed in \mathbb{Z}. Thus there exists $E \in \mathbb{N}$ fixed such that $E m \in \mathbb{Z}^{*}$. By expanding relation (6.2) we have

$$
N^{n} p^{n}=|\xi|^{2}+2 b m \operatorname{Re}\left(\xi_{0} \overline{\eta_{0}} z_{1}\right)+b^{2} m^{2}\left|\eta_{0}\right|^{2}\left(t_{1}^{2}+\left|z_{1}\right|^{2}\right)=|\xi|^{2}-b m^{2}\left|\eta_{0}\right|^{2}
$$

and we get after simplification by $b m \neq 0$ we get

$$
\begin{equation*}
2 \operatorname{Re}\left(\xi \overline{\eta_{0}} z_{1}\right)+m\left|\eta_{0}\right|^{2}\left[1+b\left(t_{1}^{2}+\left|z_{1}\right|^{2}\right)\right]=0 \tag{6.4}
\end{equation*}
$$

As $D^{\prime} \xi \in \mathscr{O}_{\mathbb{F}}$ by Proposition 3.4, we have $2 D^{\prime} \xi=X+Y \sqrt{a}$ with $X, Y \in \mathbb{Z}$. The coefficient of m in relation (6.4) being strictly positive because $b>0$, then m is obviously a linear function of X and Y. Hence the middle term of (6.2) is a definite positive quadratic form of the two integer variables X and Y, which we will write

$$
\begin{equation*}
N^{n} p^{n}=c_{1} X^{2}+c_{2} X Y+c_{3} Y^{2} \tag{6.5}
\end{equation*}
$$

A priori $c_{1}, c_{2}, c_{3} \in \mathbb{R}$; moreover $c_{2}^{2}-4 c_{1} c_{3}<0$ since the quadratic form is definite positive.

- Let us suppose that for all $N \in \mathscr{F}$, there are at most two primes $p \in \mathscr{P} \backslash \mathscr{F}$ satisfying both relations (6.1) and (6.5) ; let $\Delta \in \mathbb{N}$ be the product of all those primes p. As a consequence,
for all $p \in \mathscr{P} \backslash \mathscr{F}$ satisfying relation (6.1) such that $\operatorname{ord}_{p}(\Delta)=0$, for all $N \in \mathscr{F}$ and for all $\alpha \in R^{p r}\left(N^{2} p^{2}\right) \cup R(N p)$, we have $\alpha \cdot x_{1} \neq x_{1}$. We deduce by Proposition 5.2 that

$$
\left\lvert\, \begin{align*}
& \forall p \in \mathscr{P} \backslash \mathscr{F} \text { such that } \operatorname{ord}_{p}\left(2 a b D D^{\prime} \Delta\right)=0 \text { and }\left(\frac{a}{p}\right)=-1 \tag{6.6}\\
& \forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \forall i \in\{1 \ldots l\} \quad \alpha . x_{1} \neq x_{i}
\end{align*}\right.
$$

It is clear that there are infinitely many convenient primes p (they even form a regular subset of \mathscr{P} of density $1 / 2$).

- Now assume that for some $N \in \mathscr{F}$, equation (6.5) is solvable for at least three distinct primes p_{1}, p_{2}, p_{3} satisfying relation (6.1) : we have three points $\left(X_{i}: Y_{i}\right)_{i=1,2,3} \in \mathbb{P}^{1}(\mathbb{Q})$ such that

$$
\begin{equation*}
\forall i=1 \ldots 3 \quad N^{n} p_{i}^{n}=c_{1} X_{i}^{2}+c_{2} X_{i} Y_{i}+c_{3} Y_{i}^{2} \tag{6.7}
\end{equation*}
$$

Using these three relations, we shall show that $c_{1}, c_{2}, c_{3} \in \mathbb{Q}$. If $\left(X_{i}: Y_{i}\right)=\left(X_{j}: Y_{j}\right)$ for $i \neq j$, then $n=2$ and $p_{j}\left(X_{i}: Y_{i}\right)=p_{i}\left(X_{j}: Y_{j}\right) ; \operatorname{since} \operatorname{pgcd}\left(p_{i}, p_{j}\right)=1, \alpha_{i} \in p_{i} R$, a contradiction with relation (6.1) and Proposition 3.5. Thus $\left(X_{1}: Y_{1}\right),\left(X_{2}: Y_{2}\right)$ and $\left(X_{3}: Y_{3}\right)$ are three distinct points of $\mathbb{P}^{1}(\mathbb{Q})$. By relation (6.7), we can write

$$
\left(\begin{array}{ccc}
X_{1}{ }^{2} & X_{1} Y_{1} & Y_{1}{ }^{2} \\
X_{2}{ }^{2} & X_{2} Y_{2} & Y_{2}{ }^{2} \\
X_{3}{ }^{2} & X_{3} Y_{3} & Y_{3}{ }^{2}
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=N^{n}\left(\begin{array}{c}
p_{1}{ }^{n} \\
p_{2}{ }^{n} \\
p_{3}{ }^{n}
\end{array}\right) \in \mathbb{Z}^{3}
$$

The above Vandermonde matrix has a non-zero determinant $\prod_{i<j}\left(Y_{j} X_{i}-Y_{i} X_{j}\right) \in \mathbb{Q}^{*}$ so that $c_{1}, c_{2}, c_{3} \in \mathbb{Q}$ after inversion of the linear system. Thus relation (6.5) becomes

$$
\begin{equation*}
\kappa p^{n}=\alpha X^{2}+\beta X Y+\gamma Y^{2} \quad \text { with } \quad p \in \mathscr{P} \backslash \mathscr{F} \quad X, Y \in \mathbb{Z} \tag{6.8}
\end{equation*}
$$

with $\kappa, \alpha, \beta, \gamma \in \mathbb{Z}$. Then $\delta=\beta^{2}-4 \alpha \gamma<0$ as the quadratic form in the previous relation is positive definite ; moreover, by reduction modulo p of relation (6.8), we get

$$
\begin{equation*}
\delta \text { is a square modulo } p \tag{6.9}
\end{equation*}
$$

Therefore, if $p \in \mathscr{P} \backslash \mathscr{F}$ satisfies

$$
\begin{equation*}
\operatorname{ord}_{p}\left(2 a b D D^{\prime}\right)=0 \quad\left(\frac{a}{p}\right)=-1 \quad \text { and } \quad\left(\frac{\delta}{p}\right)=-1 \tag{6.10}
\end{equation*}
$$

we have according to relations (6.1) and (6.9)

$$
\begin{equation*}
\forall N \in \mathscr{F} \quad \forall \alpha \in R(N p) \cup R^{p r}\left(N^{2} p^{2}\right) \quad \alpha \cdot x_{1} \neq x_{1} \tag{6.11}
\end{equation*}
$$

whence, by Proposition (5.2)

$$
\begin{equation*}
\forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \forall i \in\{1, \ldots, l\} \quad \alpha \cdot x_{1} \neq x_{i} \tag{6.12}
\end{equation*}
$$

By Proposition 3.2, a and δ being strictly negative integers, there exists infinitely many primes $p \notin \mathscr{F}$ satisfying relations (6.10) and - as a consequence - (6.12). Together with relation (6.6) this leads to

Proposition 6.1 Let x_{1}, \ldots, x_{l} be points of \mathbb{H}^{3}. There exists infinitely many primes p such that

$$
\forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \forall i \in\{1, \ldots, l\} \quad \alpha . x_{1} \neq x_{i}
$$

7 The geodesics

This time, the proof presented in [9] still applies ; we shall associate to any geodesic of \mathbb{H}^{3} a proportionality class of complex (instead of real) binary quadratic forms. Therefore, using the Proposition (3.1) we obtain

Proposition 7.1 Let L_{1}, \ldots, L_{r} be geodesics of \mathbb{H}^{3}. There exists infinitely many primes p such that

$$
\begin{equation*}
\forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \forall j \in\{1 \ldots r\} \quad \alpha \cdot L_{1} \neq L_{j} \tag{7.1}
\end{equation*}
$$

8 Case of the Γ_{R} - closed Itgs

Keep in mind that the itgs of \mathbb{H}^{3} are half-spheres centered on (and orthogonal to) \mathbb{C} and half-planes orthogonal to \mathbb{C}. Only such half-spheres and half-planes will be considered in the sequel of this section, without need for us to mention it.

Definition Given an itgs \mathscr{S} of \mathbb{H}^{3}, we define its trace \mathscr{C} on \mathbb{C} to be the set of its limit points in \mathbb{C}, that is $\mathscr{C}=\overline{\mathscr{S}} \cap \mathbb{C}$ in \mathbb{R}^{3}.

The trace of an itgs of \mathbb{H}^{3} is then either a circle, either a straight line of \mathbb{C}-id est a circle of $\mathbb{P}^{1}(\mathbb{C})$; moreover each itgs its uniquely defined by its trace on \mathbb{C} whence

Proposition \quad There is a bijection between the itgs of \mathbb{H}^{3} and the circles of $\mathbb{P}^{1}(\mathbb{C})$.
As a consequence, the action of an isometry on an itgs in \mathbb{H}^{3} will be entirely determinated by the former's action on the latter's trace in \mathbb{C}, much more easy to deal with. In particular

Proposition 8.1 Let \mathscr{S}_{1} and \mathscr{S}_{2} be two itgs of \mathbb{H}^{3} whose traces on \mathbb{C} are \mathscr{C}_{1} and \mathscr{C}_{2} respectively. Then

$$
\forall \gamma \in \operatorname{SL}(2, \mathbb{C}) \quad \gamma \cdot \mathscr{S}_{1}=\mathscr{S}_{2} \Longleftrightarrow \gamma\left(\mathscr{C}_{1}\right)=\mathscr{C}_{2}
$$

Now to obtain a separation result on a finite set of itgs Γ_{R} - closed of \mathbb{H}^{3} - like relations (6.12) or (7.1) - we just have, by application of Proposition 5.2, to deal with the invariance of such an itgs under elements of the form $\alpha \in R^{p r}(N p) \cup R^{p r}\left(N^{2} p^{2}\right)$, where $p \in \mathscr{P} \backslash \mathscr{F}, N \in \mathscr{F}$ and \mathscr{F} is the finite subset of \mathscr{P} provided by Proposition 5.2.

We shall do this in the two next sections, and prove by the way the existence of infinitely many Γ_{R}-closed itgs for a manifold X_{R} of class $\left(K_{2}^{S}\right)$.

8.1 Of the half-planes

Proposition 8.2 Let the half-plane \mathscr{P} be an itgs of \mathbb{H}^{3} and \mathscr{D} be its trace. Consider an

$$
\begin{aligned}
& \text { element } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{SL}(2, \mathbb{C}) \text { with } a+d \neq 0 \text { and } c \neq 0: \\
& \gamma \cdot \mathscr{P}=\mathscr{P} \Longleftrightarrow\left\{\begin{array}{l}
\frac{a}{c} \in \mathscr{D}, \frac{-d}{c} \in \mathscr{D}: \mathscr{D} \text { is given by relation (8.1) } \\
(a+d)^{2} \in \mathbb{R}
\end{array}\right.
\end{aligned}
$$

Proof : we have, from the considerations of the previous section,

$$
\gamma \cdot \mathscr{P}=\mathscr{P} \Longleftrightarrow \gamma(\mathscr{D})=\mathscr{D}
$$

. If $\gamma(\mathscr{D})=\mathscr{D}$ then $\gamma(\infty)=a / c \in \mathscr{D}$ and $\gamma^{-1}(\infty)=-d / c \neq a / c \in \mathscr{D}$; so

$$
\begin{aligned}
z \in \mathscr{D} & \Longleftrightarrow \exists \lambda \in \mathbb{R}, z=\lambda\left(\frac{a}{c}\right)+(1-\lambda)\left(\frac{-d}{c}\right)=\frac{\lambda a+(\lambda-1) d}{c}=\frac{\lambda(a+d)-d}{c} \\
& \Longleftrightarrow \frac{c z+d}{a+d} \in \mathbb{R} \Longleftrightarrow \frac{c z-a}{a+d} \in \mathbb{R}
\end{aligned}
$$

whence

$$
\begin{equation*}
\mathscr{D}=\left\{z \in \mathbb{C} \quad / \quad \operatorname{Im}\left(\frac{c z}{a+d}\right)=\operatorname{Im}\left(\frac{a}{a+d}\right)=\operatorname{Im}\left(\frac{-d}{a+d}\right)\right\} \tag{8.1}
\end{equation*}
$$

Moreover $a / c \in \mathscr{D}=\gamma(\mathscr{D})$ so that

$$
\begin{aligned}
\gamma\left(\frac{a}{c}\right) \in \mathscr{D} & \Longleftrightarrow \frac{a^{2}+b c}{c(a+d)} \in \mathscr{D} \\
& \Longleftrightarrow \operatorname{Im}\left(\frac{a^{2}+b c}{(a+d)^{2}}\right)=\operatorname{Im}\left(\frac{a}{a+d}\right)=\operatorname{Im}\left(\frac{a^{2}+a d}{(a+d)^{2}}\right) \\
& \Longleftrightarrow \operatorname{Im}\left(\frac{a d-b c}{(a+d)^{2}}\right)=\operatorname{Im}\left(\frac{1}{(a+d)^{2}}\right) \\
& \Longleftrightarrow(a+d)^{2} \in \mathbb{R}
\end{aligned}
$$

. Reciprocally, assume that $a / c=\gamma(\infty) \in \mathscr{D},-d / c=\gamma^{-1}(\infty) \in \mathscr{D}$ and $(a+d)^{2} \in \mathbb{R}$: by relation (8.1), we still have $\gamma(a / c) \in \mathscr{D}$; besides

$$
\gamma\left(\frac{a}{c}\right)=\frac{a^{2}+b c}{c(a+d)} \neq \frac{a}{c} \quad \text { since } \quad a d-b c=1 \neq 0
$$

Therefore the isometry γ takes the three distinct points $\infty, a / c,-d / c$ of \mathscr{D} into a / c, $\gamma(a / c)$ and ∞, which also are distinct points of \mathscr{D} : any circle of $\mathbb{P}^{1}(\mathbb{C})$ being uniquely defined by three points, we have de facto $\gamma(\mathscr{D})=\mathscr{D}$, which ends the proof.

Keep in mind for any hyperbolic element $\gamma=\xi+\eta \Omega \in \Gamma_{R}$, we have $\operatorname{Tr}(\gamma)=\operatorname{Tr}(\xi) \neq 0$ and $\eta \neq 0$ (cf. proof of Proposition 4.3) : those elements, which are the only interesting ones for us, will satisfy the hypothesis of the above Proposition.

- We are now able to show easily the existence of infinitely many Γ_{R}-closed itgs in \mathbb{H}^{3}. Take any hyperbolic element $\gamma=\xi+\eta \Omega \in \Gamma_{R}: z_{1}=\gamma^{-1}(\infty)$ and $z_{2}=\gamma(\infty)$ are two distinct points of \mathbb{C}, since $\operatorname{Tr}(\gamma) \neq 0$. Let us define the itgs \mathscr{P}_{γ} by $\mathscr{P}_{\gamma}=\mathscr{D}_{\gamma} \oplus \mathbb{R}_{+}^{*} \mathbf{j}$ where

$$
\begin{equation*}
\mathscr{D}_{\gamma}=\left(z_{1}, z_{2}\right)=\{z \in \mathbb{C} / \operatorname{Im}(b \bar{\eta} z)=\operatorname{Im}(\xi)\} \tag{8.2}
\end{equation*}
$$

Since $\operatorname{Tr}(\gamma) \in \mathbb{Z} \subset \mathbb{R}$, we have $\gamma\left(\mathscr{D}_{\gamma}\right)=\mathscr{D}_{\gamma}$ and $\gamma \cdot \mathscr{P}_{\gamma}=\mathscr{P}_{\gamma}$ by Proposition 8.2 : our half-plane \mathscr{P}_{γ} is a Γ_{R}-closed itgs of \mathbb{H}^{3}. Furthermore:

Proposition 8.3 There exist infinitely many Γ_{R}-closed itgs in \mathbb{H}^{3}, e.g. the half-planes

$$
\mathscr{P}(t)=\mathscr{D}(t) \oplus \mathbb{R}_{+\mathbf{j}}^{*} \mathbf{j}=\mathbb{R}(1+t \sqrt{a}) \oplus \mathbb{R}_{+}^{*} \mathbf{j} \text { for } t \in \mathbb{Z}
$$

Proof: let us fix $t \in \mathbb{Z}$ and look for an arbitrary element $\gamma_{t}=\xi+\eta \Omega \in \Gamma_{R}$ of the form $\gamma_{t}=x+y(1+t \sqrt{a}) \Omega$, with $x, y \in \mathbb{Z}^{*}$: then γ_{t} is hyperbolic as $y \neq 0$, and relation (8.2) provides $\mathscr{D}_{\gamma_{t}}=\mathbb{R}(1+t \sqrt{a})=\mathscr{D}(t)$. For such a γ_{t}

$$
\begin{equation*}
\mathrm{N}\left(\gamma_{t}\right)=1 \Longleftrightarrow x^{2}-b\left(1-a t^{2}\right) y^{2}=1 \tag{8.3}
\end{equation*}
$$

and by Fermat's Theorem on the Equation of Pell, as soon as $d=b\left(1-a t^{2}\right)$ is not a square in \mathbb{Z}, we can solve this equation for non-trivial x, y. But

$$
b\left(1-a t^{2}\right) \text { is a square in } \mathbb{Z} \Longrightarrow 1-a t^{2} \equiv 0[b] \Longrightarrow\left(\frac{a}{b}\right)=1
$$

a contradiction with the definition of the $\left(K_{2}^{S}\right)$-manifolds. So for each $t \in \mathbb{Z}$, the natural integer $d=b\left(1-a t^{2}\right)$ is not a square and we can find $\gamma_{t}=\xi_{t}+\eta_{t} \Omega \in \Gamma_{R}$ such that $\mathscr{D}_{\gamma_{t}}=\mathscr{D}(t)=\mathbb{R}(1+t \sqrt{a})$. This fullfills the proof.

Let us take for example $a=-2$ and $b=13$ (cf. section (T) :
. for $t=0, d=13, \gamma_{0}=649+180 \Omega \in \Gamma_{R}$ and $\mathscr{P}(0)=\mathbb{R} \oplus \mathbb{R}_{+}^{*} \mathbf{j}$.
. for $t=1, d=39, \gamma_{1}=25+4(1+i \sqrt{2}) \Omega \in \Gamma_{R}$ and $\mathscr{P}(1)=\mathbb{R}(1+i \sqrt{2}) \oplus \mathbb{R}_{+}^{*} \mathbf{j}$.
. for $t=2, d=117, \gamma_{2}=649+60(1+2 i \sqrt{2}) \Omega \in \Gamma_{R}$ and $\mathscr{P}(2)=\mathbb{R}(1+2 i \sqrt{2}) \oplus \mathbb{R}_{+}^{*} \mathbf{j}$.
We shall see other examples of Γ_{R}-closed itgs in Appendix B , half-planes that do not contain $\mathbb{R}_{+}^{*} \mathbf{j}$ and miscellaneous half-spheres. Moreover we shall prove that

Proposition 8.4 There exist infinitely many Γ_{R}-closed itgs in X_{R}.

- Let us finally state the main result of this section :

Proposition 8.5 Let \mathscr{P}_{1} be a Γ_{R}-closed half-plane of \mathbb{H}^{3} and \mathscr{F} a finite subset of \mathscr{P}. There exists infinitely many primes $p \in \mathscr{P} \backslash \mathscr{F}$ such that

$$
\begin{equation*}
\forall N \in \mathscr{F} \quad \forall \alpha \in R^{p r}(N p) \cup R^{p r}\left(N^{2} p^{2}\right) \quad \alpha . \mathscr{P}_{1} \neq \mathscr{P}_{1} \tag{8.4}
\end{equation*}
$$

Proof: we denote by \mathscr{D}_{1} the trace of \mathscr{P}_{1} on \mathbb{C}. As \mathscr{P}_{1} is Γ_{R}-closed, there exists a hyperbolic element $\gamma_{1}=\xi_{1}+\eta_{1} \Omega \in \Gamma_{R}$ such that $\gamma_{1} \cdot \mathscr{P}_{1}=\mathscr{P}_{1}$ whence $\gamma \cdot \mathscr{D}_{1}=\mathscr{D}_{1}$. Moreover $\eta_{1} \neq 0, \operatorname{Tr}\left(\gamma_{1}\right) \neq 0$ and we can apply Proposition 8.2 : by relation (8.1), we have

$$
\begin{equation*}
\mathscr{D}_{1}=\left\{z \in \mathbb{C} / \operatorname{Im}\left(b \overline{\eta_{1}} z\right)=\operatorname{Im}\left(\xi_{1}\right)\right\} \tag{8.5}
\end{equation*}
$$

Let us consider a prime $p \in \mathscr{P} \backslash \mathscr{F}$ satisfying the assumptions of Proposition 3.5

$$
\begin{equation*}
\operatorname{ord}_{p}\left(2 a b D D^{\prime}\right)=0 \quad \text { and } \quad\left(\frac{a}{p}\right)=-1 \tag{8.6}
\end{equation*}
$$

and assume that for $n=1$ or 2 ,

$$
\begin{equation*}
\exists N \in \mathscr{F} \quad \exists \alpha=\xi+\eta \Omega \in R^{p r}\left(N^{n} p^{n}\right) \quad \alpha\left(\mathscr{D}_{1}\right)=\mathscr{D}_{1} \tag{8.7}
\end{equation*}
$$

Then $\eta \neq 0$ and relation (8.7) implies that $\alpha^{-1}(\infty)=-\bar{\xi} / b \bar{\eta} \in \mathscr{D}_{1}$ which means that

$$
-\operatorname{Im}\left(\frac{\overline{\eta_{1} \xi}}{\bar{\eta}}\right)=\operatorname{Im}\left(\frac{\eta_{1} \xi}{\eta}\right)=\operatorname{Im}\left(\xi_{1}\right) \quad \text { and } \quad \exists \lambda \in \mathbb{R}, \quad \frac{\xi}{\eta}=\frac{\lambda+i \operatorname{Im}\left(\xi_{1}\right)}{\eta_{1}}
$$

In fact $\lambda \in \mathbb{Q}$ because all the complex numbers considered belong to the number field \mathbb{F}. From the norm equation $\mathrm{N}(\alpha)=N^{n} p^{n}$ we deduce that

$$
N^{n} p^{n}=|\xi|^{2}-b|\eta|^{2}=|\eta|^{2}\left(\frac{|\xi|^{2}}{|\eta|^{2}}-b\right)=\frac{|\eta|^{2}}{\left|\eta_{1}\right|^{2}}\left[\lambda^{2}+\operatorname{Im}\left(\xi_{1}\right)^{2}-b\left|\eta_{1}\right|^{2}\right]
$$

From $\left|\xi_{1}\right|^{2}-b\left|\eta_{1}\right|^{2}=\mathrm{N}\left(\gamma_{1}\right)=1$ we get $\operatorname{Im}\left(\xi_{1}\right)^{2}-b\left|\eta_{1}\right|^{2}=1-\operatorname{Re}(\xi)^{2}$ so that

$$
\begin{equation*}
N^{n} p^{n}=\frac{|\eta|^{2}}{4\left|\eta_{1}\right|^{2}}\left[4 \lambda^{2}+4-\operatorname{Tr}\left(\gamma_{1}\right)^{2}\right] \tag{8.8}
\end{equation*}
$$

By Proposition 3.5, $\operatorname{ord}_{p}|\eta|^{2}=0$; we shall moreover impose the condition $\operatorname{ord}_{p}\left|\eta_{1}\right|^{2}=0$. As $\operatorname{Tr}\left(\gamma_{1}\right) \in \mathbb{Z}$, relation (8.8) provides $\operatorname{ord}_{p}\left(4 \lambda^{2}\right) \geq 0$ whence $4 \lambda^{2}+4-\operatorname{Tr}\left(\gamma_{1}\right)^{2} \equiv 0[p]$ so that $\operatorname{Tr}\left(\gamma_{1}\right)^{2}-4$ is a square modulo p.

Assume now that the integer $\operatorname{Tr}\left(\gamma_{1}\right)^{2}-4$ is a square. Then $\operatorname{Tr}\left(\gamma_{1}\right)=m \in \mathbb{Z}$ and $\exists n \in \mathbb{Z}$ such that $m^{2}-4=n^{2}$, whence $m^{2}-n^{2}=(|m|+|n|) \times(|m|-|n|)=4=2 \times 2=4 \times 1$. Because $|m|+|n| \geq|m|-|n|>0$ we have the following alternative:
. either $|m|+|n|=|m|-|n|=2$ so that $n=0$ and $m=\operatorname{Tr}\left(\gamma_{1}\right)= \pm 2$, a contradiction with γ_{1} hyperbolic.
. or $|m|+|n|=4$ and $|m|-|n|=1$ so that $|m|=5 / 2 \in \mathbb{N}$, a contradiction.
Hence $c=\operatorname{Tr}\left(\gamma_{1}\right)^{2}-4$ is not a square. Moreover γ_{1} being hyperbolic, $c>0$.
Finally, we see that $\forall(x, y) \in \mathbb{Z}^{2}, a^{x} c^{y}$ square in $\mathbb{Z} \Longrightarrow a^{x}>0 \Longrightarrow x \equiv 0[2]$ as $a<0$, whence c^{y} square in $\mathbb{Z} \Longrightarrow y \equiv 0[2]$ because c is not a square in \mathbb{Z}. Thus a and c are 2 -independent and there exists by Theorem 3.1 infinitely many primes $p \in \mathscr{P}$ such that

$$
\left(\frac{a}{p}\right)=\left(\frac{\operatorname{Tr}\left(\gamma_{1}\right)^{2}-4}{p}\right)=-1
$$

If we restrict to the primes $p \in \mathscr{P} \backslash \mathscr{F}$ such that $\operatorname{ord}_{p}\left(2 a b D D^{\prime}\right)=0=\operatorname{ord}_{p}\left|\eta_{1}\right|^{2}$, we obtain by relation (8.8) infinitely many primes for which relation (8.7) can't be satisfied. Hence they satisfy relation (8.4), which ends the proof of the Proposition.

8.2 Of the half-spheres

- We shall begin with a characterization of the half-spheres of \mathbb{H}^{3} that are Γ_{R}-closed itgs. Let $\mathscr{S}=S\left(a_{1}, r\right)$ be such an itgs and $\mathscr{C}=C\left(a_{1}, r\right)$ be its trace on \mathbb{C} : there exists a hyperbolic element $\gamma \in \Gamma_{R}$ such that $\gamma . \mathscr{S}=\mathscr{S}$ whence $\gamma(\mathscr{C})=\mathscr{C}$. Using this relation, we obtain a system of three algebraic equations that lead to

Proposition 8.6 Let $S\left(a_{1}, r\right) \neq S^{o}$ be $a \Gamma_{R}$-closed itgs : $a_{1} \neq 0$. If $q=1+b\left(\left|a_{1}\right|^{2}-r^{2}\right) \neq 0$, then $\zeta=\frac{a_{1}}{q} \in \mathbb{F}^{*}$ and $\exists(X, Y) \in \mathbb{Z} \times \mathbb{Q}, a\left(1-4 b|\zeta|^{2}\right)=\left(X^{2}-4\right) Y^{2}>0$.

Applying Proposition 8.6 to \mathscr{S}_{1}, we obtain relations on a_{1} and r (the same notations q and ζ are used). Let \mathscr{F} be a finite subset of \mathscr{P} and $n=1$ or 2 . Then, for $N \in \mathscr{F}$ and $p \in \mathscr{P} \backslash \mathscr{F}$, consider $\alpha=\xi+\eta \Omega \in R^{p r}\left(N^{n} p^{n}\right)$ such that $\alpha . \mathscr{S}_{1}=\mathscr{S}_{1}$. The case $\eta=0$ is straightforward. If $\eta \neq 0$, we proceed as in the proof of Proposition 8.6 and obtain a similar system of three algebraic equations. From this system we deduce that except for finitely many
primes p : if $q \neq 0$ then $a\left(1-4 b|\zeta|^{2}\right)$ is a square modulo p; if $q=0$ then $b\left|\eta_{1}\right|^{2}$ is a square modulo p, where η_{1} is a fixed non nul integer of \mathbb{F} that depends only on a_{1}. Therefore, after proving that the above quantites are not squares in \mathbb{Q}, we deduce from Theorem 3.1 that

Proposition 8.7 Let $\mathscr{S}=S\left(a_{1}, r\right) \neq S^{o}$ be a Γ_{R}-closed itgs of \mathbb{H}^{3} and \mathscr{F} be a finite subset of \mathscr{P}. There exists infinitely many primes $p \in \mathscr{P} \backslash \mathscr{F}$ such that

$$
\begin{equation*}
\forall N \in \mathscr{F} \quad \forall \alpha \in R^{p r}(N p) \cup R^{p r}\left(N^{2} p^{2}\right) \quad \alpha . \mathscr{S} \neq \mathscr{S} \tag{8.9}
\end{equation*}
$$

- First we need a technical lemma for both Propositions :

Lemma 8.1 Let $\mathscr{C}_{1}=C\left(a_{1}, r_{1}\right)$ and $\mathscr{C}_{2}=C\left(a_{2}, r_{2}\right)$ be two circles of $\mathbb{C}, N \in \mathbb{Z}$ and $\alpha=\xi+\eta \Omega \in R^{p r}(N)$ with $\eta \neq 0$ such that $\alpha\left(\mathscr{C}_{1}\right)=\mathscr{C}_{2}$. Then

$$
\exists \varepsilon= \pm 1 \quad\left\{\begin{aligned}
b\left(r_{1} \bar{\eta} a_{2}-\varepsilon r_{2} \eta \overline{a_{1}}\right) & =\left(r_{1}+\varepsilon r_{2}\right) \xi \\
b^{2} r_{1}^{2}|\eta|^{2}-\left|\xi+b \eta \overline{a_{1}}\right|^{2} & =N \varepsilon \frac{r_{1}}{r_{2}} \\
|\xi|^{2}-b|\eta|^{2} & =N
\end{aligned}\right.
$$

Proof : assume the hypothesis of the Lemma. We have

$$
\forall z \in \mathbb{C}, \quad \alpha(z)=\frac{\xi z+\eta}{b \bar{\eta} z+\bar{\xi}}=\frac{\xi}{b \bar{\eta}}+\frac{b|\eta|^{2}-|\xi|^{2}}{b \bar{\eta}(b \bar{\eta} z+\bar{\xi})}=\frac{\xi}{b \bar{\eta}}-\frac{N}{b \bar{\eta}(b \bar{\eta} z+\bar{\xi})}
$$

so that

$$
\begin{equation*}
\forall z \in \mathbb{C}, \quad \alpha(z)=\frac{\xi}{b \bar{\eta}}+\frac{k}{z-\zeta} \quad \text { where } \quad k=-\frac{N}{b^{2} \bar{\eta}^{2}} \quad \text { and } \quad \zeta=-\bar{\xi} / b \bar{\eta} \tag{8.10}
\end{equation*}
$$

Figure 4: Action of α on \mathscr{C}_{1}

Note that $\zeta \notin \mathscr{C}_{1}$ otherwise $\alpha(\zeta)=\infty \in \mathscr{C}_{2}$ and that cannot happen. Relation (8.10) implies that $\alpha=\alpha_{R} \circ \alpha_{I}$ where $\alpha_{I}: z \longmapsto \zeta+|k| /(\bar{z}-\bar{\zeta})$ is an inversion of center ζ and α_{R} is an orientation reversing euclidean isometry of \mathbb{C}.

First we assume that $\zeta \neq a_{1}$. We denote by $\operatorname{Inv}_{\mathscr{C}_{1}}$ the inversion of circle \mathscr{C}_{1}. Let us set $\hat{\zeta}=\operatorname{Inv}_{\mathscr{C}_{1}}(\zeta)=a_{1}+r_{1}^{2} /\left(\bar{\zeta}-\overline{a_{1}}\right):$ all the circles passing through ζ and $\hat{\zeta}$ are then orthogonal to \mathscr{C}_{1} because they are invariant under $\operatorname{Inv} \mathscr{C}_{1}$. Let \mathscr{C}_{0} be such a circle : $\alpha_{I} \cdot \mathscr{C}_{0}$ is a line orthogonal to $\alpha_{I} \cdot \mathscr{C}_{1}=\mathscr{C}^{\prime}$, hence it is a diameter. Therefore $\alpha_{I}(\hat{\zeta})=a^{\prime}$ - the intersection of all the diameters of \mathscr{C}^{\prime} - is the center of \mathscr{C}^{\prime}, so that $\alpha(\hat{\zeta})=\alpha_{R} \circ \alpha_{I}(\hat{\zeta})=a_{2}$ is the center of \mathscr{C}_{2}. Now we set

$$
\left(\zeta, a_{1}\right) \cap \mathscr{C}_{1}=\left\{A_{1}, B_{1}\right\} \quad\left(\zeta, a_{1}\right) \cap \mathscr{C}^{\prime}=\left\{A^{\prime}, B^{\prime}\right\}
$$

We take here as a convention that the points A_{1} and ζ are on the same side of a_{1} on the line $\left(\zeta, a_{1}\right)$, and that B_{1} and ζ are on opposite sides. We have $A^{\prime}=\alpha_{I}\left(B_{1}\right), B^{\prime}=\alpha_{I}\left(A_{1}\right)$ and

$$
\begin{equation*}
A_{1}-\zeta=\frac{a_{1}-\zeta}{\left|a_{1}-\zeta\right|}\left(\left|a_{1}-\zeta\right|-r_{1}\right), \quad B_{1}-\zeta=\frac{a_{1}-\zeta}{\left|a_{1}-\zeta\right|}\left(\left|a_{1}-\zeta\right|+r_{1}\right) \tag{8.11}
\end{equation*}
$$

whence

$$
\begin{equation*}
A^{\prime}=\zeta+\frac{\left|a_{1}-\zeta\right|}{\overline{a_{1}}-\bar{\zeta}} \frac{|k|}{\left|a_{1}-\zeta\right|+r_{1}} \quad \text { and } \quad B^{\prime}=\zeta+\frac{\left|a_{1}-\zeta\right|}{\overline{a_{1}}-\bar{\zeta}} \frac{|k|}{\left|a_{1}-\zeta\right|-r_{1}} \tag{8.12}
\end{equation*}
$$

Therefore $2 r_{2}=\left|A^{\prime}-B^{\prime}\right|=2|k| r_{1} /\left|a_{1}-\zeta\right|^{2}-r_{1}^{2} \mid$. We set $\varepsilon=1$ if ζ is inside of \mathscr{C}_{1} and $\varepsilon=-1$ otherwise, so that

$$
\begin{equation*}
\frac{r_{2}}{r_{1}}=\frac{\varepsilon|k|}{r_{1}^{2}-\left|a_{1}-\zeta\right|^{2}} \tag{8.13}
\end{equation*}
$$

We have $\hat{\zeta}-\zeta=a_{1}-\zeta+r_{1}^{2} /\left(\bar{\zeta}-\overline{a_{1}}\right)=\left(r_{1}^{2}-\left|a_{1}-\zeta\right|^{2}\right) /\left(\bar{\zeta}-\overline{a_{1}}\right)=\varepsilon|k| r_{1} / r_{2}\left(\bar{\zeta}-\overline{a_{1}}\right)$. Thus, according to relation (8.19),

$$
\alpha(\hat{\zeta})=\frac{\xi}{b \bar{\eta}}+\frac{\varepsilon\left(\bar{\zeta}-\overline{a_{1}}\right) k r_{2}}{r_{1}|k|}
$$

Besides we have $|k|=N / b^{2}|\eta|^{2}$ so that $k /|k|=-|\eta|^{2} / \bar{\eta}^{2}=-\eta / \bar{\eta}$ and

$$
\begin{equation*}
\alpha(\hat{\zeta})=\frac{\xi}{b \bar{\eta}}-\varepsilon \frac{\eta}{\bar{\eta}} \frac{r_{2}}{r_{1}}\left(\bar{\zeta}-\overline{a_{1}}\right)=a_{2} \tag{8.14}
\end{equation*}
$$

whence

$$
\begin{equation*}
b\left(r_{1} \bar{\eta} a_{2}-\varepsilon r_{2} \eta \overline{a_{1}}\right)=\left(r_{1}+\varepsilon r_{2}\right) \xi \tag{8.15}
\end{equation*}
$$

Injecting $\zeta=-\bar{\xi} / b \bar{\eta}$ and $|k|=N / b^{2}|\eta|^{2}$ in relation (8.13) we deduce that

$$
\begin{equation*}
b^{2} r_{1}^{2}|\eta|^{2}-\left|\xi+b \eta \overline{a_{1}}\right|^{2}=N \varepsilon \frac{r_{1}}{r_{2}} \tag{8.16}
\end{equation*}
$$

Finally the computation of the norm of α provides the relation

$$
\begin{equation*}
|\xi|^{2}-b|\eta|^{2}=N \tag{8.17}
\end{equation*}
$$

In the case $\zeta=a_{1}=-\bar{\xi} / b \bar{\eta}$, we have $\varepsilon=1, \hat{\zeta}=\infty$ and $\alpha(\hat{\zeta})=\xi / b \bar{\eta}=a_{2}$ so that the relation (8.15) is still satisfied. Moreover $\mathscr{C}^{\prime}=C\left(a_{1}, r_{2}\right)$: as $\alpha_{I} \cdot C\left(a_{1}, r_{1}\right)=C\left(a_{1}, r_{2}\right)$, then we have $|k|=r_{1} r_{2}=N / b^{2}|\eta|^{2}$ whence relation (8.16). So in each case we finally obtain the system of three equations (8.15), (8.16) and (8.17), which ends the proof of the Lemma. We shall prove a converse in Appendix B.

- Proof of Proposition 8.6 : consider a hyperbolic element $\gamma=\xi+\eta \Omega \in \Gamma_{R}$ such that $\gamma(\mathscr{C})=\mathscr{C}=C\left(a_{1}, r\right)$. If $a_{1}=0$, then $\gamma \cdot C(0, r)=C(0, r)$ i.e. $\forall \theta \in \mathbb{R},\left|\gamma\left(r e^{i \theta}\right)\right|=r$. Therefore

$$
\begin{equation*}
\forall \theta \in \mathbb{R} \quad\left|\xi r e^{i \theta}+\eta\right|=r\left|b \bar{\eta} r e^{i \theta}+\bar{\xi}\right|=\left|\xi r e^{i \theta}+b r^{2} \eta\right| \tag{8.18}
\end{equation*}
$$

By taking the maxima of both sides of this equality considered as functions of $e^{i \theta} \in S^{1}$, we get $r|\xi|+|\eta|=r|\xi|+b r^{2}|\eta|$. As $\eta \neq 0$ by hyperbolicity of γ, then $1=b r^{2}$ so that $r=1 / \sqrt{b}$ and $\mathscr{S}=S^{o}$, a contradiction with the definition of \mathscr{S}. Hence $a_{1} \neq 0$. We assume in the sequel that $q=1+b\left(\left|a_{1}\right|^{2}-r^{2}\right) \neq 0$.

By Lemma 8.1, the relation $\gamma(\mathscr{C})=\mathscr{C}$ leads to

$$
\exists \varepsilon= \pm 1 \quad\left\{\begin{aligned}
b\left(\bar{\eta} a_{1}-\varepsilon \eta \overline{a_{1}}\right) & =(1+\varepsilon) \xi \\
b^{2} r^{2}|\eta|^{2}-\left|\xi+b \eta \overline{a_{1}}\right|^{2} & =\varepsilon \\
|\xi|^{2}-b|\eta|^{2} & =1
\end{aligned}\right.
$$

If $\varepsilon=1$, then from (8.15) we get $\xi=i b \operatorname{Im}(\bar{\eta} a)$ so that $\operatorname{Re}(\xi)=0$, which contradicts the hyperbolicity of γ. Therefore $\varepsilon=-1$ and relation (8.15) implies that $\operatorname{Re}\left(\bar{\eta} a_{1}\right)=0$. From relations (8.16) and (8.17) we deduce that

$$
\left|\xi+b \eta \overline{a_{1}}\right|^{2}-b^{2} r^{2}|\eta|^{2}=1=|\xi|^{2}-b|\eta|^{2}
$$

and

$$
|\xi|^{2}+2 b \operatorname{Re}\left(\xi \bar{\eta} a_{1}\right)+b^{2}\left(\left|a_{1}\right|^{2}-r^{2}\right)|\eta|^{2}=|\xi|^{2}-b|\eta|^{2}
$$

As $2 b \operatorname{Re}\left(\xi \bar{\eta} a_{1}\right)=b\left(\xi \bar{\eta} a_{1}+\bar{\xi} \eta \overline{a_{1}}\right)=b(\xi-\bar{\xi}) \bar{\eta} a_{1}$ and $\eta \neq 0$, we deduce from the above equation that

$$
\begin{equation*}
(\xi-\bar{\xi}) a_{1}+[\underbrace{1+b\left(\left|a_{1}\right|^{2}-r^{2}\right)}_{q}] \eta=0 \tag{8.19}
\end{equation*}
$$

De facto $\xi-\bar{\xi} \neq 0: \zeta=a_{1} / q=\eta /(\bar{\xi}-\xi) \in \mathbb{F}^{*}$ and $\eta=(\bar{\xi}-\xi) \zeta=-2 i \operatorname{Im}(\xi) \zeta$. Injecting this in (8.17) we obtain

$$
1=\operatorname{Re}(\xi)^{2}+\left(1-4 b|\zeta|^{2}\right) \operatorname{Im}(\xi)^{2}
$$

Setting $2 \operatorname{Re}(\xi)=X \in \mathbb{Z}$ and $2 \operatorname{Im}(\xi) / \sqrt{-a}=Y^{-1} \in \mathbb{Q}^{*}$, we get $X^{2}-a\left(1-4 b|\zeta|^{2}\right) Y^{-2}=4$ whence

$$
\begin{equation*}
\exists(X, Y) \in \mathbb{Z} \times \mathbb{Q} \quad a\left(1-4 b|\zeta|^{2}\right)=Y^{2}\left(X^{2}-4\right)>0 \tag{8.20}
\end{equation*}
$$

because $Y \neq 0$ and $X^{2}=\operatorname{Tr}^{2}(\gamma)>4$ as γ is hyperbolic. This ends the proof.

- Proof of Proposition 8.7 : fix $n=1$ or 2 ; let us consider a prime $p \in \mathscr{P} \backslash \mathscr{F}$ such that $\operatorname{ord}_{p}\left(2 a b D D^{\prime}\right)=0$ and

$$
\begin{equation*}
\exists N \in \mathscr{F} \quad \exists \alpha=\xi+\eta \Omega \in R^{p r}\left(N^{n} p^{n}\right) \quad \alpha . \mathscr{S}=\mathscr{S}=S\left(a_{1}, r\right) \tag{8.21}
\end{equation*}
$$

Keep in mind that \mathscr{S} being a Γ_{R} - closed itgs of $\mathbb{H}^{3}, a_{1} \neq 0$ by Proposition 8.6. If $\eta=0$, then $\alpha \cdot(z, t)=(\xi z / \bar{\xi} t)$ for any $(z, t) \in \mathbb{H}^{3}: \alpha$ acts as an euclidean rotation of the space \mathbb{R}^{3}. Therefore $a_{1}=\alpha \cdot a_{1}=\xi a_{1} / \bar{\xi} \neq 0$ and $\xi / \bar{\xi}=1$: hence $\xi \in \mathbb{R}$ so that $\alpha=\xi= \pm N p \in p R$ and cannot be primitive in R, a contradiction.

Since $\eta \neq 0$, we can proceed as in the proof of Proposition 8.6 : we set $\mathscr{C}=C\left(a_{1}, r\right)$; then $\alpha(\mathscr{C})=\mathscr{C}$ whence by Lemma 8.1

$$
\exists \varepsilon= \pm 1 \quad\left\{\begin{aligned}
b\left(\bar{\eta} a_{1}-\varepsilon \eta \overline{a_{1}}\right) & =(1+\varepsilon) \xi \\
b^{2} r^{2}|\eta|^{2}-\left|\xi+b \eta \overline{a_{1}}\right|^{2} & =\varepsilon N^{n} p^{n} \\
|\xi|^{2}-b|\eta|^{2} & =N^{n} p^{n}
\end{aligned}\right.
$$

. If $\varepsilon=-1$ then from relation (8.15") we get $\bar{\eta} a_{1}+\eta \overline{a_{1}}=2 \operatorname{Re}\left(\eta \overline{a_{1}}\right)=0$. We proceed as with relation (6.3) : there exists $\eta_{1} \in \mathscr{O}_{\mathbb{F}}$ fixed (depending only on a_{1}) such that

$$
\begin{equation*}
\exists \lambda \in \mathbb{Q} \quad \eta=\lambda \eta_{1} \tag{8.22}
\end{equation*}
$$

Using the relations (8.16') and (8.17"), we get $\left|\xi+b \eta \overline{a_{1}}\right|^{2}-b^{2} r^{2}|\eta|^{2}=|\xi|^{2}-b|\eta|^{2}$ whence $2 b \operatorname{Re}\left(\xi \bar{\eta} a_{1}\right)+b|\eta|^{2}\left[1+b\left(\left|a_{1}\right|^{2}-r^{2}\right)\right]=0$ i.e. $2 \operatorname{Re}\left(\xi \bar{\eta} a_{1}\right)+q|\eta|^{2}=0$ and

$$
\begin{equation*}
2 \operatorname{Re}\left(\xi \overline{\eta_{1}} a_{1}\right)=-\lambda q\left|\eta_{1}\right|^{2} \quad \text { where } \quad q=1+b\left(\left|a_{1}\right|^{2}-r^{2}\right) \tag{8.23}
\end{equation*}
$$

Let us assume for the moment that $q \neq 0$. By Proposition 8.6, we have $\zeta=a_{1} / q \in \mathbb{F}$ and $\xi \overline{\eta_{1}} \zeta \in \mathbb{F}$, so that $\exists \mu \in \mathbb{Q}, 2 i \operatorname{Im}\left(\xi \overline{\eta_{1}} \zeta\right)=\mu \sqrt{a}$. Therefore $2 \xi \overline{\eta_{1}} \zeta=-\lambda\left|\eta_{1}\right|^{2}+\mu \sqrt{a}$ and $4\left|\xi \eta_{1} \zeta\right|^{2}=\lambda^{2}\left|\eta_{1}\right|^{4}-a \mu^{2}$. Injecting this in relation (8.17') we get

$$
\begin{aligned}
4 N^{n} p^{n}\left|\eta_{1}\right|^{2}|\zeta|^{2} & =4\left|\xi \eta_{1} \zeta\right|^{2}-4 b|\eta|^{2}\left|\eta_{1}\right|^{2}|\zeta|^{2} \\
& =-a \mu^{2}+\lambda^{2}\left|\eta_{1}\right|^{4}\left(1-4 b|\zeta|^{2}\right)
\end{aligned}
$$

For $\lambda=l / r, \mu=m / r \in \mathbb{Q}$ with integers l, m, r satisfying $l \wedge m \wedge r=1$, this relation becomes after multiplication of both sides by $a r^{2}$

$$
\begin{equation*}
a\left(1-4 b|\zeta|^{2}\right)\left(l\left|\eta_{1}\right|^{2}\right)^{2}=4 a\left|\eta_{1}\right|^{2}|\zeta|^{2} r^{2} N^{n} p^{n}+a^{2} m^{2} \tag{8.24}
\end{equation*}
$$

We know by Proposition 8.6 that $1-4 b|\zeta|^{2} \neq 0$. For a prime p such that $\operatorname{ord}_{p}\left(1-4 b|\zeta|^{2}\right)=$ $\operatorname{ord}_{p}|\zeta|^{2}=\operatorname{ord}_{p}\left|\eta_{1}\right|^{2}=0$, we see from relation (8.24) that $l \equiv 0[p]$ if and only if $m \equiv 0[p]$. If $l \equiv 0[p]$ then $\left(2 r \overline{\eta_{1}} \zeta\right) \xi=\left(-l|\eta|^{2}+m \sqrt{a}\right) \in p \mathscr{O}_{\mathbb{F}}$, with $r \not \equiv 0[p]$ because $l \wedge m \wedge r=1$, and $r \eta=l \eta_{1} \in p \mathscr{O}_{\mathbb{F}}$: hence $\alpha=\xi+\eta \Omega \in p R$, which contradicts the choice of α primitive. Therefore $l \not \equiv 0[p]$ and relation (8.24) implies that $a\left(1-4 b|\zeta|^{2}\right)$ is a square modulo p.

If $q=0$ then from relation (8.23) we get $\operatorname{Re}\left(\xi \overline{\eta_{1}} a_{1}\right)=0=-\operatorname{Im}(\xi) \operatorname{Im}\left(\overline{\eta_{1}} a_{1}\right)$ whence $\operatorname{Im}(\xi)=0$ (because $\overline{\eta_{1}} a_{1} \in i \mathbb{R} \backslash\{0\}$). Therefore we have $\xi=\mu \in \mathbb{Q}$ and $\eta=\lambda \eta_{1}$ so that $N^{n} p^{n}=\mu^{2}-b\left|\eta_{1}\right|^{2} \lambda^{2}$ by relation (8.17') whence

$$
\begin{equation*}
\exists(l, m, r) \in \mathbb{Z}^{3}, \quad l \wedge m \wedge r=1 \quad \text { and } \quad r^{2} N^{n} p^{n}=m^{2}-b\left|\eta_{1}\right|^{2} l^{2} \tag{8.25}
\end{equation*}
$$

Given a prime p such that $\operatorname{ord}_{p}\left|\eta_{1}\right|^{2}=0$ we have $l \equiv 0[p] \Longleftrightarrow m \equiv 0[p] \Longleftrightarrow \alpha \in p R$ as in the case $q \neq 0$, in contradiction with the primitivity of α. Thus $l \not \equiv 0[p]$ and relation (8.25) implies that the integer $b\left|\eta_{1}\right|^{2}$ is a square modulo p.
. If $\varepsilon=1$ then relation (8.15') implies $\xi=b\left(\bar{\eta} a_{1}-\eta \overline{a_{1}}\right) / 2=i b \operatorname{Im}\left(\bar{\eta} a_{1}\right) \in i \mathbb{R}$ and $\xi+b \eta \overline{a_{1}}=b\left(\bar{\eta} a_{1}+\eta \overline{a_{1}}\right) / 2=b \operatorname{Re}\left(\bar{\eta} a_{1}\right) \in \mathbb{R}$. Using relations (8.16") and (8.17') we get $N^{n} p^{n}=b^{2} r_{1}^{2}|\eta|^{2}-b^{2} \operatorname{Re}^{2}\left(\eta \overline{a_{1}}\right)=b^{2} \operatorname{Im}^{2}\left(\eta \overline{a_{1}}\right)-b|\eta|^{2}$ so that $b^{2}|\eta|^{2}\left(r_{1}^{2}-\left|a_{1}\right|^{2}\right)=-b|\eta|^{2} \neq 0$ whence

$$
\begin{equation*}
b\left(\left|a_{1}\right|^{2}-r_{1}^{2}\right)=1 \quad \text { and } \quad q=2 \tag{8.26}
\end{equation*}
$$

Therefore, $a_{1}=2 \zeta \in \mathbb{F}^{*}$ (cf. Proposition 8.6). We can set $\eta \overline{a_{1}}=X+Y \sqrt{a}$ with $X, Y \in \mathbb{Q}$. After multiplication of both sides by $\left|a_{1}\right|^{2}$, relation (8.17') becomes

$$
\left|a_{1}\right|^{2} N^{n} p^{n}=-a b^{2}\left|a_{1}\right|^{2} Y^{2}-b\left(X^{2}-a Y^{2}\right)=b\left[a\left(1-b\left|a_{1}\right|^{2}\right) Y^{2}-X^{2}\right]
$$

For a prime p such that $\operatorname{ord}_{p}\left|a_{1}\right|^{2}=0=\operatorname{ord}_{p}\left(1-b\left|a_{1}\right|^{2}\right)$, we can as before conclude that $a\left(1-b\left|a_{1}\right|^{2}\right)=a\left(1-4 b|\zeta|^{2}\right)$ is a square modulo p.

- We can now end the proof of the Proposition : if $q=0$, we have $\eta_{1} \in \mathbb{F}^{*}$ and $\operatorname{ord}_{b}\left(\left|\eta_{1}\right|^{2}\right)$ is even by Lemma 4.1, whence $b\left|\eta_{1}\right|^{2}$ is not a square in \mathbb{Q}. Therefore there exists infinitely many primes p such that $b\left|\eta_{1}\right|^{2}$ is not a square modulo p (cf. section 3.1.2).

If $q \neq 0$, we know by Proposition 8.6 that $a\left(1-4 b|\zeta|^{2}\right)=\left(X^{2}-4\right) Y^{2}>0$ with $(X, Y) \in$ $\mathbb{Z} \times \mathbb{Q}$. As we saw in the proof of Proposition 8.5, $X^{2}-4$ is a square in \mathbb{Z} if and only if $X= \pm 2$ i.e. $X^{2}-4=0$, which cannot happen here. Hence $a\left(1-4 b|\zeta|^{2}\right)$ is not a square in \mathbb{Q}, and there exists once again infinitely many primes p such that $a\left(1-4 b|\zeta|^{2}\right)$ is not a square modulo p.

Therefore, after the exclusion of the prime factors of a finite set of rational numbers, we still have infinitely many primes p for which relation (8.21) cannot be satisfied, whence $\forall N \in \mathscr{F}, \forall \alpha \in R^{p r}\left(N^{n} p^{n}\right), \alpha . \mathscr{S} \neq \mathscr{S}$. This ends the proof of the Proposition.

8.3 Synthesis

Let us take $\Sigma_{1}, \ldots, \Sigma_{l} \Gamma_{R}$ - closed itgs of X_{R}, with $\Sigma_{1} \neq S^{o}$, admitting itgs $\mathscr{S}_{1}, \ldots, \mathscr{S}_{l}$ as liftings to \mathbb{H}^{3}. We apply Proposition 5.2 to these itgs ; let \mathscr{F} be the finite subset of \mathscr{P} given by this Proposition. We know by Propositions 8.5 and 8.7 - whether \mathscr{S}_{1} is a half-plane or a half-sphere - that there are infinitely many primes $p \in \mathscr{P} \backslash \mathscr{F}$ such that

$$
\begin{equation*}
\forall N \in \mathscr{F} \quad \forall \alpha=\xi+\eta \Omega \in R^{p r}(N p) \cup R^{p r}\left(N^{n} p^{n}\right) \quad \alpha \cdot \mathscr{S}_{1} \neq \mathscr{S}_{1} \tag{8.27}
\end{equation*}
$$

whence, by Proposition 5.2
Proposition 8.8 Let $\mathscr{S}_{1}, \ldots, \mathscr{S}_{l}$ - with $\mathscr{S}_{1} \neq S^{o}$ - be Γ_{R} - closed itgs of \mathbb{H}^{3}. There exists infinitely many primes $p \in \mathscr{P}$ such that

$$
\begin{equation*}
\forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \forall i \in\{1 \ldots l\} \quad \alpha . \mathscr{S}_{1} \neq \mathscr{S}_{i} \tag{8.28}
\end{equation*}
$$

9 Conclusion

Proof of Proposition 5.1

We consider a manifold X_{R} of class $\left(K_{2}^{S}\right)$ and $\Lambda \subset X_{R}$ a non-empty set that has not type (S^{o}) such that

$$
\Lambda \subset z_{1} \cup \ldots \cup z_{l} \cup L_{1} \cup \ldots \cup L_{r} \cup \Sigma_{1} \cup \ldots \cup \Sigma_{s}
$$

where the z_{i} are points, the L_{j} are closed geodesics and the Σ_{k} are Γ_{R}-closed itgs of X_{R}. We assume moreover that area $(\Lambda) \neq 0$ if $s \geq 1$. We look for a modular correspondence \mathscr{C}_{p} separating Λ (see section 1.1 for definitions).

- Λ is finite: then we have $\Lambda=\left\{z_{1}, \ldots, z_{l}\right\}$. Let us denote by $\tilde{z}_{1}, \ldots, \tilde{z}_{l}$ liftings of these points of X_{R} to \mathbb{H}^{3}. By Proposition 6.1

$$
\begin{equation*}
\exists p \in \mathscr{P} \quad \forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \forall i=1 \ldots l \quad \alpha \tilde{z}_{1} \neq \tilde{z}_{i} \tag{9.1}
\end{equation*}
$$

As in section 1.4, we deduce that there exists a prime p such that \mathscr{C}_{p} separates Λ.

- Λ is infinite and contained in a finite union of closed geodesics : then we can write $\Lambda \subset L_{1} \cup \ldots \cup L_{r}$ where the L_{j} are closed geodesics, and assume that $\Lambda \cap L_{1}$ is infinite. Let the geodesics $\tilde{L}_{1}, \ldots, \tilde{L}_{r}$ be liftings to \mathbb{H}^{3} of the L_{j}. By Proposition 7.1

$$
\begin{equation*}
\exists p \in \mathscr{P} \quad \forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \forall j=1 \ldots r \quad \alpha . \tilde{L}_{1} \neq \tilde{L}_{j} \tag{9.2}
\end{equation*}
$$

As in section 1.4, we deduce that there exists a prime p such that \mathscr{C}_{p} separates Λ.

- Λ is contained in a finite union of Γ_{R}-closed itgs and area $(\Lambda) \neq 0$: as Λ has not type $\left(S^{o}\right)$, we can write $\Lambda \subset \Sigma_{1} \cup \ldots \cup \Sigma_{s}$ where the Σ_{k} are Γ_{R}-closed itgs, $\Sigma_{1} \neq S^{o}$ and area $\left(\Sigma_{1} \cap \Lambda\right) \neq 0$. Let the itgs $\mathscr{S}_{1}, \ldots, \mathscr{S}_{s}$ be liftings of the Σ_{k} to \mathbb{H}^{3}. As $\mathscr{S}_{1} \neq S^{o}$, then by Proposition 8.8

$$
\begin{equation*}
\exists p \in \mathscr{P} \quad \forall \alpha \in R(p) \cup R^{p r}\left(p^{2}\right) \quad \forall k=1 \ldots r \quad \alpha . \mathscr{S}_{1} \neq \mathscr{S}_{k} \tag{9.3}
\end{equation*}
$$

Let $p \in \mathscr{P}$ be such a prime: $\mathscr{C}_{p}\left(\Sigma_{1}\right)$ and $\mathscr{C}_{p^{2}}\left(\Sigma_{1}\right)$ consist of Γ_{R}-closed itgs all distinct from the Σ_{k}. Therefore by Lemma 4.3 the sets

$$
\mu_{1}=\mathscr{C}_{p}\left(\Sigma_{1}\right) \cap\left(\Sigma_{1} \cup \ldots \cup \Sigma_{l}\right) \quad \text { and } \quad \mu_{2}=\mathscr{C}_{p^{2}}\left(\Sigma_{1}\right) \cap\left(\Sigma_{1} \cup \ldots \cup \Sigma_{l}\right)
$$

have zero area. Hence

$$
\nu_{1}=\left\{z \in X_{R} / \mathscr{C}_{p}(z) \cap \mu_{1} \neq \emptyset\right\} \quad \text { and } \quad \nu_{2}=\left\{z \in X_{R} / \mathscr{C}_{p^{2}}(z) \cap \mu_{2} \neq \emptyset\right\}
$$

have zero area, so that there exists $z \in \Lambda \cap \Sigma_{1} \backslash\left(\nu_{1} \cup \nu_{2}\right)$. Let \tilde{z} be a lifting of z to \mathbb{H}^{3} and $w=\Gamma_{R} \alpha_{1} \tilde{z} \in \mathscr{C}_{p}(z) \subset \mathscr{C}_{p}\left(\Sigma_{1}\right)$. As in section 1.4 (infinite case), we show that $w \notin \Lambda$ and $\mathscr{C}_{p}(w) \cap \Lambda=\{z\}: \mathscr{C}_{p}$ separates Λ. This ends the proof of Proposition 5.1.

Proof of Theorem 5.1

Let us take $\Lambda \subset X_{R}$ satisfying the statement of Proposition 5.1 : there is a modular correspondence \mathscr{C} separating Λ. Let ν be a quantum limit on X_{R} which is - we make the same assumption as in section 1.4 - associated to a sequence of eigenfunctions of Δ and $\left\{T_{n}\right\}$, hence of $T=T_{C}$. From Proposition 1.1, we deduce that singsupp $\nu \neq \Lambda$, which finally proves Theorem 5.1.

A Of closed itgs in X_{R}

Let us assume that $\mathscr{S} \neq S^{o}$ is a closed itgs of \mathbb{H}^{3} for Γ_{R} : by Proposition 4.3, there exists a compact subset $\mathscr{F} \subset \mathscr{S}$ and a subgroup $\Gamma_{0} \subset \Gamma_{R}$ such that $\mathscr{S}=\Gamma_{0} . \mathscr{F}$ i.e.

$$
\begin{equation*}
\forall x \in \mathscr{S} \quad \exists \gamma \in \Gamma_{0} \quad \gamma \cdot x \in \mathscr{F} \tag{1.1}
\end{equation*}
$$

We set $t_{0}=\inf \{t /(z, t) \in \mathscr{F}\}=\min \{t /(z, t) \in \mathscr{F}\}>0$ since \mathscr{F} is compact in \mathbb{H}^{3}.

A. 1 The half-spheres

We shall write $\mathscr{S}=S\left(a_{1}, r\right)$, with $a_{1} \in \mathbb{C}$ and $r>0$. By Proposition 8.6, $a_{1} \neq 0$; we fix

$$
(z, t)=\left(a_{1}\left[1+\frac{\sqrt{r^{2}-t^{2}}}{\left|a_{1}\right|}\right], t\right) \in \mathscr{S} \quad \text { with } \quad 0<t<t_{0}
$$

Now take any $\gamma=\xi+\eta \Omega \in \Gamma_{0}$. If $\eta \neq 0$, we deduce from relation (8.15) - see the proof of Proposition 8.6 - that $\bar{\eta} a_{1} \in i \mathbb{R}^{*}$; moreover

$$
\begin{equation*}
\gamma \cdot(z, t)=(\tilde{z}, \tilde{t})=\left(*, \frac{t}{|\xi+b \eta \bar{z}|^{2}+b^{2}|\eta|^{2} t^{2}}\right) \tag{1.2}
\end{equation*}
$$

by relation (2.3). As $\eta \bar{z} \in i \mathbb{R}$, we have $|\xi+b \eta \bar{z}|^{2} \geq \operatorname{Re}(\xi)^{2}>1$ by hyperbolicity of γ : hence $\tilde{t}<t<t_{0}$ so that $\gamma \cdot(z, t)=(\tilde{z}, \tilde{t}) \notin \mathscr{F}$. If $\eta=0$ then $\gamma= \pm I_{2}$ and $\gamma \cdot(z, t)=(z, t) \notin \mathscr{F}$. Therefore

$$
\exists x \in \mathscr{S} \quad \forall \gamma \in \Gamma_{0} \quad \gamma \cdot x \notin \mathscr{F}
$$

a contradiction with relation (1.1).

A. 2 The half-planes

We shall write $\mathscr{S}=\mathscr{D} \oplus \mathbb{R}_{+}^{*} \mathbf{j}$. Let $\gamma_{0}=\xi_{0}+\eta_{0} \Omega \in \Gamma_{0}$ with $\eta_{0} \neq 0$: by relation (8.2) we have

$$
\mathscr{D}=\left\{z \in \mathbb{C} / \operatorname{Im}\left(b \overline{\eta_{0}} z\right)=\operatorname{Im}\left(\xi_{0}\right)\right\}
$$

We set

$$
\forall \lambda \in \mathbb{R} \quad z_{\lambda}=\frac{-\overline{\xi_{0}}}{b \overline{\eta_{0}}}+\frac{\lambda}{b \overline{\eta_{0}}} \in \mathscr{D}
$$

Take any $\gamma=\xi+\eta \Omega \in \Gamma_{0}$. If $\eta \neq 0$ then

$$
\begin{equation*}
\xi+b \eta \overline{\bar{z}_{\lambda}}=\xi-\frac{\xi_{0} \eta}{\eta_{0}}+\frac{\lambda \eta}{\eta_{0}}=\eta\left[\frac{\xi}{\eta}-\frac{\xi_{0}}{\eta_{0}}+\frac{\lambda}{\eta_{0}}\right] \tag{1.3}
\end{equation*}
$$

Since $\gamma \in \mathfrak{I}, D^{\prime 2}|\eta|^{2} \in \mathbb{N}$ whence $D^{\prime 2}|\eta|^{2} \geq 1$: therefore

$$
\mathrm{N}(\gamma)=|\xi|^{2}-b|\eta|^{2}=1 \Longrightarrow\left|\frac{\xi}{\eta}\right|^{2}=b+\frac{1}{\left|\eta^{2}\right|} \leq b+D^{\prime 2}
$$

and

$$
\begin{equation*}
\forall \gamma \in \Gamma_{R} \quad\left|\frac{\xi}{\eta}-\frac{\xi_{0}}{\eta_{0}}\right|^{2} \leq 2\left(b+D^{\prime 2}\right) \tag{1.4}
\end{equation*}
$$

Now fix $\lambda>\left[\sqrt{2\left(b+D^{\prime 2}\right)}+D^{\prime}\right]\left|\eta_{0}\right|$ and $\left.t \in\right] 0, t_{0}[$; by relations (1.4) and (1.3) we have $\left|\xi+b \eta \overline{z_{\lambda}}\right|^{2}>D^{\prime 2}|\eta|^{2}>1$: therefore - by relation (1.2) $-\gamma \cdot\left(z_{\lambda}, t\right) \notin \mathscr{F}$. If $\eta=0$ then $\gamma \cdot\left(z_{\lambda}, t\right)=\left(z_{\lambda}, t\right) \notin \mathscr{F}$ and we finally get the same contradiction with (1.1) as before.

A. 3 Synthesis

So we have just proved that for any $\left(K_{2}^{S}\right)$ - manifold X_{R}, there is only one possible closed itgs, the projection of $S^{\circ}=S(0,1 / \sqrt{b})$ in X_{R}. . We shall prove now that this itgs is actually closed: Γ_{R} acts on the hyperbolic surface S^{o} - which is equivalent to \mathbb{H}^{2} - as a subgroup of its direct isometries ; we proceed exactly the same way as in [2] to prove that $\Gamma_{R} \backslash S^{o}$ is compact for R a maximal order in an indefinite division quaternion algebra over \mathbb{Q}.

- Set $\mathfrak{I}=\mathbb{Z}\left[i_{1}, i_{2}, i_{3}, i_{4}\right]$ and $\mathfrak{J}=\mathbb{R}\left[i_{1}, i_{2}, i_{3}, i_{4}\right]=\mathfrak{I} \otimes \mathbb{R}=\mathfrak{A} \otimes \mathbb{R}$; for the mapping φ defined in section 3.2 we have $\Gamma_{R} \stackrel{\varphi}{\simeq} \mathfrak{I}(1)$ and $G_{R} \stackrel{\varphi}{\simeq} \mathfrak{J}(1)$ where

$$
G_{R}=\left\{\left(\begin{array}{cc}
\xi & \eta \tag{1.5}\\
b \bar{\eta} & \bar{\xi}
\end{array}\right) \in \mathrm{M}(2, \mathbb{C}) /|\xi|^{2}-b|\eta|^{2}=1\right\}
$$

is the group of isometries induced by $\mathfrak{A} \otimes \mathbb{R}$. We already know from relation (4.6) that $\forall \gamma \in \Gamma_{R}, \gamma \cdot S^{o}=S^{o}$ whence $\gamma \cdot(0,1 / \sqrt{b}) \in S^{o}$. Further :

Lemma 1.1 We define by

$$
\psi: \left\lvert\, \begin{array}{rll}
G_{R} & \longrightarrow S^{o} \\
\gamma & \longmapsto \gamma \cdot(0,1 / \sqrt{b})
\end{array}\right.
$$

a continuous surjection. Set $\mathscr{M}_{c}=\left\{\xi+\eta \Omega \in G_{R} /|\xi| \leq c,|\eta| \leq c\right\}$: for every $c>0$, the set $\psi\left(\mathscr{M}_{c}\right)$ is compact.

Proof: For $\gamma=\xi+\eta \Omega \in G_{R}$ such that $\eta \neq 0$, we have $|\xi|^{2}=1+b|\eta|^{2}$ so that

$$
\gamma \cdot\binom{0}{1 / \sqrt{b}}=\binom{\frac{\xi}{b \bar{\eta}}-\frac{1}{b \bar{\eta}} \frac{\xi}{|\xi|^{2}+b|\eta|^{2}}}{\frac{1}{\sqrt{b}\left(|\xi|^{2}+b|\eta|^{2}\right)}}=\binom{\frac{\xi}{b \bar{\eta}}\left(1-\frac{1}{1+2 b|\eta|^{2}}\right)}{\frac{1}{\sqrt{b}\left(1+2 b|\eta|^{2}\right)}}
$$

whence

$$
\begin{equation*}
\forall \gamma \in G_{R} \quad \psi(\gamma)=\left(\frac{2 \xi \eta}{1+2 b|\eta|^{2}}, \frac{1}{\sqrt{b}\left(1+2 b|\eta|^{2}\right)}\right) \in S^{o} \tag{1.6}
\end{equation*}
$$

For $\eta=0$, we get $\psi(\gamma)=(0,1 / \sqrt{b})$ and we find again the same expression. It is easy to see that we obtain this way all the points of S^{o} when $(|\eta|, \operatorname{Arg} \xi \eta)$ runs $[0,+\infty[\times]-\pi, \pi]$, so that ψ is a surjection. From its above expression, it is moreover obvious that ψ is continuous on G_{R}. For all $c>0, \mathscr{M}_{c}$ is a compact subset of $\mathrm{M}(2, \mathbb{C})$ so that $\psi\left(\mathscr{M}_{c}\right)$ is compact.

Note that $\forall \gamma_{1}, \gamma_{2} \in G_{R}, \psi\left(\gamma_{1} \cdot \gamma_{2}\right)=\gamma_{1} \cdot \psi\left(\gamma_{2}\right)$ from the definition of ψ.

- Let us now consider elements $\xi=x_{1} i_{1}+x_{2} i_{2}+x_{3} i_{3}+x_{4} i_{4}$ with $\forall j, x_{j} \in \mathbb{R}$ such that $\mathrm{N}(\xi)=1$, and set $M_{c}=\left\{\xi \in \mathfrak{A} \otimes \mathbb{R} / \forall j,\left|x_{j}\right| \leq c\right\} \cap\{\xi: \mathrm{N}(\xi)=1\}$ for $c>0$. Then we have (see [2])

Lemma 1.2 Let \mathfrak{A} be an indefinite division algebra over \mathbb{Q} and $\mathfrak{I}=\mathbb{Z}\left[i_{1}, i_{2}, i_{3}, i_{4}\right]$ a maximal order of \mathfrak{A}. There exists $c>0$ fixed such that

$$
\forall \xi \in \mathfrak{A} \otimes \mathbb{R} \text { with } N(\xi)=1 \quad \exists \varepsilon \in \mathfrak{I}(1) \quad \varepsilon \xi=\eta \in M_{c}
$$

By application of the mapping φ ，we obtain from the above relation
so that

$$
\exists c>0 \quad \forall \gamma \in G_{R} \quad \exists \gamma_{0} \in \Gamma_{R} \quad \gamma_{0} \gamma=\gamma_{1} \in \mathscr{M}_{c}
$$

$$
\exists c>0 \quad \forall \gamma \in G_{R} \quad \exists \gamma_{0} \in \Gamma_{R} \quad \gamma_{0} \cdot \psi(\gamma)=\psi\left(\gamma_{0} \cdot \gamma\right) \in \psi\left(\mathscr{M}_{c}\right)
$$

By Proposition 1.1

$$
\forall x \in S^{o} \quad \exists \gamma \in G_{R} \quad x=\psi(\gamma)
$$

and the set $\mathscr{F}=\psi\left(\mathscr{M}_{c}\right)$ is a compact subset of S^{o} such that

$$
\forall x \in S^{o} \quad \exists \gamma_{0} \in \Gamma_{R} \quad \gamma_{0} \cdot x \in \mathscr{F} \quad \text { i.e. } \quad S^{o}=\Gamma_{R} \mathscr{F}
$$

which leads to
Proposition 1．1 For any $\left(K_{2}^{S}\right)$－manifold X_{R} ，the half－sphere $S^{o}=S(0,1 / \sqrt{b})$ is the only closed itgs of \mathbb{H}^{3} for Γ_{R} ；its projection in X_{R} is then compact．

A． 4 Complement ：the case $a>0$

－One could think that the（arbitrary）choice of $a<0$ made in section $⿴ 囗 十 ⺝$ for the definition of the class $\left(K_{2}^{S}\right)$ is the cause of the lack of closed itgs in X_{R} ．But that would be a mistake，as we shall see in the sequel．We define，as in section \＃，a class $\left(K_{1}^{S}\right)$ of quotients manifolds X_{R} by taking

$$
\begin{equation*}
a \in \mathbb{Z} \quad b \in \mathscr{P} \quad\left(\frac{a}{b}\right)=-1 \quad\left(\frac{-1}{b}\right)=1 \quad\left(\frac{-3}{b}\right)=1 \tag{1.7}
\end{equation*}
$$

For example，we can take $a=2$ and $b=13$ ；in fact，we just have to take the opposite of a to get from the $\left(K_{2}^{S}\right)$－manifolds to the $\left(K_{1}^{S}\right)$ ones．We have the same properties as in section $\boxed{4}$－they are consequences of relation（1．7）－except that the conjugation in \mathbb{F} does not coincide with the complex conjugation anymore．For the definition of the Γ_{R}－closed itgs，we shall moreover impose that the hyperbolic elements $\gamma=\xi+\eta \Omega$ considered satisfy $\eta \neq 0$ ．
－This time，the particular itgs that is left invariant under the action of all the isometries induced by $\mathfrak{A} \otimes \mathbb{R}$ is $P^{o}=\mathbb{R} \oplus \mathbb{R}_{+}^{*} \mathbf{j} \simeq \mathbb{H}^{2}$ ．Indeed， $\mathfrak{A} \otimes \mathbb{R}$ induces the group $\operatorname{SL}(2, \mathbb{R})$ since $\sqrt{a} \in \mathbb{R}$ ．The action of

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})
$$

on P^{o} is given by

$$
\forall(x, t) \in \mathbb{R} \times \mathbb{R}_{+}^{*} \quad \gamma \cdot\binom{x}{t}=\binom{\frac{a x+b}{d}}{\frac{a t}{d}}=\binom{\tilde{x}}{\tilde{t}} \in P^{o}
$$

if $c=0$ ．Then

$$
\tilde{x}+i \tilde{t}=\frac{a(x+i t)+b}{d}=\alpha(x+i t)
$$

and we obtain the fractional linear action of $\operatorname{SL}(2, \mathbb{R})$ on \mathbb{H}^{2} ．If $c \neq 0$

$$
\forall(x, t) \in \mathbb{R} \times \mathbb{R}_{+}^{*} \quad \gamma \cdot\binom{x}{t}=\binom{\frac{a}{c}-\frac{1}{c} \frac{c x+d}{(c x+d)^{2}+c^{2} t^{2}}}{\frac{t}{(c x+d)^{2}+c^{2} t^{2}}}=\binom{\tilde{x}}{\tilde{t}} \in P^{o}
$$

whence

$$
\begin{aligned}
\tilde{x}+i \tilde{t} & =\frac{a}{c}-\frac{c(x-i t)+d}{c|c(x+i t)+d|^{2}}=\frac{a}{c}-\frac{1}{c[c(x+i t)+d]} \\
& =\frac{a[c(x+i t)+d]-1}{c[c(x+i t)+d]}=\frac{a c(x+i t)+b c}{c[c(x+i t)+d]} \text { since } a d-1=b c \\
& =\frac{a(x+i t)+b}{c(x+i t)+d}=\alpha(x+i t)
\end{aligned}
$$

and we obtain once again the fractional linear action of $\operatorname{SL}(2, \mathbb{R})$ on \mathbb{H}^{2}. Therefore the discrete group $\Gamma_{R} \subset \mathrm{SL}(2, \mathbb{R})$ has the same action on P^{o} and on \mathbb{H}^{2} : as a consequence (cf. [2]), for a maximal order R in an indefinite division quaternion algebra \mathfrak{A} over \mathbb{Q}, the quotient $\Gamma_{R} \backslash P^{o}$ is compact: the itgs P^{o} is closed for Γ_{R}. We shall now see that it is the only such itgs of \mathbb{H}^{3}.

- For $\gamma=\xi+\eta \Omega \in \Gamma_{R}$ and $x=(z, t) \in \mathbb{H}^{3}$ we have

$$
\begin{equation*}
\gamma \cdot\binom{z}{t}=\binom{\xi^{2} z}{\xi^{2} t}=\binom{\tilde{z}}{\tilde{t}} \tag{1.8}
\end{equation*}
$$

if $\eta=0$, and

$$
\begin{equation*}
\gamma \cdot\binom{z}{t}=\binom{\frac{\xi}{b \bar{\eta}^{\mathbb{F}}}-\frac{1}{b \bar{\eta}^{\mathbb{F}}} \frac{\bar{\xi}^{\mathbb{F}}+b \bar{\eta}^{\mathbb{F}} \bar{z}}{\bar{\xi}^{\mathbb{F}}+\left.b \bar{\eta}^{\mathbb{F}} z\right|^{2}+b\left(\bar{\eta}^{\mathbb{F}}\right)^{2} t^{2}}}{\frac{t}{\left|\bar{\xi}^{\mathbb{F}}+b \bar{\eta}^{\mathbb{F}} z\right|^{2}+b\left(\bar{\eta}^{\mathbb{F}}\right)^{2} t^{2}}}=\binom{\tilde{z}}{\tilde{t}} \tag{1.9}
\end{equation*}
$$

if $\eta \neq 0$. Since $\xi, \eta \in \mathbb{F} \subset \mathbb{R}$, we easily compute that in each case

$$
\begin{equation*}
\frac{\operatorname{Im}(\tilde{z})}{\tilde{t}}=\frac{\operatorname{Im}(z)}{t} \stackrel{\text { def }}{=} f(x) \tag{1.10}
\end{equation*}
$$

Let us consider an itgs $\mathscr{S} \neq P^{o}$ that is closed for Γ_{R} : there exists a compact subset $\mathscr{F} \subset \mathscr{S}$ and a subgroup $\Gamma_{0} \subset \Gamma_{R}$ such that $\mathscr{S}=\Gamma_{0} . \mathscr{F}$ i.e.

$$
\forall x \in \mathscr{S} \quad \exists \gamma \in \Gamma_{0} \quad \gamma \cdot x \in \mathscr{F}
$$

As \mathscr{F} is compact and f is continous on \mathbb{H}^{3}, this function is bounded on \mathscr{F}; we deduce from both previous relations that

$$
\begin{equation*}
\exists M>0 \quad \forall x \in \mathscr{S} \quad|f(x)| \leq M \tag{1.11}
\end{equation*}
$$

We can now obtain the desired contradiction :
. If \mathscr{S} is a half-plane - whose trace will be denoted by \mathscr{D} - different from P^{o}, then there exists $z_{0} \in \mathscr{D} \backslash \mathbb{R}$: for all $t>0, x_{t}=\left(z_{0}, t\right) \in \mathscr{S}$ and $\left|f\left(x_{t}\right)\right| \rightarrow+\infty$ as $t \rightarrow 0$, a contradiction with relation (1.11).
. If $\mathscr{S}=S(a, r)$ is a half-sphere, we have - since $r \neq 0-a+i r \notin \mathbb{R}$ or $a-i r \notin \mathbb{R}$: we may assume wlog that $a+\operatorname{ir} \notin \mathbb{R}$. Set $x_{t}=\left(a+i \sqrt{r^{2}-t^{2}}, t\right)$ for $\left.\left.t \in\right] 0, r\right]$: we have $f\left(x_{t}\right) \sim|\operatorname{Im}(a)+r| / t \rightarrow+\infty$ as $t \rightarrow 0$, a contradiction again.

Hence we have established
Proposition 1.2 For any $\left(K_{1}^{S}\right)$-manifold X_{R}, the half-plane $P^{o}=\mathbb{R} \oplus \mathbb{R}_{+}^{*} \boldsymbol{j}$ is the only closed itgs of \mathbb{H}^{3} for Γ_{R}; its projection in X_{R} is then compact.

De facto the lack of closed itgs is not specific to the $\left(K_{2}^{S}\right)$-manifolds, as we could have thought a priori. Moreover, for any $\left(K_{1}^{S}\right)$-manifold, we see from (8.5) that there is only one Γ_{R}-closed half-plane, P^{o}; the closed geodesics are also particular, they necessarily link either two real points or two conjugate points of \mathbb{C}; we shall also have restrictions on the Γ_{R}-closed half-spheres ; all those considerations justify a posteriori our choice to deal with the $\left(K_{2}^{S}\right)$ manifolds rather with the (K_{1}^{S}) ones.

B Of Γ_{R} - closed itgs

B. 1 Proof of Proposition 8.4

Let us consider the particular Γ_{R} - closed half-planes of \mathbb{H}^{3} given by Proposition 8.3. To prove Proposition 8.4, we just have to see that the set of their projections in X_{R} is still infinite.

Let us take t_{1} and $t_{2} \in \mathbb{N}$; the half-planes $\mathscr{P}\left(t_{1}\right)$ and $\mathscr{P}\left(t_{2}\right)$ have respectively traces $\mathscr{D}_{1}=\left(1+t_{1} \sqrt{a}\right) \mathbb{R}$ and $\mathscr{D}_{2}=\left(1+t_{2} \sqrt{a}\right) \mathbb{R}$ on \mathbb{C}. A circle of $\mathbb{P}^{1}(\mathbb{C})$ being entirely defined by three distinct points, we have for $\gamma=\xi+\eta \Omega \in \Gamma_{R}$ (so that $\eta \neq 0$)

$$
\gamma\left(\mathscr{D}_{1}\right)=\mathscr{D}_{2} \Longleftrightarrow\left\{\begin{array}{l}
\gamma(\infty)=\frac{\xi}{b \bar{\eta}} \in \mathscr{D}_{2} \tag{1}\\
\gamma(0)=\frac{\eta}{\bar{\xi}} \in \mathscr{D}_{2} \\
\gamma\left(1+t_{1} \sqrt{a}\right) \in \mathscr{D}_{2}
\end{array}\right.
$$

The relations (1) and (2) are equivalent since $\eta / \bar{\xi}=\left(b|\eta|^{2} /|\xi|^{2}\right) \times \xi / b \bar{\eta}$. By relation (1), we have $\xi \eta \in \mathscr{D}_{2}$ and

$$
\exists \lambda \in \mathbb{Q} \quad \xi=\lambda b \bar{\eta}\left(1+t_{2} \sqrt{a}\right)
$$

Relation (3) provides

$$
\begin{aligned}
& \frac{\xi\left(1+t_{1} \sqrt{a}\right)+\eta}{b \bar{\eta}\left(1+t_{1} \sqrt{a}\right)+\bar{\xi}} \in \mathscr{D}_{2} \\
\Longleftrightarrow & {\left[\xi\left(1+t_{1} \sqrt{a}\right)+\eta\right]\left[\xi+b \eta\left(1-t_{1} \sqrt{a}\right)\right] \in \mathscr{D}_{2} } \\
\Longleftrightarrow & \xi^{2}\left(1+t_{1} \sqrt{a}\right)+b \eta^{2}\left(1-t_{1} \sqrt{a}\right) \in \mathscr{D}_{2} \\
\Longleftrightarrow & \underbrace{\lambda^{2} b\left(1+t_{2} \sqrt{a}\right)\left(1+t_{1} \sqrt{a}\right) \bar{\eta}^{2}}_{z_{1}}+\underbrace{\left(\frac{1-t_{1} \sqrt{a}}{1+t_{2} \sqrt{a}}\right) \eta^{2}}_{z_{2}} \in \mathbb{R}
\end{aligned}
$$

Note that the complex numbers z_{1} and $z_{2} \in \mathbb{F}$ have opposite arguments: therefore either they have the same module, either they are both reals. In the first case, we would have

$$
\lambda^{4} b^{2}\left(1-a t_{2}^{2}\right)\left(1-a t_{1}^{2}\right)|\eta|^{4}=\frac{1-a t_{1}^{2}}{1-a t_{2}^{2}}|\eta|^{4} \quad \text { id est } \quad b \lambda^{2}\left(1-a t_{2}^{2}\right)=1
$$

whence $\operatorname{ord}_{b}\left(1-a t_{2}{ }^{2}\right)=\operatorname{ord}_{b}\left|1+t_{1} \sqrt{a}\right|^{2}$ is odd, a contradiction with Lemma 4.1. As a consequence, z_{1} and z_{2} are real hence rational numbers (since $\mathbb{F} \cap \mathbb{R}=\mathbb{Q}$) and

$$
\exists \mu \in \mathbb{Q} \quad \eta^{2}=\mu\left(1+t_{1} \sqrt{a}\right)\left(1+t_{2} \sqrt{a}\right)
$$

By taking the square of the module, we get $|\eta|^{4}=\left(|\eta|^{2}\right)^{2}=\mu^{2}\left(1-a t_{1}{ }^{2}\right)\left(1-a t_{2}{ }^{2}\right)$ with $|\eta|^{2} \in \mathbb{Q}$, so that $\left(1-a t_{1}{ }^{2}\right)\left(1-a t_{2}{ }^{2}\right)$ is a square in \mathbb{Q}. We have hence proved

$$
\left(\exists \gamma \in \Gamma_{R} \quad \gamma \cdot \mathscr{P}\left(t_{1}\right)=\mathscr{P}\left(t_{2}\right)\right) \Longrightarrow\left(1-a t_{1}^{2}\right)\left(1-a t_{2}^{2}\right) \text { is a square in } \mathbb{N}
$$

To fullfill the proof of Proposition 8.4, we have to find an infinite subset $\mathscr{I} \subset \mathbb{N}$ such that

$$
\begin{equation*}
\forall t_{1} \neq t_{2} \in \mathscr{I} \quad\left(1-a t_{1}{ }^{2}\right)\left(1-a t_{2}{ }^{2}\right) \text { is not a square in } \mathbb{N} \tag{2.1}
\end{equation*}
$$

and it seems reasonable to think that it is possible for every negative integer a. Take $a=-2$ for instance : we easily compute that all numbers between 0 and 24000 statisfy this relation, except from $2,11,12,70,109,225,408,524,1015,1079,1746,2378,2765,4120,5859,8030$, 10681, 13860, 16647, 17615 and 21994. More generally, a conjectural theorem states

Conjecture Let A, B, C be integers relatively primes such that A is positive, $A+B$ and C are not both even and $B^{2}-4 A C$ is not a perfect square. Then there are infinitely many primes of the form $A n^{2}+B n+C$ with $n \in \mathbb{Z}$.

So, according to this highly probable Conjecture, there are - given a negative integer a infinitely many primes of the form $1-a t^{2}$ with $t \in \mathbb{N}$, whence the existence of an infinite set of integers \mathscr{I} satisfying relation (2.1).

B. 2 Of families of Γ_{R} - closed half-planes

We have seen in Proposition 8.3 the existence of infinitely many Γ_{R} - closed half-planes in \mathbb{H}^{3}, denoted by $\mathscr{P}(t)=\mathbb{R}(1+t \sqrt{a}) \oplus \mathbb{R}_{+}^{*} \mathbf{j}$ for $t \in \mathbb{Z}$. Note that they all contain the particular half-line $\mathbb{R}_{+}^{*} \mathbf{j}$.

But it is easy to find other Γ_{R}-closed half-planes: indeed, for $\gamma=\xi+\eta \Omega$ hyperbolic, we have $0 \in \mathscr{D}_{\gamma} \Longleftrightarrow \operatorname{Im}(\xi)=0$ by relation (8.2). Given $t \in \mathbb{Z}$, we shall look for an hyperbolic element in Γ_{R} of the form $\gamma=x+y \sqrt{a}+z(1+t \sqrt{a}) \Omega$ with $x, y, z \in \mathbb{Z}^{*}$. For such a γ

$$
\begin{equation*}
\mathrm{N}(\gamma)=1 \Longleftrightarrow x^{2}-a y^{2}-b\left(1-a t^{2}\right) z^{2}=1 \tag{2.2}
\end{equation*}
$$

To prove that this equation has infinitely many solutions, we shall fix $u \in \mathbb{Z}$ and set $y=u z$: then $\gamma_{t, u}=x+z u \sqrt{a}+z(1+t \sqrt{a}) \Omega$ and

$$
\begin{equation*}
\mathrm{N}\left(\gamma_{t, u}\right)=1 \Longleftrightarrow x^{2}-[\underbrace{a u^{2}+b\left(1-a t^{2}\right)}_{d}] z^{2}=1 \tag{2.3}
\end{equation*}
$$

We have $d \equiv a u^{2}[b]$ and a is not a square modulo b - since X_{R} is a manifold of class (K_{2}^{S}) - whence d cannot be a square in \mathbb{Z}. Moreover $d=b-a\left(b t^{2}-u^{2}\right)>0$ as soon as $|t|$ is big enough : in that case (cf. Pell-Fermat), we can solve the above equation for non-trivial x, z. Finally by relation (8.2)

$$
\mathscr{D}_{\gamma t, u}=\mathscr{D}(u, t)=\left(\mathbb{R}+\frac{i \operatorname{Im}(\xi)}{b|\eta|^{2}}\right) \eta=\left(\mathbb{R}+\frac{u \sqrt{a}}{b\left(1-a t^{2}\right)}\right)(1+t \sqrt{a})
$$

which proves the following extension of Proposition 8.3 :
Proposition 2.1 There are infinitely many Γ_{R}-closed half-planes in \mathbb{H}^{3} that do not contain $\mathbb{R}_{+}^{*} \mathbf{j}$, the half-planes $\mathscr{P}(t, u)=\left(\mathbb{R}+\frac{u \sqrt{a}}{b\left(1-a t^{2}\right)}\right)(1+t \sqrt{a}) \oplus \mathbb{R}_{+}^{*} \mathbf{j}$ for $t, u \in \mathbb{Z}$.

Let us take for example $a=-2$ and $b=13$ as in section 0 .
. $\gamma_{0,1}=10+3 i \sqrt{2}-3 \Omega$ leaves $\mathscr{P}(0,1)=\left(\mathbb{R}+\frac{i \sqrt{2}}{13}\right) \oplus \mathbb{R}_{+}^{*} \mathbf{j}$ invariant..

- $\gamma_{1,4}=8+12 i \sqrt{2}+3(1+i \sqrt{2}) \Omega$ leaves $\mathscr{P}(1,4)=\left(\mathbb{R}+\frac{4 i \sqrt{2}}{39}\right)(1+i \sqrt{2}) \oplus \mathbb{R}_{+}^{*} \mathbf{j}$ invariant.
. $\gamma_{2,3}=10+3 i \sqrt{2}+(1+2 i \sqrt{2}) \Omega$ leaves $\mathscr{P}(2,3)=\left(\mathbb{R}+\frac{i \sqrt{2}}{39}\right)(1+2 i \sqrt{2}) \oplus \mathbb{R}_{+}^{*} \mathbf{j}$ invariant.

B. 3 Families of half-spheres

- We shall first complete Lemma 8.1 to obtain

Proposition 2.2 Let $\mathscr{C}_{1}=C\left(a_{1}, r_{1}\right)$ and $\mathscr{C}_{2}=C\left(a_{2}, r_{2}\right)$ be two circles of $\mathbb{C}, N \in \mathbb{Z}$ and $\alpha=\xi+\eta \Omega \in R^{p r}(N)$ with $\eta \neq 0$. Then $\alpha\left(\mathscr{C}_{1}\right)=\mathscr{C}_{2}$ if and only if

$$
\exists \varepsilon= \pm 1 \quad\left\{\begin{align*}
b\left(r_{1} \bar{\eta} a_{2}-\varepsilon r_{2} \eta \overline{a_{1}}\right) & =\left(r_{1}+\varepsilon r_{2}\right) \xi \tag{8.16}\\
b^{2} r_{1}^{2}|\eta|^{2}-\left|\xi+b \eta \overline{a_{1}}\right|^{2} & =N \varepsilon \frac{r_{1}}{r_{2}} \tag{8.15}\\
|\xi|^{2}-b|\eta|^{2} & =N
\end{align*}\right.
$$

Proof: we just have to prove the backward implication to fullfill the proof. Keep the notations of Lemma 8.1. Relation (8.16) provides

$$
\left|\frac{\bar{\xi}}{b \bar{\eta}}+a_{1}\right|^{2}-r_{1}^{2} \neq 0 \quad \text { whence } \quad \zeta=-\frac{\bar{\xi}}{b \bar{\eta}} \notin \mathscr{C}_{1}
$$

Therefore $\alpha_{I}\left(\mathscr{C}_{1}\right)=\mathscr{C}^{\prime}$ is a circle and $\alpha\left(\mathscr{C}_{1}\right)=\alpha_{R}\left(\mathscr{C}^{\prime}\right)=\mathscr{C}^{\prime \prime}=C\left(a^{\prime \prime}, r^{\prime \prime}\right)$. We still have, by relation (8.16) , $\varepsilon=1 \mathrm{iff} \zeta$ is inside of \mathscr{C}_{1}. Applying the Lemma to \mathscr{C}_{1} and $\mathscr{C}^{\prime \prime}$ we get from relation (8.13)

$$
\frac{r^{\prime \prime}}{r_{1}}=\frac{\varepsilon|k|}{r_{1}^{2}-\left|a_{1}-\zeta\right|^{2}}=\frac{\varepsilon N}{b^{2} r_{1}^{2}|\eta|^{2}-\left|\xi+b \eta \overline{a_{1}}\right|^{2}}=\frac{r_{2}}{r_{1}}
$$

since $|k|=N / b^{2}|\eta|^{2}$: then $r^{\prime \prime}=r_{2}$. Finally $\alpha_{I}(\hat{\zeta})$ is the center of \mathscr{C}^{\prime} so that $\alpha(\hat{\zeta})=a^{\prime \prime}$; as $(8.15) \Longleftrightarrow 8.14) \Longleftrightarrow \alpha(\hat{\zeta})=a_{2}$ then $a^{\prime \prime}=a_{2}$ so that $\alpha\left(\mathscr{C}_{1}\right)=\mathscr{C}_{2}$.

- Now we can use of the above Proposition in our quest for Γ_{R}-closed half-spheres. Let \mathscr{S} be an half-sphere of $\mathbb{H}^{3}, \mathscr{C}=C\left(a_{1}, r\right)$ its trace on \mathbb{C} and $\gamma=\xi+\eta \Omega \in \Gamma_{R}$ a hyperbolic element ; then $\gamma . \mathscr{S}=\mathscr{S} \Longleftrightarrow \gamma(\mathscr{C})=\mathscr{C}$ and we apply Proposition 2.2 to the circle $\mathscr{C}=C\left(a_{1}, r\right)$. Necessarily - as we already saw in the proof of Proposition 8.6 -$\varepsilon=-1$ by hyperbolicity of γ; therefore

$$
\gamma . \mathscr{S}=\mathscr{S} \Longleftrightarrow\left\{\begin{aligned}
\bar{\eta} a_{1}+\eta \overline{a_{1}} & =0 \\
\left|\xi+b \eta \overline{a_{1}}\right|^{2}-b r^{2}|\eta|^{2} & =1 \\
|\xi|^{2}-b|\eta|^{2} & =1
\end{aligned}\right.
$$

whence

$$
\gamma . \mathscr{S}=\mathscr{S} \Longleftrightarrow\left\{\begin{align*}
\bar{\eta} a_{1}+\eta \overline{a_{1}} & =0 \tag{E}\\
(\xi-\bar{\xi}) a_{1}+\left[1+b\left(\left|a_{1}\right|^{2}-r^{2}\right)\right] \eta & =0 \\
|\xi|^{2}-b|\eta|^{2} & =1
\end{align*}\right.
$$

For example, take any $a_{1} \in \mathbb{F}=\mathbb{Q}[\sqrt{a}]$, define $r \in \mathbb{R}^{*}$ by $1+b\left(\left|a_{1}\right|^{2}-r^{2}\right)=0$ id est $r=\sqrt{\left|a_{1}\right|^{2}+1 / b}$ and consider $\mathscr{S}=S\left(a_{1}, r\right)$. For $\xi=X \in \mathbb{Z}$ and $\eta=a_{1} Y \sqrt{a}$ with $Y \in \mathbb{Z}$, we have $\bar{\eta} a_{1}+\eta \overline{a_{1}}=0$ and $\xi=\bar{\xi}$, so that

$$
\gamma \cdot \mathscr{S}=\mathscr{S} \Longleftrightarrow|\xi|^{2}-b|\eta|^{2}=X^{2}+a b\left|a_{1}\right|^{2} Y^{2}=1
$$

From Lemma 4.1, we know that $\operatorname{ord}_{b}\left(\left|a_{1}\right|^{2}\right)$ is even, so that the natural integer $d=-a b\left|a_{1}\right|^{2}$ cannot be a square in \mathbb{Q}. Therefore the previous Pell equation is solvable for non-trivial integers X and Y. Thus we have proved
Lemma 2.1 Given any $a_{1} \in \mathbb{F}=\mathbb{Q}[\sqrt{a}]$, the half-sphere $S\left(a_{1}, \sqrt{\left|a_{1}\right|^{2}+\frac{1}{b}}\right)$ is Γ_{R}-closed.
Some examples in the case $a=-2, b=13$:
. $\gamma=64425+1666 i \sqrt{2}(2+5 i \sqrt{2}) \Omega$ leaves $S\left(2+5 i \sqrt{2}, \sqrt{54+\frac{1}{13}}\right)$ invariant.

- $\gamma=96747+2318 i \sqrt{2}(7+3 i \sqrt{2}) \Omega$ leaves $S\left(7+3 i \sqrt{2}, \sqrt{67+\frac{1}{13}}\right)$ invariant.
. $\gamma=561835+11074 i \sqrt{2}(7+5 i \sqrt{2}) \Omega$ leaves $S\left(\frac{1}{5}+\frac{i \sqrt{2}}{7}, \sqrt{\frac{99}{1225}+\frac{1}{13}}\right)$ invariant.

More generally, for $a_{1} \in \mathbb{F}$ and $r \in \mathbb{R}$ such that $r^{2} \in \mathbb{Q}$, the resolution of the system (E) leads to

$$
\left\{\begin{aligned}
\xi & =X-\frac{1}{2}\left[1+b\left(\left|a_{1}\right|^{2}-r^{2}\right)\right] Y \sqrt{a} \\
\eta & =Y a_{1} \sqrt{a}
\end{aligned} \quad \text { with } X, Y \in \mathbb{Z}\right.
$$

and the norm equation provides

$$
1=X^{2}-\underbrace{\frac{a}{4}\left\{\left[1+b\left(\left|a_{1}\right|^{2}-r^{2}\right)\right]^{2}-4 b\left|a_{1}\right|^{2}\right\}}_{d} Y^{2}
$$

For $r^{2} \in \mathbb{Q}$ close enough to $\left|a_{1}\right|^{2}$, we have $4 b\left|a_{1}\right|^{2} \geq\left[1+b\left(\left|a_{1}\right|^{2}-r^{2}\right)\right]^{2}$ and the rational number d is positive. Assume moreover that $\operatorname{ord}_{b}\left|a_{1}\right|^{2} \geq 0$ and $\operatorname{ord}_{b} r^{2} \geq 0$: then $d \equiv a / 4[b]$, which is not a square modulo b for a $\left(K_{2}^{S}\right)$-manifold, so that d is not a square in \mathbb{Q}. Therefore the above Pell equation is solvable for non-trivial $X, Y \in \mathbb{Z}$ - with $d Y^{2} \in \mathbb{Z}$ - which proves

Proposition 2.3 Given any $q_{1} \in \mathbb{F}=\mathbb{Q}[\sqrt{a}]$ and $r^{2} \in \mathbb{Q}$ such that $\left|a_{1}\right|^{2}$ and r^{2} are inversible modulo b and $4 b\left|a_{1}\right|^{2} \geq\left[1+b\left(\left|a_{1}\right|^{2}-r^{2}\right)\right]^{2}$, the half-sphere $S\left(a_{1}, r\right)$ is a Γ_{R}-closed itgs of \mathbb{H}^{3}.

Let us give some examples in the case $a=-2, b=13$:
. $\gamma=359+168 i \sqrt{2}+18 i \sqrt{2}(2+3 i \sqrt{2}) \Omega$ leaves $S\left(\frac{2}{3}+i \sqrt{2}, \sqrt{3}\right)$ invariant.
. $\gamma=19603-51480 i \sqrt{2}+2574 i \sqrt{2}(5+2 i \sqrt{2}) \Omega$ leaves $S(5+2 i \sqrt{2}, \sqrt{30})$ invariant.

References

[1] D.V. Anosov, Geodesic Flows on Closed Riemann Manifolds with Negative Curvature, Proceedings of the Steklov Institute of Mathematics, 90 (1969), AMS-Providence
[2] Martin Eichler, Lectures on Modular Correspondances, Lectures on Mathematics and Physics, Tata Institute of fundamental research, 1957.
[3] Hershel M. Farkas \& Irwin Kra, Riemann Surfaces, Graduate Text in Mathematics 71, Springer-Verlag, 1980
[4] G.A. Hedlund, The Dynamics of Geodesic Flows, Bulletin of the American Mathematical Society, 45 (1939) n ${ }^{\circ} 4,241-260$
[5] H.H. Karimova, Geodesic Flows in three dimensional Spaces of Variable Spaces of Negative Curvature, Vestnik Moskov. Univ. Serija Mat., 5 (1959), 3-12
[6] Toshitsune Miyake, Modular Forms, Springer-Verlag, 1989
[7] Wladyslaw Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, SpringerVerlag (1990)
[8] John G. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics, 149, Springer-Verlag (1994)
[9] Zeév Rudnick and Peter Sarnak, The Behaviour of Eigenstates of Arithmetic Hyperbolic Manifolds, Communications in Mathematical Physics, 161 (1994), 195-213
[10] Peter Sarnak, Arithmetic Quantum Chaos, First R.A. Blyth Lectures, University of Toronto, Preprint (1993)
[11] Jean-Pierre Serre, Cours d'Arithmétique, Presses Universitaires de France, 1970
[12] Steven Zelditch, Uniform Distribution of Eigenfunctions on Compact Hyperbolic, Duke Math. Journal, 55 (1987) nº4, 919-941.

Contents

1 The case $\Gamma(2) \backslash \mathbb{H}^{2}$ 3
1.1 Correspondences and separation 3
$1.2 \mathbb{H}^{2}$, the modular group and modular operators 3
1.3 Results on binary quadratic forms 8
1.4 Separation of points and geodesics 11
2 Hyperbolic Geometry in dimension 3 12
2.1 Definition 12
2.2 Isometries of \mathbb{H}^{3} 13
3 Algebraic complements 14
3.1 Number theory 14
3.2 Quaternion algebras 16
4 The quotient space $X_{R}=\Gamma_{R} \backslash \mathbb{H}^{3}$ 20
4.1 Definition of the studied class 20
4.2 Properties of (K_{2}^{5})-manifolds 20
4.3 The type S^{o} and Γ_{R} - closed itgs 22
5 Statement of the result in dimension 3 23
6 Case of the points 24
7 The geodesics 26
8 Case of the Γ_{R}-closed Itgs 26
8.1 Of the half-planes 26
8.2 Of the half-spheres 29
8.3 Synthesis 34
9 Conclusion 35
A Of closed itgs in X_{n} 36
B Of Γ_{R}-closed itgs 40
References 44
Index 45
Table of contents 45

